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Influenza A viruses (IAVs) are segmented single-stranded negative sense RNA 12 

viruses that constitute a major threat to human health. The IAV genome 13 

consists of eight RNA segments contained in separate viral ribonucleoprotein 14 

complexes (vRNPs) that are packaged together into a single virus particle1,2 . 15 

While IAVs are generally considered to have an unstructured single-stranded 16 

genome, it has also been suggested that secondary RNA structures are 17 

required for selective packaging of the eight vRNPs into each virus particle3,4 . 18 

Here, we employ high-throughput sequencing approaches to map both the 19 

intra and intersegment RNA interactions inside influenza virions. Our data 20 

demonstrate that a redundant network of RNA-RNA interactions is required 21 

for vRNP packaging and virus growth. Furthermore, the data demonstrate 22 

that IAVs have a much more structured genome than previously thought and 23 

the redundancy of RNA interactions between the different vRNPs explains 24 

how IAVs maintain the potential for reassortment between different strains, 25 

while also retaining packaging selectivity. Our study establishes a framework 26 

towards further work into IAV RNA structure and vRNP packaging, which will 27 

lead to better models for predicting the emergence of new pandemic 28 

influenza strains and will facilitate the development of antivirals specifically 29 

targeting genome assembly. 30 

 31 

Influenza A viruses cause seasonal epidemics as well as occasional pandemics. The 32 

segmented nature of the IAV genome allows reassortment of viral genome 33 

segments between established human influenza viruses and influenza viruses 34 

harboured in the animal reservoir5 . This can lead to emergence of novel influenza 35 

strains, against which there is little pre-existing immunity in the human 36 

population6 . However, due to a lack of understanding of the molecular 37 

mechanisms governing the packaging of the eight genome segments into a single 38 

virion, it remains unclear which influenza virus strains have the potential to form 39 

reassortants. In virions, as well as in infected cells, the RNA genome segments are 40 

assembled into viral ribonucleoprotein (vRNP) complexes in which the termini of 41 

the viral RNA (vRNA) associate with the viral RNA-dependent RNA polymerase 42 

while the rest of the vRNA is bound by oligomeric nucleoprotein (NP)2,7 . Although 43 
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cryo-EM studies revealed the overall architecture and organisation of vRNPs, the 44 

resolution of currently available structures is not sufficiently high to provide 45 

information about the conformation of the vRNA8,9 . It is thought that, through 46 

specific RNA-RNA interactions, exposed regions of vRNA in the vRNP mediate 47 

segment-specific interactions during virion assembly, ensuring that the correct set 48 

of eight vRNPs is selected3,4 . However, the identities of these interacting regions as 49 

well as the overall structure of vRNA in vRNPs are currently unknown. 50 

 51 

To better understand the vRNA structure in the context of vRNPs, we employed 52 

SHAPE-MaP (Selective 2’-Hydroxyl Acylation Analysed by Primer Extension and 53 

Mutational Profiling), which probes the conformational flexibility of each vRNA 54 

nucleotide both ex virio and in virio (Extended Data Fig. 1)10,11 . For the ex virio 55 

experiments, the eight vRNA segments were individually transcribed from plasmid 56 

DNA using T7 RNA polymerase (ivtRNA) or “naked” vRNA was purified from 57 

deproteinated influenza A/WSN/1933 (H1N1) (WSN) particles (nkvRNA). For the in 58 

virio experiments, vRNA was probed in the context of vRNPs directly inside purified 59 

virions (Extended Data Fig. 1a).  60 

 61 

Three biological replicates of the in virio SHAPE-MaP experiments resulted in highly 62 

reproducible SHAPE reactivity profiles suggesting that there is an underlying 63 

structure of vRNA in the context of vRNP (Extended Data Fig. 2a). We found that 64 

the eight different vRNPs in virio have unique vRNA conformations, as 65 

demonstrated by the different SHAPE reactivity profiles (Fig. 1a). Regions of 66 

extensive low SHAPE reactivities in virio (where the median-SHAPE value is below 67 

zero, Fig. 1a) indicate that the vRNA in the context of vRNPs is capable of 68 

accommodating secondary RNA structures with extensive base-pairing. However, 69 

comparison of in virio and ex virio SHAPE profiles shows a significant shift in the 70 

distribution of SHAPE reactivities in virio, consistent with an overall more open (less 71 

structured) RNA conformation (Fig. 1b). In addition, the vRNA forms fewer high-72 

probability secondary RNA structures in virio, suggesting that the binding of NP 73 

remodels and partially melts secondary structures in vRNPs (Fig. 1c), in agreement 74 

with early studies using enzymatic and chemical probing of naked and NP-bound 75 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/236620doi: bioRxiv preprint 

https://doi.org/10.1101/236620


 4 

short RNAs12. Regions of high correlation between ex virio and in virio SHAPE 76 

profiles reveal regions of vRNA which are capable of local secondary structure 77 

formation even when NP is bound. Our data also recapitulate the RNA structures 78 

that have been identified previously using computational methods13,14 (Fig. 1d-e; 79 

