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Fluorescence microscopy is a key driver of discoveries in the life-sciences, with observable
phenomena being limited by the optics of the microscope, the chemistry of the fluorophores,
and the maximum photon exposure tolerated by the sample. These limits necessitate trade-
offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this
work we show how deep learning enables biological observations beyond the physical lim-
itations of microscopes. On seven concrete examples we illustrate how microscopy images
can be restored even if 60-fold fewer photons are used during acquisition, how isotropic res-
olution can be achieved even with a 10-fold under-sampling along the axial direction, and
how diffraction-limited structures can be resolved at 20-times higher frame-rates compared
to state-of-the-art methods. All developed image restoration methods are freely available as
open source software.
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1 Introduction

Fluorescence microscopy is an indispensable tool in the life sciences for investigating the spatio-
temporal dynamics of cells, tissues, and developing organisms. Recent advances, such as light-
sheet microscopy [1–3], structured illumination microscopy [4, 5], and super-resolution microscopy
[6–8] enable time resolved volumetric imaging of biological processes within cells at high res-
olution. The quality at which these processes can be faithfully recorded, however, is not only
determined by the spatial resolution of the used optical device, but also by the desired temporal
resolution, the total duration of an experiment, the required imaging depth, the achievable fluo-
rophore density, bleaching, and photo-toxicity [9, 10]. These aspects cannot all be optimized at the
same time – one must make trade-offs, for example, sacrificing signal-to-noise ratio by reducing
exposure time in order to gain imaging speed. Such trade-offs are often depicted by a design-space
tetrahedron [11] that has resolution, speed, phototoxicity, and depth at its four vertices (Figure 1a)
with the volume being limited by a total photon budget [12].

These trade-offs can be addressed by optimizing the microscopy hardware, however, there are
physical limits that cannot easily be overcome. Therefore, computational procedures to improve
the quality of acquired microscopy images are becoming increasingly important. For instance, in
the above-mentioned trade-off between exposure and speed, one could apply computational image
restoration to maintain an image quality that is still sufficient for downstream data quantification
at high acquisition speed. Super resolution microscopy [4, 13–16], deconvolution [17–19], surface
projection algorithms [20, 21], and denoising methods [22–24] are examples of sophisticated image
restoration algorithms that can push the limit of the design-space tetrahedron, and thus allow one
to recover important biological information that would be inaccessible by imaging alone.

Most common image restoration problems, however, have multiple possible solutions, and
require additional assumptions in order to select one solution as the final restoration. These as-
sumptions are typically general, e.g. requiring certain level of smoothness of the restored image,
and therefore are not dependent on the specific content of the images to be restored. Intuitively, a
method that leverages available knowledge about the data at hand ought to reach superior restora-
tion results.

Deep Learning (DL) is such a method, since it can learn to perform complex tasks on spe-
cific data [25, 26]. It employs large multi-layered neural networks that compute results after be-
ing trained on annotated example data (i.e. gold-standard, ground-truth data). Spectacular results
reaching human-level performance have for example been achieved on the classification of natural
images [27]. In biology, DL methods have for instance been applied to the automatic extraction
of connectomes from large electron microscopy data [28] and for classification of image-based
high-content screens [29]. However, the direct application of DL methods to image restoration
tasks in fluorescence microscopy is complicated by the absence of sufficiently large training data
sets. In the context of fluorescence microscopy, manually generating such datasets would require
an inordinate amount of careful expert annotations and is therefore simply not feasible.

In this paper we present a solution to the problem of missing training data for DL in fluores-
cence microscopy by developing strategies to generate training data without the need for manual
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annotation. This enables us to apply neural networks to image restoration tasks, such as image de-
noising, surface projection, recovery of isotropic resolution, and the restoration of sub-diffraction
structures. We show, in a variety of imaging scenarios, that trained content-aware restoration
(CARE) networks produce results that were previously unobtainable. This means that the appli-
cation of CARE to biological images allows to transcend the limitations of the design-space tetra-
hedron (Figure 1a), pushing the limits of the possible in fluorescence microscopy through machine
learned image computation.

