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Introductory paragraph 

Cannabis is the most frequently used illicit psychoactive substance worldwide1. Life time use has 

been reported among 35-40% of adults in Denmark2 and the United States3. Cannabis use is 

increasing in the population4-6 and among users around 9% become dependent7. The genetic risk 

component is high with heritability estimates of 518–70%9. Here we report the first genome-wide 

significant risk locus for cannabis use disorder (CUD, P=9.31x10-12) that replicates in an 

independent population (Preplication=3.27x10-3, Pmetaanalysis=9.09x10-12). The finding is based on a 

genome-wide association study (GWAS) of 2,387 cases and 48,985 controls followed by replication 

in 5,501 cases and 301,041 controls. The index SNP (rs56372821) is a strong eQTL for CHRNA2 

and analyses of the genetic regulated gene expressions identified significant association of 

CHRNA2 expression in cerebellum with CUD. This indicates a potential therapeutic use in CUD of 

compounds with agonistic effect on the neuronal acetylcholine receptor alpha-2 subunit encoded by 

CHRNA2. At the polygenic level analyses revealed a significant decrease in the risk of CUD with 

increased load of variants associated with cognitive performance. 

 
Main 

Overall the prevalence of diagnosed CUD in the population has been estimated to 1-1.5% among 

Europeans10,11 and Americans5. CUD is associated with a range of adverse health problems12,13 

including risk of psychosis14,15, bipolar disorder16, anxiety disorder17 and cognitive impairment with 

more persistent use associated with greater decline18. Estimates of the heritability for cannabis use 

initiation and life-time cannabis use, with respect to the amount of variance explained by common 

variants (i.e. the SNP heritability), has been estimated to 0.0619 - 0.220. Four GWASs related to 

cannabis use have been conducted without genome-wide significant findings: one study of cannabis 

dependence21 and three studies of lifetime cannabis use19,20,22. In addition, two recent GWASs have 

reported genome-wide significant associations, albeit with negative or ambiguous replication 
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results: a study of DSM-IV cannabis dependence criterion counts in a combined sample of 14,754 

European Americans and African Americans23, which reported three genome-wide significant loci 

associated with cannabis use severity; and a GWAS of cannabis dependence of 2,080 European 

cases and 6,435 controls which identified one genome-wide significant locus24. 

 

 Here we present results from a GWAS and subsequent replication based on analyses of the largest 

cohorts of diagnosed CUD reported so far. Individuals included in the discovery GWAS come from 

the Danish nation-wide population based cohort collected by the Lundbeck Foundation Initiative for 

Integrative Psychiatric Research (iPSYCH)25. The iPSYCH cohort was ascertained to study six 

major psychiatric disorders (schizophrenia, bipolar disorder, major depressive disorder, attention-

deficit hyperactivity disorder (ADHD), anorexia nervosa and autism spectrum disorder) and 

consists of 79,492 genotyped individuals. The present GWAS was based on 2,387 individuals with 

a diagnosis of CUD (ICD10 F12.1-12.9) and 48,985 individuals not diagnosed with CUD, all 

identified in the iPSYCH cohort. Data analysis was conducted using the Ricopili pipeline26, 

including stringent quality control of genotyped variants and individuals (online methods). 

Information about non-genotyped markers was obtained by imputation27,28 using the 1000 genomes 

phase 3 as reference panel29. GWAS was performed using imputed marker dosages and an additive 

logistic regression model with relevant principal components to correct for confounders such as 

population stratification, and the major psychiatric disorders studied in iPSYCH as covariates. Only 

markers with an imputation INFO score > 0.7, minor allele frequency (maf) > 0.01 and bi-allelic 

markers were retained, in total 8,971,679 genetic markers. We identified 26 genome-wide 

significant SNPs (P< 5x10-8), located in a single locus on chromosome 8 (Figure 1 and 2). The 

index SNP, rs56372821, showed an odds ratio of 0.73 (P= 9.31x10-12) with respect to the minor 

allele A (Table 1, Figure 1 and 2).  
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The genome-wide significant locus on chromosome 8 was replicated in an independent European 

sample consisting of 5,501 cases with CUD and 301,041 population controls (deCODE cohort). The 

cases were diagnosed with CUD while undergoing inpatient treatment at the SAA Treatment 

Centre, Vogur Hospital in Iceland (www.saa.is). We tested nine markers located in the risk locus in 

the Icelandic sample; the index SNP and eight correlated variants (0.2 < r2 < 0.7) with P values less 

than 1x10-6 (four genome-wide significant). All variants demonstrated consistent direction of 

association and the most strongly associated variant (rs56372821) in the discovery GWAS had a P-

value of 3.27x10-3 in the deCODE cohort. In the meta-analysis rs56372821, became slightly 

stronger associated with CUD (P = 9.09x10-12), and additional two variants became genome-wide 

significant  (Table 1).  