Extended Data Fig. 2b; Extended Data Fig. 3-4). 80 

 81 

The finding that secondary RNA structures are accommodated in vRNPs suggests 82 

that NP is not distributed on the vRNA uniformly, in agreement with a recent study 83 

of NP association with vRNA15 . This raises the possibility that parts of the vRNA 84 

could be exposed and accessible to form intermolecular RNA-RNA interactions. 85 

Indeed, it has been previously proposed that the specific packaging of the eight 86 

different vRNPs into the budding virus is mediated by selective RNA-RNA 87 

interactions forming between the vRNPs16-21 . We therefore proceeded to analyse 88 

the intermolecular RNA interactions occurring in virio using SPLASH (Sequencing of 89 

Psoralen Crosslinked, Ligated, and Selected Hybrids)22 . SPLASH uses a reversible 90 

intercalating reagent, psoralen, which crosslinks base-paired RNAs and allows 91 

mapping and identification of crosslinked regions using high-throughput 92 

sequencing. We preformed two biological replicates of SPLASH analysis using 93 

purified virions and focussed our analysis on the most prevalent RNA interactions 94 

found in both experiments (Extended Data Fig. 5). 84% of interactions were 95 

observed in both replicates. 96 

 97 

Our analysis shows that the distribution of intermolecular interaction sites varies 98 

between the eight different vRNA segments and interactions sites are not 99 

restricted to certain regions, e.g. vRNA termini (Fig. 2a). Most segments can 100 

interact with multiple other segments and in some cases the same region can 101 

mediate interactions with multiple segments. While it is unlikely that the same 102 

region would interact with multiple other segments in the same virion, this finding 103 

suggests that certain loci in the vRNA are more likely to be involved in 104 

intermolecular RNA base-pairing than others. These data also suggest that there is 105 

a level of redundancy in the intermolecular interactions, allowing multiple RNA 106 

conformations to be packaged in virio. Notably, when we used an intermolecular 107 
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RNA interaction algorithm to compute the intermolecular free energy of the RNA-108 

RNA interaction sites identified by SPLASH, we saw a significant enrichment in low 109 

energy (highly favourable interactions) compared to random permutations of the 110 

same interaction dataset (Fig. 2b-c). Furthermore, SHAPE-informed intramolecular 111 

RNA interaction prediction shows that the identified interactions are compatible 112 

with the in virio SHAPE reactivity profiles we have determined previously and 113 

indicates that the low free energy of the interactions is maintained (Extended 114 

Data Fig. 6). 115 

 116 

Previous studies suggested that the eight vRNA segments are assembled in a 117 

hierarchal manner, with some segments being more critical than others1 . 118 

Specifically, it was found that the NA and NS segments are the most easily 119 

exchangeable between viral strains, suggesting that they make the least 120 

contribution to the hierarchal assembly of the eight vRNPs23-25 . In agreement, we 121 

observe that NA and NS segments form the fewest interactions with other 122 

segments. Surprisingly, we also identify very few interactions between the NA and 123 

HA segments (0.13% of the mapped reads), suggesting that influenza viruses 124 

maintain the greatest possible antigenic diversity by limiting the interactions 125 

between these two segments during genome packaging. 126 

 127 

The sequence of the IAV genome undergoes changes as a result of the antigenic 128 

drift and shift5 . Given that the intermolecular RNA interactions we have identified 129 

may be important for reassortment between the different IAV strains, we 130 

questioned whether the same interactions could occur in other IAV strains as well. 131 

We selected a set of IAV strains representing the pandemic strains of the last 132 

century (A/Brevig Mission/1/1918 (H1N1), A/Singapore/1/57 (H2N2), A/Hong 133 

Kong/1/68 (H3N2), and A/England/195/2009(H1N1)), and analyzed their potential 134 

to form intermolecular RNA-RNA interactions in the same regions we identified in 135 

WSN. Though not all of the interactions can form in the different strains, the 136 

regions corresponding to those we identified in WSN are more likely to be involved 137 

in the intermolecular base-pairing than permutated datasets (Fig. 3a), and a 138 
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number of extensive interactions are maintained in the different viral strains (Fig. 139 