2 Results

In fluorescence microscopy one is often forced to image samples at low signal intensities, resulting
in difficult to analyze, low signal-to-noise ratio (SNR). One way to improve SNR is to increase
laser power or exposure times which, unfortunately, is usually detrimental to the sample, limiting
the possible duration of the recording and introducing artifacts due to photo-damage. An alternative
solution is to image at low SNR, and later computationally restore acquired images. Classical
approaches, such as Non-local-means denoising [22], can in principle achieve this, but without
leveraging the available knowledge about the data at hand.

To address this problem with machine learning, we developed content-aware image restoration
(CARE) networks, adapted to a specific experimental setup, hypothesizing that they produce results
superior to classical, content-agnostic methods. In the case of image denoising, we acquired pairs
of images at low and high signal-to-noise ratios, used them as input and ground-truth to train CARE

networks, and applied the trained networks to remove noise in previously unseen data.

Image Restoration with Physically Acquired Training Data. To demonstrate the power of this
approach in biology, we applied it to the imaging of the flatworm Schmidtea mediterranea, a model
organism for studying tissue regeneration. This organism is exceptionally sensitive to even moder-
ate amounts of laser light [30], suffering muscle flinching at desirable illumination levels even when
anesthetized (Supp. Video 1). Using a laser power that reduces flinching to an acceptable level re-
sults in images with such low SNR that they are impossible to interpret directly. Consequently, live
imaging of S. mediterranea has thus far been intractable.

To address this problem with CARE, we imaged fixed worm samples at several laser inten-
sities. We acquired well-registered pairs of images, a low-SNR image at laser power compatible
with live imaging, and a high-SNR image, serving as ground-truth. We then trained a convolu-
tional neural network1 and applied the trained network to previously unseen live imaging data of
S. mediterranea. We consistently obtained high quality restorations, even if the SNR of the images
was very low, e.g. being acquired with a 60-fold reduced light-dosage (Figure 1c, Supp. Video 2,
Supp. Figure 1-3). To quantify this observation, we measured the restoration error between pre-
diction and ground-truth images for three different exposure and laser-power conditions. Both, the
NRMSE2 and the SSIM3 measures of error improved considerably when compared to results ob-

1The network architecture we used is based on [31, 32] (Supp. Figure 6 and Supp. Notes 2).
2Normalized root-mean-square error.
3Structural similarity index, measuring the perceived similarity between two images [33].
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Figure 1: Content-aware image restoration in fluorescence microscopy. (a) The design-space of fluorescence mi-
croscopes. Trade-offs between imaging speed, spatial resolution, and light exposure need to be found to best capture
a given sample. Content-aware restoration (CARE) networks enlarge the design-space by restoring image aspects that
suffered due to the trade-off used during imaging. (b) Restoration of noisy (low SNR) volumes. Pairs of high SNR
and low SNR volumes are acquired at the microscope. Each pair (xi, yi) consists of two registered low and high
SNR images of the same biological sample. A deep convolutional neural network is then trained to restore yi from
xi. The trained CARE network is then applied to previously unseen, potentially very low SNR images x̃, yielding
restored images ỹ. (c) Input data and restorations for nucleus-stained (RedDot1) flatworm (Schmidtea mediterranea).
Shown are a single image-plane of a raw input stack (top row), the network prediction (middle row), and the high
SNR gold-standard/ground-truth (bottom row). Due to the photo-sensitivity of the flatworm, ground-truth data can
only be obtained from fixed samples. Once trained, CARE networks can then, for the first time, enable live-cell imag-
ing of Schmidtea mediterranea. (d) Quantification of prediction error for Schmidtea mediterranea for different laser
intensities and exposure times (C1 to C3). Bar plots show normalized root-mean-squared error (NRMSE) and struc-
tural similarity (SSIM, higher is better) for the input, for a denoising baseline (NLM [22]), and for our content-aware
restorations. (e) Input data and restorations for a nucleus-labeled (EFA::nGFP) red floor beetle (Tribolium castaneum)
embryo, again showing a single image-plane of the raw input data (top row), the network prediction (middle row), and
the high SNR ground-truth data (bottom row).
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tained by a potent baseline denoising method (Figure 1d, Supp. Figure 2). Moreover, while training
a CARE network can take several hours, the restoration time for a volume of size 1024×1024×100
was less than 20 seconds on a single graphics processing unit4. In this case, CARE networks are
able to take input data that are unusable for biological investigations and turn them into high-quality
time-lapse data, providing the first practical framework for live-cell imaging of S. mediterranea.