There was no evidence of association of previously identified genome-wide significant cannabis 

risk varaints with CUD in our analyses23,24 (Supplementary Table 1). ). This might be due to 

different phenotype definitions among the studies as Sherva et al.23 analysed association with 

cannabis criterion counts, and Agrawal et al.24 used cannabis exposed (but not dependent) 

individuals as controls in their study. Additionally, the composition of the cohorts analysed also 

differ as the previous GWASs were based on cohorts established to study genetics of substance use 

disorders while the iPSYCH cohort is ascertained for major mental illnesses (Supplementary Table 

2). 

 

To assess the proportion of phenotypic variance explained by common variants we applied LD 

score regression30 and the GREML method implemented in GCTA31, assuming a population 

prevalence of 1% for cannabis use disorder (Online methods). Estimates of the liability-scale SNP 

heritability were h2
snp= 0.09 (SE=0.03) and h2

snp= 0.042 (SE=0.014) using LD score regression and 
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GCTA, respectively. The results imply a smaller contribution from common variants than was 

previously found for cannabis use20. The estimate would probably increase with larger sample size, 

as a result of a decrease in the size of the error terms of the SNP effect estimates32. 

We found no signs of contributions from confounding factors like population stratification and 

cryptic relatedness to the inflation in the distribution of the test statistics (see quantile-quantile plot, 

Figure 1.B.) using LD score regression, since the intercept was one (intercept = 0.996; SE=0.0079) 

(online methods). 

 

In the GWAS we corrected for diagnoses of the major psychiatric disorders studied in iPSYCH (see 

Supplementary Table 2 for distribution of psychiatric disorders among CUD cases and the control 

group). In addition, we evaluated the impact on the odds ratio for the index SNP by leave-one-out 

analyses excluding psychiatric phenotypes one at a time in the association analysis (online 

methods). The odds ratio remained stable (Table 2), supporting that the association was independent 

of a diagnosis with one the psychiatric disorders evaluated.  

The risk locus on chromosome 8 has also been found to be genome-wide significantly associated 

with schizophrenia26. In our leave-one-phenotype out analysis the locus remained genome-wide 

significant when individuals with schizophrenia were removed, excluding any potential 

confounding from schizophrenia (Table 2). The signal observed for the index SNP (rs73229090) in 

the GWAS meta-analysis of schizophrenia26 is consistent with the direction of association observed 

in our analysis. Since individuals with schizophrenia often use cannabis (around 13% - 16% 33,34)  it 

could be speculated that the significant signal observed in schizophrenia, is driven by a sub-group 

of schizophrenia cases also having CUD. This hypothesis is supported by analysis of the association 

of rs56372821 with schizophrenia in the iPSYCH sample. We found a nominal significant 

association of the SNP with schizophrenia when including individulas with co-morbid CUD (2,281 
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schizophrenia cases and 23,134 controls; OR=0.9; P=0.036), while after exclusion of individuals 

with CUD (556 cases and 101 controls excluded) the association signal disappeared (1,727 cases, 

23,033 controls; OR = 0.97, P=0.63). In order to evaluate further the impact of CUD comorbidity 

on the odds ratio of rs56372821 in schizophrenia a null distribution for the odds ratio was generated 

by performing 10,000 permutations randomly removing 556 and 101 individuals among the cases 

and controls, respectively (Supplementary Figure 1). The observed odds ratio for rs56372821, when 

excluding individuals with comorbid CUD was 0.97, and differed significantly from random 

removal of the same number of cases and controls (Ptwo-sided=0.0027, Pone-sided=0.0015). Thus the 

permutation test supports the hypothesis that the subgroup diagnosed with CUD among 

schizophrenia cases drives the nominal association observed for rs56372821 in the iPSYCH 

schizophrenia sample.  