3b).  140 

 141 

To address the biological role of the identified in virio RNA-RNA interactions we 142 

used synonymous mutagenesis to disrupt RNA interactions while preserving the 143 

encoded amino acid sequence. We find that mutant viruses with decreased 144 

strength of intermolecular RNA-RNA interactions have significant differences in the 145 

ratios of the different segments packaged into the virions compared to both the 146 

wild type virus and to a control virus with mutations which do not interfere with 147 

identified intermolecular RNA-RNA interactions (Fig. 4a). In addition, weakening of 148 

intermolecular RNA-RNA interactions leads to the production of defective viral 149 

particles and changes in the kinetics of virus growth (Fig. 4b-c).  150 

 151 

Overall, we present the first global map of the IAV genome structure in virio. We 152 

show that the IAV genome contains both intramolecular and intermolecular RNA 153 

structures. Importantly, our study shows that in virio, IAV maintains an extensive set 154 

of RNA-mediated interactions between vRNPs, which is important for the 155 

packaging of the viral genome. Maintaining a redundant inter-vRNP interaction 156 

network to facilitate the selective packaging of the different genomic segments (vs. 157 

a limited set of interactions), could be a strategy to balance the need for selective 158 

packaging with the ability to allow reassortment to occur. Our analysis suggests 159 

that some, though not all, of the identified intermolecular interactions are present 160 

in evolutionarily distant IAVs. A redundant inter-vRNP interaction network could 161 

allow multiple pathways towards assembling the full set of eight vRNPs; having 162 

multiple pathways is potentially important for the emergence of novel influenza 163 

virus strains through reassortment of genome segments of two evolutionarily 164 

distant viruses. 165 

 166 

This evolutionary flexibility of genome assembly is also apparent in the location of 167 

specific intermolecular RNA-RNA interaction regions. A number of these overlap 168 

with regions of the genome that are evolutionarily less constrained with respect to 169 

their protein-coding capacity. For example, highly prevalent interactions of the NA 170 
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and NS segments fall into regions encoding the NA stalk and the linker between 171 

the N-terminal RNA-binding domain and the C-terminal effector domain of NS1, 172 

respectively (Extended Data Fig. 7). Furthermore, a prominent interaction hotspot 173 

in the PA segment, involved in interactions with multiple other segments, lies 174 

immediately downstream of the overlapping PA-X open reading frame (ORF) in a 175 

region that encodes the linker between the N-terminal endonuclease and C-176 

terminal domain of PA. These observations suggest that the positioning of some of 177 

the intersegment RNA interaction sites may be constrained by the balance 178 

between the constantly drifting RNA sequences and maintenance of the encoded 179 

amino acids.  180 

 181 

In virions, the vRNPs are organized in a “7+1” pattern with seven segments of 182 

different lengths surrounding a central segment17,26-28 . This model has led to the 183 

suggestion that the central segment may act as a ‘master segment’ mediating the 184 

selection of the other segments. We note that our analysis shows that the PA 185 

segment is capable of forming multiple strong intermolecular interactions, with 186 

the 5’ end and the 1400-1500 nt region involved in multiple redundant interactions 187 

with many other segments.  188 

 189 

We anticipate that further studies of IAV genome structure and RNA-RNA 190 

interaction networks will lead to an improved ability to predict the potential for 191 

reassortment between different IAV strains and consequently will facilitate the 192 

prediction of the emergence of new pandemic influenza strains. Furthermore, such 193 

studies may guide the design of new antivirals targeting the assembly of the eight 194 

vRNPs and blocking virus packaging. 195 

 196 
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Methods 219 

Cell culture, virus growth and purification. 220 

Madin-Darby Bovine Kidney (MDBK) epithelial cells were grown in Minimum 221 

Essential Medium (MEM; Merck), supplemented with 2 mM L-glutamine and 10% 222 

fetal calf serum. Human embryonic kidney 293T (HEK 293T) cells were maintained 223 

in Dulbecco's Modified Eagle Medium (DMEM; Merck). Viral stocks were produced 224 

by infecting MDBK cells with influenza A/WSN/33 (WSN) (H1N1) virus at an MOI of 225 

0.001. Virus was harvested 2 days post infection. Virus stocks were purified by 226 

ultracentrifugation: firstly, the infected cell culture medium was clarified by 227 

centrifugation at 4000 rpm for 10 min at 4°C followed by centrifugation at 10,000 228 

rpm for 15 min at 4°C. The virus was then purified by centrifugation through a 30% 229 

sucrose cushion at 25,000 rpm for 90 min at 4°C in a SW32 rotor (Beckman Coulter). 230 

The purified virus pellet was resuspended in a resuspension buffer (0.01 M Tris-HCl 231 

(pH 7.4), 0.1 M NaCl, 0.0001 M EDTA). Viruses containing synonymous mutations 232 

were produced using the 12-plasmid rescue system as described previously 29 . The 233 

primers used to generate mutations are provided in Extended Data Table 1. Virus 234 

growth curves were generated by infecting a 70% confluent MDBK cell layer with 235 

viral stocks at an MOI of 0.001. Supernatant from infected cells was collected at 24, 236 