We next asked whether CARE improves common downstream analysis tasks in live-cell imag-
ing, such as nuclei segmentation. We used light-sheet recordings of developing Tribolium casta-
neum (red flour beetle) embryos, and as before trained a network on image pairs of samples ac-
quired at high and low laser powers (Figure 1e). The resulting CARE network performs well even
on extremely noisy, previously unseen live-imaging data, acquired with up to 70-fold reduced light-
dosage compared to typical imaging protocols [34] (Supp. Notes 4, Supp. Video 3, Supp. Figure 4).
In order to test the benefits of CARE for segmentation, we applied a simple nuclei segmentation
pipeline to raw and restored image stacks of T. castaneum. The results show that compared to man-
ual expert segmentation, the segmentation accuracy (as measured with the standard SEG score [35])
improved from SEG = 0.47 on the classically denoised raw stacks to SEG = 0.65 on the CARE re-
stored volumes (Supp. Figure 5). Since this segmentation performance is achieved at significantly
reduced laser power, the gained photon budget can now be spent on the imaging speed and light-
exposure dimensions of the design-space tetrahedron. This means that Tribolium embryos, when
restored with CARE, can be imaged longer and at higher frame rates, enabling improved tracking
of cell lineages.

Encouraged by the performance of CARE on two independent denoising tasks, we asked
whether such networks can also solve more complex, composite tasks. In biology it is often useful
to image a 3D volume and project it to a 2D surface for analysis, for example when studying cell
behavior in developing epithelia of the fruit fly Drosophila melanogaster [36–38]. Also in this
context, it is beneficial to optimize the trade-off between laser-power and imaging speed, usually
resulting in rather low-SNR images. Thus, this restoration problem is composed of projection and
denoising, presenting the opportunity to test if CARE networks can deal with such composite tasks.

For training, we again acquired pairs of low and high SNR 3D image stacks, and further gen-
erated 2D projection images from the high SNR stacks [20] that serve as ground-truth (Figure 2a).
We developed a task-specific network architecture that consists of two jointly trained parts: a net-
work for surface projection, followed by a network for image denoising (Figure 2b, Supp. Figure 9
and Supp. Notes 2). The results show that with CARE, reducing light dosage up to 10-fold has
virtually no adverse effect on the quality of segmentation and tracking results obtained on the pro-
jected 2D images with an established analysis pipeline [39] (Figure. 2 c & d, Supp. Video 4, and
Supp. Figure 7 & 8). Even for this complex task, the gained photon-budget can be used to move
beyond the design-space tetrahedron, for example by increasing temporal resolution, and conse-
quently improving the precision of tracking of cell behaviors during wing morphogenesis [39].

Image Restoration with Semi-synthetic Training Data. Thus far, the application of CARE has
relied on the availability of matching pairs of high and low quality images, both physically acquired

4We used a Nvidia Titan X GPU for all presented experiments.
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Figure 2: A CARE network jointly solving the composite task of surface projection and denoising. (a) Schematic
of the composite task. A developing Drosophila wing is a single layer of cells, embedded in a 3D volume. Imaging
of long time-lapses requires to image at low SNR to avoid photo-toxicity and bleaching. With CARE, the cell layer
of interest can be projected onto a 2D image, while also being denoised by the same, composite network. (b) The
architecture of the proposed CARE network consists of two consecutive sub-networks: the first one performing the
projection of voxel intensities (top half), and the second one denoising this projection. (c) Results obtained by the
proposed CARE network on E-cadherin labeled fly wing data. Shown is a max-projection of the raw input data (top row),
result obtained by applying the state-of-the-art projection method Premosa [20] (second row), the solution computed by
our trained network (third row), and the desired (ground-truth) projection obtained by applying Premosa on a very high
laser-power (high SNR) acquisition of the same sample. The ground-truth data was obtained at a laser intensity that
cannot be used for live-cell imaging without causing damage to the sample (see main text for details). (d) Quantification
of restoration errors for data acquired at different laser intensities and exposure times (conditions C1–C3). We show
normalized root-mean-square error (NRMSE) and structural similarity (SSIM, higher is better) between ground-truth
images and results obtained using Premosa (blue), Premosa with additional denoising (NLM [22], green), and our
trained CARE network (orange).