 

We performed a CUD-only analysis testing all SNPs in LD with the index SNP (19 SNPs; r2 > 0.7) 

for association with age at first diagnosis. This analysis suggested the risk alleles to be associated 

with earlier age at first diagnosis (most significant SNP: rs35236974, P = 0.020). On average CUD 

cases homozygous for the protective allele got their diagnosis (mean age: 22.41; st.dev = 3.63) one 

year later than CUD cases having at least one risk allele (mean age: 21.01; st.dev = 3.56). 

 

Among the brain tissues analysed in GTEx the index SNP rs56372821 was found to be a strong 

eQTL for CHRNA2 in cerebellum (P-value in GTEx =2.1x10-7), with the risk allele (G-allele) being 

associated with decreased expression of the gene (Supplementary Figure 2). In order to further 

evaluate the potential regulatory impact of the identified locus on chromosome 8 as well as gene 

expression differences between cases and controls genome-wide, we imputed the genetically 

regulated gene expression in 11 brain tissues using PrediXcan35. The SNP weights used were 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted January 4, 2018. ; https://doi.org/10.1101/237321doi: bioRxiv preprint 

https://doi.org/10.1101/237321


 7 

derived from models trained on reference transcriptome data sets including 10 brain tissues from 

GTEx36 and transcriptome data from dorsolateral prefrontal cortex generated by the CommonMind 

Consortium37,(Huckins et al. submitted to Nature Genetics). We tested for association of expression of 2,460 – 

10,930 protein coding genes (depending on the tissue; see Supplementary Table 3) with CUD using 

logistic regression corrected by the same covariates as in the GWAS. One gene, CHRNA2, was 

significantly differently expressed between cases and controls (P = 2.713x10-6; beta = -0.21; SE = 

0.045) in the cerebellum. The expression model for CHRNA2 in cerebellum was based on 47 SNPs 

including four genome-wide significant SNPs rs59724122, rs73229093, rs7838316 and rs11783093 

(Figure 4). CHRNA2 expression was predicted with a valid model in two additional two brain 

tissues with nominal significant under-expression in cases compared to controls (dorsolateral 

prefrontal cortex, P=5.19x10-4; cerebellar hemisphere P=5.30x10-3). That the risk locus for CUD 

can be linked to CHRNA2 expression is also supported by Won et al.38 who generated high-

resolution 3D maps of chromatin contacts (by Hi-C sequencing approach), in order to capture the 

functional relationships between regulatory and transcribed elements during human corticogenesis. 

They applied their map to the set of credible SNPs from the large PGC schizophrenia GWAS26 and 

found physical interaction of the genome-wide significant risk locus on chromosome 8, with the 

regulatory region of CHRNA2. 

 

CHRNA2 is expressed in the brain39,40 and encodes the neuronal acetylcholine receptor (nAChR) 

alpha-2 subunit, which is incorporated in heteropentameric neuronal nAChRs mainly with the beta-

2 or beta-4 subunits41,42. Candidate gene studies of common variants have linked this gene to e.g. 

substance abuse43 and nicotine dependence44,45 but no genome-wide significant findings have 

connected CHRNA2 to any substance abuse or psychiatric disorder, besides the fuctional link 
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between schizophrenia risk variants and CHRNA2 expression identified by Won et al38 described 

above. 

The result suggests CHRNA2 underexpression in cerebellum (and potentially other brain regions, 

Supplementary Table 3), to be involved in CUD. Cerebellum may play a role in addiction with 

respect to reward and inhibitory control46,47, and reward-anticipating responses48. The cerebellum 

has high density of cannabinoid receptor 1 (CB1), which mediates the effect of delta9-

tetrahydrohydrocannabinol (THC)49, the psychoactive compound in cannabis and has also been 

found to be affected by cannabis use in neuroanatomic studies50-53.  

There is no reported functional link between cannabis use and alpha-2 subunit containing nAChRs. 

We hypothesize three potential ways of the involvement of CHRNA2 in CUD: 1) Substances in 

cannabis might interact directly with the alpha-2 subunit containing nAChRs as studies have found 

cannabidiol, a non-psychoactive component of cannabis, to inhibit the alpha-7 containing 

nAChRs54. 2) Cannabis could indirectly affect the alpha-2 subunit containing nAChRs. After 

binding of an agonist e.g. acetylcholine, the nAChR responds by opening of an ion-conducting 

channel across the plasma membrane. This causes depolarization of the membrane and can result in 

presynaptic neurotransmitter release55 including dopamine56,57. Since the psychoactive active 

compound of cannabis THC has been found to affect the release of acetylcholine in various brain 

regions58,59,60 it could be speculated that this, through alpha-2 subunit containing nAChRs, could 

affect dopamine release, a known neurotransmitter involved in addiction61. 3) There could be a 

strong biological link between expression of CHRNA2 and the cannabinoid receptor 1 gene (CNR1). 