48 and 72 h post infection. The infectious virus titres were determined by plaque 237 

assay. The significance of the differences between mutated and wild type virus 238 

growth kinetics was assessed using ANOVA with Dunnett’s Multiple Comparison 239 

Test on GraphPad Prism software. Haemagglutination assays were carried out by 240 

serially-diluting the supernatants from infected cells in phosphate-buffered saline 241 

(PBS) in a 96-well plate. An equal volume of 0.5% chicken blood was added to the 242 

serial dilutions and the plates were incubated at 4°C until hemagglutination was 243 

observed. 244 

 245 

Selective 2′-hydroxyl acylation analysed by primer extension and mutational 246 

profiling (SHAPE-MaP) 247 

1-methyl-7-nitroisatoic anhydride (1M7) was custom synthesised from 4-248 

nitroisatoic anhydride as described previously30 . For the ivtRNA experiments each 249 

vRNA segment was synthesised from a linear DNA template using the HiScribe™ T7 250 
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High Yield RNA Synthesis Kit (NEB). The products were checked for size and purity 251 

on a 3.5% PAGE-urea gel. nkvRNA samples were prepared by purifying the WSN 252 

particles over sucrose cushion as described above. Purified viruses were treated 253 

with 250 μg/mL of Proteinase K (Roche) in PK buffer (10 mM Tris-HCl (pH 7.0), 100 254 

mM NaCl, 1 mM EDTA, 0.5% SDS) for 40 min at 37°C. Before the modification 255 

ivtRNA and nkvRNA samples were folded at 37°C for 30 min in folding buffer (100 256 

mM Hepes-NaOH (pH 8.0), 100 mM NaCl, 10 mM MgCl2). 1M7 (dissolved in 257 

anhydrous DMSO (Merck)) was added to a final concentration of 10 mM to the 258 

folded RNA and the samples were incubated for 75 s at 37°C. The in virio 259 

modifications were performed by adding 1M7 directly to the purified virus stocks. 260 

The ability of SHAPE reagents to penetrate viral particles was initially tested as 261 

described previously 31  by preforming 32P-labelled primer extensions on RNA 262 

extracted from SHAPE reagent-treated viral stocks using an NA segment targeting 263 

primer (5’-AATTGGTTCCAAAGGAGACG-3’). In parallel to the 1M7-treated samples, 264 

control samples were treated with DMSO. RNA extracted from purified viral 265 

particles or denatured T7 RNA polymerase transcribed RNA was used for denatured 266 

controls (DC). To prepare DC samples the RNA was mixed in DC buffer (50 mM 267 

Hepes-NaOH (pH 8.0), 4 mM EDTA) with 55 % formamide and incubated at 95°C for 268 

1 min. 1M7 was then added to 10 µM and the samples were incubated at 95°C for 269 

an additional 1 min. N-methylisatoic anhydride (NMIA, Thermo Fisher) SHAPE 270 

reagent was also tested in virio. Experiments with NMIA were preformed as 271 

described above for 1M7, except the purified virions were treated with NMIA for 45 272 

min.  273 

 274 

Sequencing library preparation was done as described previously11  following the 275 

randomer workflow. In brief, after 1M7 or control treatments, RNA was cleaned up 276 

using the RNA Clean & Concentrator™-5 kit (Zymo Research). The RNA was reverse 277 

transcribed using Random Primer Mix (NEB) with Superscript II in MaP buffer (50 278 

mM Tris-HCl (pH 8.0), 75 mM KCl, 6 mM MnCl2, 10 mM DTT and 0.5 mM dNTPs). 279 

Nextera XT DNA Library Prep Kit (Illumina) was used to prepare the DNA libraries. 280 

Final PCR amplification products were size selected using Agencourt AMPure XP 281 

beads (Beckman Coulter) and quality assessed using the Agilent DNA 1000 kit on a 282 
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Bioanalyser 2100 instrument (Agilent). The libraries were sequenced (2x150bp) on 283 

a HiSeq4000 instrument (Illumina).  284 

 285 

Sequencing of psoralen crosslinked, ligated, and selected hybrids (SPLASH) 286 

SPLASH samples were prepared as published previously22,32 with some 287 

modifications. Purified virus stocks were incubated with 200 μM of EZ-Link™ 288 

Psoralen-PEG3-Biotin (Thermo Fisher) and 0.01% digitonin (Merck) for 5min at 289 

37°C. The viruses were spread on a 6-well dish, covered with a glass plate, placed 290 

on ice, and irradiated for 45 min using a UVP Ultra Violet Product™ Handheld UV 291 

Lamp (Fisher). Cross-linked virus stock was treated with Proteinase K (Merck) and 292 

the viral RNA (vRNA) was extracted using TRIzol (Invitrogen). An aliquot of 293 

extracted vRNA was used to detect biotin incorporation using chemiluminescent 294 

nucleic acid detection module kit (Thermo Fisher) on Hybond-N+ nylon membrane 295 