at a microscope. However, this kind of data is not always available. Therefore, we investigated
whether image pairs useful for training can be obtained also by computationally modifying existing
microscopy images.

A common problem in fluorescence microscopy is that the axial resolution of volumetric
acquisitions is significantly lower than the lateral resolution5. This anisotropy compromises the
ability to accurately measure properties such as the shapes or volumes of cells. Anisotropy is
caused by the inherent axial elongation of the optical point spread function (PSF), and the often
low axial sampling rate of volumetric acquisitions necessitated by the requirement to image fast.

5 Modalities that would allow (close to) isotropic acquisitions are rare, e.g. multi-view light-sheet microscopy [19].
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For the restoration of anisotropic image resolution, adequate pairs of training data cannot directly
be acquired at the microscope. Rather, we took well-resolved lateral slices as ground truth, and
computationally modified them (i.e. applied a realistic imaging model, Supp. Notes 2) to resemble
anisotropic axial slices of the same image stack. In this way, we generated matching pairs of images
showing the same content at axial and lateral resolutions. These semi-synthetically generated pairs
are suitable to train a CARE network that then restores previously unseen axial slices to nearly
isotropic resolution (Figure 3a, Supp. Figure 15, Supp. Notes 2, and [40, 41]). In order to restore
entire anisotropic volumes, we applied the trained network to all lateral image slices, taken in two
orthogonal directions, averaged to a single isotropic restoration (Supp. Notes 2).

We applied this strategy to increase axial resolution of acquired volumes of fruit fly em-
bryos [42], zebrafish retina [43], and mouse liver, imaged with different fluorescence imaging
techniques. The results show that CARE improved the axial resolution in all three cases consid-
erably (Figure 3b-d, Supp. Video 5 & 6, and Supp. Figure 10 & 14). In order to quantify this,
we performed Fourier-spectrum analysis of Drosophila volumes before and after restoration, and
showed that the frequencies along the axial dimension are fully restored, while frequencies along
the lateral dimensions remain unchanged (Supp. Figure 11). Since the purpose of the fruit fly data
is to segment and track nuclei, we applied a common segmentation pipeline [44] to the raw and
restored images, and observed that the fraction of incorrectly identified nuclei was lowered from
1.7% to 0.2% (Supp. Notes 2, Supp. Figure 12 & 13). Thus, restoring anisotropic volumetric em-
bryo images to effectively isotropic stacks, leads to improved segmentation, and will enable more
reliable extraction of developmental lineages.

The zebrafish and mouse liver data are examples of live and fixed two-channel imaging of
large organs, both requiring high imaging speed and isotropic resolution for downstream analysis.
While isotropy facilitates segmentation and subsequent quantification of shapes and volumes of
cells, vessels, or other biological objects of interest, higher imaging speed enables imaging of larger
volumes and their tracking over time. Indeed, respective CARE networks deliver the desired axial
resolution with up to 10-fold fewer axial slices (Figure 3 c & d), allowing one to reach comparable
results ten times faster. Moreover, we observed that for these two-channel datasets, the network
learned to exploit correlations between channels, leading to a better overall restoration quality
compared to results based on individual channels (Supp. Figure 14).

Taken together, increasing isotropic resolution through CARE networks, trained on semi-
synthetic pairs of images, benefits both imaging speed and accuracy of downstream analysis in
many biological applications. Moreover, since training data can computationally be derived from
the data to be restored, this method can be applied to any already acquired data set.