This hypothesis is based on evaluation of gene-expression correlations from genome-wide 

microarray gene expression profiles in the Allan Brain Atlas62 (http://www.brain-map.org/). We 

found that of all genes evaluated (58692 probes analyzed), CNR1 demonstrated the strongest 

negative correlation with CHRNA2 expression (rmax= -0.498; Supplementary Figure 3). The signal 
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was driven by opposite expression patterns in a large number of brain tissues, e.g in cerebellum 

where CNR1 had a relatively high expression in the cerebellar cortex and CHRNA2 had a relatively 

low expression and the opposite was observed for cerebellar nuclei (Supplementary Figure 3). This 

suggests the existence of a currently uncharacterized biological interaction between the 

endocannabinoid system and alpha-2 subunit containing nAChR, by which the identified risk locus 

which is associated with decreased CHRNA2 expression could be related to increased CNR1 

expression. 

The observed association of CHRNA2 unerexpression with CUD, also implies that the alpha-2 

subunit can be a potential drug target in the treatment of CUD, by the use of an agonist selective for 

alpha-2 subunit containing nAChRs63,64. The impact of some compounds with an agonistic effect on 

the alpha-2 subunit containing nAChRs, like NS928365, ABT-41866 and TC-173467, have already 

been studied primarily due to their potential impact on memory and cognitive processes65,67-69. 

Additionally TC-1734 has been tested in clinical phase I and II trials for its improvement on 

memory67,69,70, and the favorable safty profile of this drug suggests a potential re-purposing for 

CUD treatment. 

 

CHRNA2 is related to other nicotine receptor genes that have been identified as risk loci for nicotine 

dependence and smoking behavior71,72. It is therefore relevant to question if our finding is 

confounded by smoking. In the iPSYCH sample25 there is no avaible information about smoking 

behavior. As much as 70-90% of cannabis users have been reported also to smoke cigarettes73,74, 

which impose the risk of confounding. However, smoking is also highly comorbid with psychiatric 

disorders75,76, which is prevalent among the control group (66,79% was diagnosed with at least one 

of the major psychiatric disorders studied in iPSYCH; supplementary Table 2). Since we expect 

smoking to be prevalent both among cases and the control group, it is unlikely that smoking alone 
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would generate the strong association we observe on chromosome 8. Additionally, SNPs located in 

or near CHRNA3, CHRNA4, CHRNB3, CYP2A6 previously found to demonstrate extreme strong 

association with nicotine dependence and smoking behavior71,72,77-79, was not associated in the 

present analysis (lowest P=0.31 for rs1051730; Supplementary Table 4), and the risk locus for CUD 

identified in our GWAS did not demonstrate strong association with smoking behaviour in the 

published large GWASs of smoking71,72,77-79 (lowest P-value for life time smoking (P=0.003); 

Supplementary Table 5).  

 

In order to evaluate the genetic overlap between CUD and a range of other phenotypes at the 

polygenic level, we conducted analyses of polygenic risk scores (PRS) for 22 phenotypes related to 

cognition, personality, psychiatric disorders, reproduction and smoking behaviour (online methods; 

list of phenotypes and results can be found in Supplementary Table 6).  PRS for eight phenotypes 

(three measures of cognitive perfomance, age at first birth, life time smoking, ADHD, depressive 

symptoms and schizophrenia) demonstrated strong association with CUD (4.33x10-4 < P < 7.44x10-

15; Figure 4 and Supplementary Table 6). Strikingly, PRS for measures of educational attainment, 

SSGAC80,81 (educational years: z-score= -7.78; P=7.44x10-15 and college completion z-score=-5.10; 

P=3.33x10-7), were strongly negatively associated with the risk of CUD. A finding which was 

reinforced by the significant negative association of PRS for human intelligence82 with CUD (z-

score = -3.51; P=4.33x10-4).  Numerous epidemiological studies have observed an association of 

cannabis use disorder and decreased educational performance83-86. The direction of causation is 

unclear and it is unknown if the relationship is caused by cannabis use and subsequent 

disengagement from education or wether and to what extent the two share overlapping genetic 

factors 87,88. Our results suggest an overlap in genetic risk factors, with a decrease in the odds ratio 

for cannabis use disorder with increased number of educational years/cognitive performance 
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(Supplementary Figure 4.A-C.). The decreased risk of CUD with increased age at first birth (z-score 