(GE Healthcare Life Science). The rest of the extracted vRNA was fragmented using 296 

NEBNext® Magnesium RNA Fragmentation Module (NEB), and size selected for 297 

fragments below 200nt using RNA Clean & Concentrator™-5 (Zymo Research). The 298 

samples were enriched for biotinylated vRNA using Dynabeads MyOne 299 

Streptavidin C1 beads (Life Technologies) and on-bead proximity ligation and 300 

psoralen crosslink reversal were carried out as published previously. Sequencing 301 

libraries were prepared using adaptor ligation as described22,32  for the first SPLASH 302 

experiment, and using the commercial SMARTer smRNA-Seq Kit (Clontech) for the 303 

second SPLASH experiment. Final size selection was done by running the PCR-304 

amplified sequencing libraries on a 6% PAGE gel (Thermo Thermo Fisher Fisher) in 305 

TBE and selecting for 200-300bp DNA. Libraries were sequenced either 1x or 306 

2x150bp on a NextSeq 500 instrument (Illumina). 307 

 308 

Processing of SHAPE-MaP sequencing reads 309 

The sequencing reads were trimmed to remove adaptors using Skewer33 . The 310 

SHAPE reactivity profiles were generated using the published ShapeMapper 311 

pipeline11, which aligns the reads to the reference genome using Bowtie 2 and 312 

calculates mutation rates at each nucleotide position. The mutation rates are then 313 

converted to the SHAPE reactivity values defined as:  314 
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, where mutr1M7 is the nucleotide mutation rate in 1M7 treated sample, mutr1M7 is 315 

the mutation rate in the DMSO treated sample and mutrDC is the mutation rate in 316 

the denatured control. All SHAPE reactivities are normalised to an approximate 0-2 317 

scale by dividing the SHAPE reactivity values by the average reactivity of the 10% 318 

most highly reactive nucleotides after excluding outliers (defined as nucleotides 319 

with reactivity values that are greater than 1.5x the interquartile range). 320 

 321 

Processing of SPLASH sequencing reads 322 

The sequencing reads were first deduplicated using clumpify.sh (BBMap package; 323 

https://sourceforge.net/projects/bbmap/) and adaptors were trimmed using 324 

Cutadapt34 . STAR35 was used to align the reads to the WSN viral reference genome. 325 

Only the chimeric reads in which at least 30 nucleotides aligned to the reference 326 

segments were used in further processing (STAR parameter –chimSegmentMin 30). 327 

CIGAR strings in each read alignment were processed to find the read start and end 328 

coordinates. The reads aligning to the same partner segments and overlapping 329 

positions in the first and second SPLASH experiment were combined. Overlapping 330 

reads between the same partner segments in the final read set were merged and 331 

expanded to cover the total read window. The start and end coordinates for all 332 

interaction sites were defined as the 5’ and 3’ terminal positions of the expanded 333 

read site. The set of interactions was visualised using Circos36. Final chimeric read 334 

set is provided in Supplementary table 2. 335 

 336 

RNA structure predictions 337 

The IntaRNA (v2.0.4) algorithm37 with the minimum seed requirement of 4 bp was 338 

used to predict the ability of RNA-RNA interactions to occur in the regions 339 

identified during the SPLASH analysis. Permutated data sets were generated by 340 

randomly shuffling the specific interaction partners identified by SPLASH and 341 

assessing the interaction ΔG energies using IntaRNA. The significance of the 342 

difference between the probability distributions of the ΔG energies associated with 343 

the SPLASH-identified intermolecular RNA interactions versus the permutated 344 

datasets was calculated using Wilcox Rank-Sum Test in R software. The IntaRNA 345 
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structure predictions were then used to trim the interaction regions to the 346 

nucleotides involved in the base-pairing. For SHAPE-informed RNA-RNA interaction 347 

predictions RNAcofold from ViennaRNA package (v2.4.1) was used38. For 348 

intramolecular RNA structure predictions RNAStructure package (v6.0) was 349 

employed 39  using the Fold and Partition commands to predict secondary RNA 350 

structures and partition functions for each segment, respectively. SHAPE 351 

reactivities were included as pseudoenergy restraints. A 50 nt sliding median 352 

window correlation analysis between the ex virio and in virio SHAPE reactivity 353 

profiles was used to determine the extent of SHAPE correlation between the T7-354 

transcribed RNA and vRNP-associated RNA. We found that no correlation existed 355 