Image Restoration with Synthetic Training Data. Having seen the potential of using semi-
synthetic training data for CARE, we next investigated whether reasonable restorations can be
achieved from synthetic image data alone, i.e. without involving real microscopy data during train-
ing.

In most of the previous applications, one of the main benefits of CARE networks was im-
proved imaging speed. Many biological applications additionally require resolving sub-diffraction
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Figure 3: Isotropic restoration of 3D volumes with CARE. (a) Schematic of the semi-synthetic generation of training
data. Lateral slices of the raw data (mint green) are used as ground-truth data. Corresponding anisotropic axial slices
can be generated synthetically by down-sampling and convolution with the axial component of the PSF of the mimicked
microscope (black inset). Raw axial slices (orange inset) cannot be used to train CARE networks because the isotropic
image content is unknown. (b) Application of CARE on raw time-lapse acquisitions of Drosophila melanogaster [42].
Shown are three areas of raw axial input data (top row), and the respective isotropic restorations (bottom row). The
rightmost column shows the Fourier-spectrum of raw and restored images and shows how missing parts of the spec-
trum are recovered by CARE. (c) An axial slice through a zebrafish retina in the anisotropic raw data (top row) and
the isotropic restoration with CARE. Nuclei are DRAQ5 labeled in magenta and the nuclear envelope is labeled by
GFP+LAB2B in green. (d) An axial slice through mouse liver tissue, again showing the anisotropic raw data in the top
row and the isotropic restoration below. Nuclei are labeled with DAPI and displayed in magenta, while sinusoids are
labeled with FLK-1 and shown in green.
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Figure 4: Resolving sub-diffraction structures in fluorescence microscopy images at very high frame rates with
CARE. (a) Schematic of the fully-synthetic generation of training data pairs. Synthetic images of tubular and point-
like structures where computationally generated as ground-truth data, and have further been processed to resemble
actual microscopy data. CARE networks trained on such data can then be applied on real microscopy images of
diffraction-limited tubular and point-like structures. (b) Raw widefield images of rat secretory granules (pEG-hIns-
SNAP, magenta) and microtubules (SiR-tubulin, green) in insulin-secreting INS-1 cells (top row), the corresponding
network restorations (second row), and a deconvolution result of the raw image as a baseline (bottom row). Below the
images we show line-plots along the diagonal of both insets. (c) GFP-tagged microtubules in HeLa cells. Raw input
image (top row), network restorations (second row), super-resolution images created by the state-of-the-art method
SRRF [14] (third row), and a superposition of our results with restorations by SRRF (bottom row). Below the images
we show line-plots along the diagonal of both insets.

structures in the context of live-cell imaging. Super-resolution imaging modalities achieve the
necessary resolution, but suffer from low acquisition rates. On the other hand, widefield imaging
offers the necessary speed, but lacks the required resolution. We tested whether CARE can com-
putationally resolve sub-diffraction structures using only widefield images as input. To this end,
we developed synthetic generative models of tubular and point-like structures that are commonly
studied in biology. In order to obtain synthetic image pairs, suitable for training CARE networks,
we used these generated structures as ground-truth, and computationally modified them to resem-
ble actual microscopy data (Supp. Notes 2, Supp. Figure 17). We then used the trained networks to
enhance widefield microscopy images containing tubular and point-like structures.

Specifically, we created synthetic ground-truth images of tubular meshes resembling micro-
tubules, and point-like structures of various sizes mimicking secretory granules. Then we computed
synthetic input images by simulating the image degradation process by applying a PSF, camera
noise, and background auto-fluorescence (Figure 4a, Supp. Notes 2, and Supp. Figure 17). Finally,
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we trained a CARE network on these generated image pairs, and applied it to 2-channel widefield
time-lapse images of rat INS-1 cells where the secretory granules and the microtubules were la-
beled (Figure 4b). We observed that the restoration of both microtubules and secretory granules
exhibit a dramatically improved resolution, revealing structures imperceptible in the widefield im-
ages (Supp. Video 7, and Supp. Figure 16). To substantiate this observation, we compared the
CARE restoration to the results obtained by deconvolution6, which is commonly used to enhance
widefield images (Figure 4b). Line profiles through the data show the improved performance of
CARE network over deconvolution (Figure 4b). We additionally compared results obtained by CARE