>150 nt, and therefore set the maximum pairing distance constraint for structure 356 

and partition function predictions to 150 nt. For the intramolecular structure 357 

predictions we set the nucleotides within the promoter region to be single 358 

stranded.  359 

 360 

RT-qPCR 361 

vRNA was extracted from rescued virus stocks using the Direct-zol™ RNA MiniPrep 362 

kit (Zymo Research), including a DNase treatment step. vRNA was reverse 363 

transcribed using SuperScript™ III (Thermo Fisher), per the manufacturer’s 364 

instructions, using an equimolar ratio of the universal vRNA primers (Extended 365 

Data Table 2) and primer extension at 37°C for 1 h. qPCR was performed using the 366 

Brilliant III Ultra-Fast Probe High ROX QPCR Master Mix (Agilent) with segment-367 

specific primers and probes (Extended Data Table 2).  368 

  369 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/236620doi: bioRxiv preprint 

https://doi.org/10.1101/236620


 14 

Figure legends 370 

Figure 1 | SHAPE-MaP analysis of the influenza A virus genome structure. a, 371 

Median SHAPE reactivities of different vRNA segments. Medians were calculated 372 

over 50 nucleotide windows and plotted relative to the global median. b, vRNA 373 

SHAPE reactivity distributions in different samples; ***P<0.0001, Wilcox Rank-Sum 374 

Test. c, Base-pairing probability distributions in different vRNA samples; d, 375 

Secondary RNA structure of the NS segment. Black arcs indicate the maximum 376 

expected accuracy RNA structure; only the interactions associated with greater 377 

than 80% base-pairing probabilities are shown. Coloured arcs indicate the base-378 

pairing probabilities. Dashed rectangle highlights the position of the hairpin 379 

shown in e. All sequence positions are annotated as 5′- 3′ in vRNA sense. nkvRNA, 380 

naked viral RNA; ivtRNA, in vitro transcribed RNA; MEA, maximum expected 381 

accuracy. 382 

 383 

Figure 2 | Intermolecular RNA interactions in the IAV genome. a, The most 384 

common intermolecular RNA interactions identified using SPLASH. The links 385 

indicate the regions involved in inter-segment base-pairing and are coloured by 386 

interaction depth on a log2 scale. The top 8% of interactions are shown, which 387 

account for 82% of total chimeric reads identified. b, Examples of the identified 388 

intermolecular interaction structures. c, Probability distributions of the ΔG energy 389 

distributions associated with the interactions identified by SPLASH versus a 390 

permutated interaction dataset (n=473). ***P<0.00001, Wilcox Rank-Sum Test. 391 

 392 

Figure 3 | Intermolecular RNA interactions are conserved in different IAV 393 

strains. a, Distribution of ΔG energies associated with the intermolecular RNA 394 

interactions in different IAV strains; ***P<0.0001, Wilcox Rank-Sum Test. b, 395 

Examples of conserved intermolecular interaction structures. H1N11918, A/Brevig 396 

Mission/1/1918 (H1N1); H2N2, A/Singapore/1/57 (H2N2); H3N2, A/Hong Kong/1/68 397 

(H3N2); pH1N1, A/England/195/2009 (H1N1).  398 

 399 

Figure 4 | Intermolecular RNA interactions are important for the packaging of 400 

vRNPs. a, RT-qPCR analysis of the vRNA inside viruses with disrupted 401 
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intermolecular interaction sites. For each virus an RQ value relative to the NA 402 

segment was calculated and the changes compared to the wild-type virus are 403 

shown. Error bars indicate standard deviation; data from three technical replicates 404 

is shown. b, Quantification of HAU to p.f.u. ratios in mutant viruses relative to the 405 

wild type. Quantification was done on the 48 and 72 h.p.i samples from the virus 406 

growth analysis shown in c. c, Growth kinetics of mutant viruses. Error bars indicate 407 

standard deviation; data from two biological replicates are shown. **P<0.001, 408 

***P<0.0001, ANOVA with Dunnett’s Multiple Comparison Test. RQ, relative 409 

quantification; p.f.u., particle forming units; h.p.i., hours post infection. Mutant 410 

viruses are labelled by indicating disrupted segment interactions: HA:PA, HA:794-411 

885 PA:64-171; M:NS, M:393-422 NS:597-626; PB2:NS, PB2:437-462 NS:649-674; 412 

PB2:PA, PB2:89-132 PA:1406-1447; PA:PB1, PA:1375-1400 PB1:1603-1627. 413 

  414 
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Extended data legends 415 

Extended Data Figure 1 | SHAPE-MaP analysis of the IAV genome. a, Schematic 416 

showing the vRNA samples used for SHAPE-MaP analysis. b, Reverse transcription 417 

reaction using vRNA that was extracted from SHAPE reagent (1M7 or NMIA) or 418 

DMSO treated viral samples. 32P-labelled primer targeting NA segment vRNA was 419 

used. Bands indicate the stalling of reverse transcriptase at the sites of SHAPE 420 

modifications. c, Schematic of SHAPE-MaP library preparation and sequencing data 421 

analysis. d, Mutation rates in DMSO versus 1M7 reagent treated samples. 1M7, 1-422 

methyl-7-nitroisatoic anhydride; NMIA, N-methylisatoic anhydride; DMSO, 423 

dimethyl sulfoxide.  424 

 425 

Extended Data Figure 2 | SHAPE reactivity variation between replicates and 426 

SHAPE reactivity correlation between different vRNA samples. a, Comparison 427 

of the median SHAPE reactivities of NS segment vRNA. Medians were calculated 428 

over 50 nucleotide windows and plotted relative to the global median. b, Sliding 429 

window correlation between ex virio and in virio vRNA samples. Pearson correlation 430 

was calculated over 50 nucleotide windows.  431 

 432 

Extended Data Figure 3 | SHAPE-informed secondary RNA structure of the IAV 433 

polymerase segments. Black arcs indicate the maximum expected accuracy RNA 434 

structures; only the arcs associated with greater than 80% base-pairing 435 

probabilities are shown. Coloured arcs show base-pairing probabilities. Secondary 436 

structure examples of highlighted regions are shown.  437 

 438 

Extended Data Figure 4 | SHAPE-informed secondary RNA structure of the IAV 439 

HA, NP, NA and M segments. Black arcs indicate the maximum expected accuracy 440 

RNA structures; only the arcs associated with greater than 80% base-pairing 441 

probabilities are shown. Coloured arcs show base-pairing probabilities. Secondary 442 

structure examples of highlighted regions are shown. The pseudoknot in NP is 443 

highlighted in red.  444 

 445 
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Extended Data Figure 5 | SPLASH samples and sequencing. a, Schematic 446 

showing SPLASH sample preparation. b, Anti-biotin dot blot analysis of RNA, 447 

crosslinked with biotinylated psoralen, extracted from viral particles. c, Schematic 448 

showing the SPLASH sequencing method and bioinformatics analysis steps. d, 449 

Chimeric reads aligned to the HA segment from two experimental replicates versus 450 

total RNA input coverage. Red trace indicates sample in which T4 RNA ligase I was 451 

omitted during proximity ligation (step 5 in a). BPSO, biotinylated psoralen; Exp., 452 

experiment.  453 

 454 

Extended Data Figure 6 | SHAPE-informed intermolecular RNA interactions. a, 455 

Probability distributions of the ΔG energies associated with the most common 456 

interactions identified by SPLASH versus a permutated interaction dataset as 457 

determined using SHAPE-informed structure prediction. b, Examples of 458 

intermolecular secondary RNA interaction structures based on SHAPE-informed 459 

structure predictions.  460 

 461 

Extended Data Figure 7 | Intermolecular interactions associated with 462 

evolutionary flexible protein regions. Schematics of polymerase acidic protein, 463 

nonstructural protein 1 and neuraminidase protein. Numbers in the brackets 464 

indicate protein region amino acid positions. PA, polymerase acidic protein; NS1, 465 

nonstructural protein 1; NA, neuraminidase; ORF, open reading frame. 466 

 467 

Extended Data Table 1 | Primers used for synonymous mutagenesis of 468 

influenza segments.  469 

 470 

Extended Data Table 2 | Primers and probes used for RT-qPCR.  471 

  472 
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Figure 1 | SHAPE-MaP analysis of the influenza A virus genome structure. a, Median SHAPE reactivi-

ties of different vRNA segments. Medians were calculated over 50 nucleotide windows and plotted 

relative to the global median. b, vRNA SHAPE reactivity distributions in different samples; ***P<0.0001, 

Wilcox Rank-Sum Test. c, Base-pairing probability distributions in different vRNA samples; d, Secondary 
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Figure 4 | Intermolecular RNA interactions are important for the packaging of vRNPs. a, RT-qPCR 
analysis of the vRNA inside viruses with disrupted intermolecular interaction sites. For each virus an RQ 
value relative to the NA segment was calculated and the changes compared to the wild-type virus are 
shown. Error bars indicate standard deviation; data from three technical replicates is shown. b, Quantifi-
cation of HAU to p.f.u. ratios in mutant viruses relative to the wild type. Quantification was done on the 
48 and 72 h.p.i samples from the virus growth analysis shown in c. c, Growth kinetics of mutant viruses. 
Error bars indicate standard deviation; data from two biological replicates are shown. **P<0.001, 
***P<0.0001, ANOVA with Dunnett’s Multiple Comparison Test. RQ, relative quantification; p.f.u., particle 
forming units; h.p.i., hours post infection. Mutant viruses are labelled by indicating disrupted segment 
interactions: HA:PA, HA:794-885 PA:64-171; M:NS, M:393-422 NS:597-626; PB2:NS, PB2:437-462 
NS:649-674; PB2:PA, PB2:89-132 PA:1406-1447; PA:PB1, PA:1375-1400 PB1:1603-1627.
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Extended data table 1 | Primers used for synonymous mutagenesis of influenza 

segments. Mutated nucleotides are shown in lower case letters.  