with super-resolution radial fluctuations (SRRF, [14]), a state-of-the-art method for reconstructing
super-resolution from widefield time-lapse images. We applied both methods on time-lapse wide-
field images of GFP-tagged microtubules in HeLa cells. The results show that both CARE and
SRRF are able to resolve qualitatively similar microtubular structures (Figures 4c, Supp. Video 8).
However, CARE reconstructions are at least 20 times faster, since they are computed from a single
average of up to 10 consecutive raw images while SRRF required about 200 consecutive widefield
frames.

Taken together, these results suggest that for structures that are straight-forward to model,
such as microtubules, CARE networks can enhance widefield images to a resolution usually only
obtainable with super-resolution microscopy, yet at considerably higher frame rates.

Reliability of Image Restoration. We have shown that with the right training data, CARE networks
perform remarkably well on a wide range of image restoration tasks, opening new avenues for
biological observations. However, as for any image processing method, the issue of reliability of
results needs to be addressed.

To facilitate the evaluation of reliability of CARE network predictions, we designed them to
predict a probability distribution for each pixel (Figure 5a). This distinguishes them from conven-
tional image restoration approaches such as deconvolution [45, 46], where only a single restored
intensity value is computed per pixel. For CARE networks, the mean of the distribution is used
as the restored pixel value, while the width (variance) of each pixel distribution encodes the un-
certainty of pixel predictions. Intuitively, narrow distributions signify high confidence, whereas
broad distributions indicate low confidence pixel predictions. This allows us to provide per-pixel
confidence intervals of the restored image (Figure 5a, and Supp. Figure 18 & 19).

These confidence intervals carry information about the reliability of CARE network predic-
tions. We observed that variances tend to increase with restored pixel intensities. This makes it hard
to intuitively understand which areas of an restored image are reliable or unreliable from a static
image of per-pixel variances. Therefore, we visualize the uncertainty in short video sequences,
where pixel intensities are randomly sampled from their respective distributions (Supp. Video 9).
To a human observer, strong flicker in such videos highlights the areas where the uncertainty of
image restorations is high.

In the context of machine learning the accuracy can often be increased by aggregating sev-
eral trained predictors [47]. In addition, we reasoned that by analyzing the consistency of network

6We used the on-board deconvolution procedure shipped with the DeltaVision OMX microscope.
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Figure 5: Quantifying the reliability of image restoration with CARE. (a) For every pixel of the restored image, CARE
networks predict a (Laplace) distribution parameterized by its mean µ and variance or scale σ (top). These distri-
butions provide pixel-wise confidence intervals (bottom), here shown for a surface projection and denoising network
(cf. Figure 2). The line-plot shows predicted mean (blue) with 90% confidence interval (light-blue) and corresponding
ground-truth (dashed red). (b) Multiple independently-trained CARE networks are combined to form an ensemble,
resulting in an ensemble distribution and an ensemble disagreement measure D ∈ [0, 1]. (c) Ensemble predictions can
vary, especially on challenging image regions. Shown are two examples for a surface projection and denoising CARE
ensemble of 4 networks; from left to right: maximum projection of the input, the four individual network predictions,
the ensemble mean, and the ensemble disagreement. The first example (top row) shows an image region with low
disagreement, whereas the second example (bottom row) depicts a region where individual network predictions are
substantially different, resulting in a high disagreement score in the affected image areas.

predictions we can assess their reliability. To that end, we train ensembles (Figure 5b) of about 5
CARE networks on randomized sequences of the same training data. We introduced a measure D
that quantifies the ensemble disagreement per pixel (Supp. Notes 3). D takes values between 0 and
1, with higher values signifying larger disagreement, i.e. smaller overlap among the distributions
predicted by the networks in the ensemble. Using fly wing denoising as an example, we observed
that in areas where different networks in an ensemble predicted very similar structures, the dis-
agreement measure D was low (Figure 5c, top row), whereas in areas where the same networks
predicted obviously dissimilar solutions, the corresponding values of D were large (Figure 5c, bot-
tom row). Therefore, training ensembles of CARE networks is useful to detect problematic image
areas that cannot reliably be restored7.