 
Virus Primers (5’-3’) 

HA:794-885 PA:64-171  

 

HA_Fw 
GCTGTTTATAGAcCCtTGGGGTGTTTGACACTTCGTGTTACAtTCgTGCATgGACGCG 
HA_Rv 
CGCGTCcATGCAcGAaTGTAACACGAAGTGTCAAACACCCCAaGGgTCTATAAACAGC 

NS:597-626 M:393-422  

 

M_Fw 
CTAGCAATATCCATcGCtTCaGCTGCTTGCTCACTCGATCCAGC 
M_Rv 
GCTGGATCGAGTGAGCAAGCAGCtGAaGCgATGGATATTGCTAG 

PB2:437-462 NS:649-674  

 

PB2_Fw 
CCACTTTGCTTgGGgGGtGCGGCTGCGAAtGGAAGcAGTTTTAT 
PB2_Rv 
ATAAAACTgCTTCCaTTCGCAGCCGCaCCcCCcAAGCAAAGTGG 

PA:1406-1447 PB2:89-132  

 

PB2_Fw 
CAGTAAGTATaCTcGAGTTCCGTTTCCGTTTCATTACtAAaACCACGTCTCC 
PB2_Rv 
GGAGACGTGGTtTTaGTAATGAAACGGAAACGGAACTCgAGtATACTTACTG 

PA:1375-1400 PB1:1603-

1627  

 

PB1_Fw 
GCAATTGCTCTaCGTTTTAGCTTaCCTCTtTCcGCATCTTTaGTCATTGTG 
PB1_Rv 
CACAATGACtAAAGATGCgGAaAGAGGtAAGCTAAAACGtAGAGCAATTGC 

-ve control (HA 996-1050) HA_Fw 
GCTGCAAGGCCCAAgGTtAAgGAcCAACATGGtAGGATGAACTATTACTGG 
HA_Rv 
CCAGTAATAGTTCATCCTaCCATGTTGgTCcTTaACcTTGGGCCTTGCAGC 
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Extended data table 2 | Primers and probes used for RT-qPCR. Locked nucleic acid 

nucleotides are indicated by + sign.  

 

Reverse transcription primers 
Universal Primer 1 vRNA_3_ga 

GTTCAGACGTGTGCTCTTCCGATCTAGCG+AAAGCAGG 
Universal Primer 2 vRNA_3_aa 

GTTCAGACGTGTGCTCTTCCGATCTAGC+A+AAAGCAGG 
qPCR primers and probes 

Segment PCR primers TaqMan dual labelled probe 
PB2 PB2_Fw 

CGACTGTTCGTCTCTCCCAC 
PB2_Rv 
AGAGGTGCTTACGGGCAATC 

[JOE]ACAATGGTTGGGAGAAGAGCAACAGCT[BHQ1]  

 

PB1 PB1_Fw 
CACTGAACCCATTTGTCAACC 
PB1_Rv 
TGGCTTGTATTCAAGATGGATCG 

[TAM]GCAGTGATAATGCCAGCACATGGTCC[BHQ2]  

 

PA PA_Fw 
TTTGGACCGCTGAGAACAGG 
PA_Rv 
GGATTCGAACCGAACGGCTAC 

[6FAM]CAACACCACGACCACTTAGACTTCCGG[BHQ1]  

 

HA HA_Fw 
GTTTGGTGTTTCTACAATGTAGGACC 
HA_Rv 
CGAAGACAGACACAACGGGA 

[TAM]CTGGAAGCAGTGAGTCGCA[BHQ2]  

 

NP NP_Fw 
ACCCCTCCAGAAGTTCCGAT 
NP_Rv 
GCTCACTGATGCAGGGTTCA 

[6FAM]GGCCGCAGGTGCTGCAGTCA[BHQ1]  

 

NA NA_Fw 
CTGTGTATAGCCCACCCACG 
NS_Rv 
GCAACCAAGGCAGCATTACC 

[JOE]TGCTGGGCAGGACTCAACTTCAGT[BHQ1]  

 

M M_Fw 
GCTCACTCGATCCAGCCATT 
M_Rv 
AAGTGGCATTTGGCCTGGTA 

[6FAM]TGCTGACTCCCAGCATCGGTCTCA[BHQ1]  

 

NS NS_Fw 
TCGATGTCCAGACCGAGAGT 
NS_Rv 
GAACTAGGTGATGCCCCATTCC 

[JOE]CGGCTTCGCCGAGATCAGAAGTCC[BHQ1]  
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