7Another example for the utility of ensemble disagreement can be found in Supp. Figure 20.
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Availability of Proposed Methods. Code for network training and prediction (written in Python
using Keras [48] and TensorFlow [49]) is publicly available8. Furthermore, to make our restora-
tion models readily available, we developed user-friendly FIJI plugins and KNIME workflows
(Supp. Figure 21 & 22).

3 Discussion

We have introduced content-aware image restoration (CARE) networks designed to restore fluores-
cence microscopy data. A key feature of our approach is that generating training data does not
require laborious manual annotations. Application of CARE to raw images significantly expands
the realm of observable biological phenomena. With CARE, flatworms can be imaged without un-
wanted muscle contractions, beetle embryos can be imaged much gentler and therefore longer and
faster, large tiled scans of entire Drosophila wings can be imaged and simultaneously projected at
dramatically increased temporal resolution, isotropic restorations of embryos and large organs can
be computed from existing anisotropic data, and sub-diffraction structures can be restored from
widefield systems at high frame rate. In all these examples, CARE allows one to invest the pho-
ton budget saved during imaging into improvement of acquisition parameters relevant for a given
biological problem, such as speed of imaging, photo-toxicity, isotropy, or resolution.

Whether an experimentalist is willing to make the above mentioned investment, depends on
her trust that a CARE network is accurately restoring the image. This is a valid concern, that applies
to any image restoration approach. What sets CARE apart is the availability of additional readouts
– per-pixel confidence intervals and ensemble disagreement scores. While strong disagreement
indicates untrustworthy predictions, the converse is not necessarily true since all networks could
simply make the same or similar mistakes. Still, the proposed disagreement score allows users to
identify image regions where restorations might not be accurate.

We have shown multiple examples where image restoration with CARE networks positively
impacts downstream image analysis, such as segmentation and tracking needed for extracting de-
velopmental lineages. Interestingly, in the case of Tribolium, CARE improved segmentation by
efficient denoising, whereas in the case of Drosophila, the segmentation was improved by increas-
ing the isotropy of volumetric acquisitions. These two benefits are not mutually exclusive and could
very well be combined. In fact, we have shown on data from developing Drosophila wings, that
composite tasks can jointly be trained. Future explorations of jointly training composite networks
will further broaden the applicability of CARE to complex biological imaging problems.

Yet, CARE networks cannot be applied to all existing image restoration problems. For in-
stance, the proposed isotropic restoration relies on the implicit assumption that the PSF is constant
throughout the image volume, which often is not the case deep inside tissues. Additionally, CARE is
not feasible when imaging novel biological structures for which ground-truth can neither be phys-
ically acquired nor synthetically modeled, even in principle. The synthetic generation of training
data could, in general, benefit from recent advances in computer vision, such as generative adver-
sarial networks [50]. Furthermore, the disagreement score we introduced could be used to identify

8https://github.com/mpicbg-csbd/CSBDeep

12

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/236463doi: bioRxiv preprint 

https://doi.org/10.1101/236463
http://creativecommons.org/licenses/by-nc-nd/4.0/


instances when synthetic data are not accurate enough. This will allow to iteratively adjust the
modeling of synthetically generated biological structures and in turn improve CARE restorations.

Overall, our results show that fluorescence microscopes can, in combination with content-
aware restorations, operate at higher frame-rates, shorter exposures, and lower light intensities,
while reaching higher resolution, and thereby improving downstream analysis. The technology
described here is readily accessible to the scientific community through the open source tools we
provide. We predict that the current explosion of image data diversity and the ability of CARE

networks to automatically adapt to various image contents, will make such learning approaches
prevalent for biological image restoration and will open new windows into the inner workings of
biological systems across scales.
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