=-7.41; P=1.26x10-13) is supporting the relationship with educational attainment as number of 

educational years is known to correlate genetically with later birth of the first child89. In order to 

avoid confounding in the PRS analyses of psychiatric disorders we excluded individuals among 

CUD cases and the control group with a diagnosis of the psychiatric disorder being analysed. PRS 

for ADHD90 (z-score =5.10; P=3.45x10-7), depressive symptoms91 (z-score 4.34; P=6.58x10-6) and 

schizophrenia26 (z-score=5.47; P=4.45x10-8) were all associated with an increased risk for CUD 

(Figure 4). The overlap in common genetic risk factors for cannabis use disorder with depressive 

symptoms is in line with recent observations92 and the association of PRS for ADHD with CUD 

suggest that the epidemiological observations of high comorbidity of ADHD with CUD93,94 are 

influenced by shared genetic risk components. Likewise, the PRS analysis supports an overlap in 

common genetic risk factors between CUD and schizophrenia (in line with epidemiological 

observations33,34). However we cannot rule out if the overlap involves variants with pleiotropic 

effect on the two disorders, or if the overlap in general is caused by heterogeneity among 

schizophrenia cases due to a subgroup comorbid with CUD, in line with the CUD risk locus 

identified here, which does not seem to have a pleitropic effect across the two disorders. 

 

In summary, we identified a genome-wide significant CUD locus on chromosome 8, which 

replicated in an independent sample. An impact of the locus on earlier age of first diagnosis was 

further suggested. The locus implicates CHRNA2 in CUD through analyses of the imputed 

genetically regulated gene expression, showing decreased CHRNA2 expression in cerebellum (and 

other brain regions) of individuals with cannabis use disorder. An intriguing result which suggests 

that CHRNA2 could be a potential therapeutic target for further testing in randomized controlled 
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trials. Analyses of PRS for other phenotypes revealed a significant decrease in the risk of CUD with 

increased measures of cognitive performance. 

 

Online Methods 

 

Sample 

The individuals in this study is a part of the large Danish nation-wide population based sample 

collected by iPSYCH25. The iPSYCH sample was originally designed for studying major 

psychiatric disorders and includes genotypes from 79,492 individuals, including 54,249 cases 

diagnosed with at least one of six mental disorders (schizophrenia, bipolar disorder, major 

depressive disorder, ADHD, anorexia and autism spectrum disorder) and 25,243 individuals not 

having any of the six psychiatric disorders. The iPSYCH sample was selected from a birth cohort 

comprising individuals born in Denmark between May 1, 1981, and December 31, 2005, who were 

residents in Denmark on their first birthday and who have a known mother (N = 1,472,762). The 

iPSYCH cases were identified based on information in the Danish Psychiatric Central Research 

Register95, and 30,000  randomly selected controls were identified from the same nationwide birth 

cohort in the Danish Civil Registration System96. Subseqeuntly blood spot samples (Guthrie cards) 

were identified in the in the Danish Newborn Screening Biobank (DNSB) from the included 

individuals97.  Processing of DNA, genotyping and genotype calling as well as imputing of 

genotypes (see below) of the samples were done in 23 waves of approximately 3,500 individuals 

each.  

Individuals with CUD were identified in the iPSYCH sample through information in the Danish 

Psychiatric Central Research Register95 as well as in the Danish National Patient Register98 using 

information up to 2013. All individuals with an ICD10 diagnosis of F12.1-12.9, were included. 
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Individuals with acute intoxication (diagnosis code F12.0) were not included. The F12.0 diagnosis 

is related to the acute pharmacological effects of cannabis use and resolve with time, and does not 

necessary reflect long term problematic cannabis use, which is the focus of this study. All 

individuals in the iPSYCH sample not having a diagnosis of CUD were used as controls and 

covariates for the major psychiatric disorders studied by iPSYCH were used in the analyses in order 

to correct for the presence of mental disorders. Only 54 individuals had a diagnosis of CUD and 

anorexia, and all individuals having a diagnosis of anorexia among cases and the control group 

were excluded. Supplementary Table 2 gives an overview of the distribution of individuals with a 

psychiatric disorder among the CUD cases and the control group.  

Processing of samples, genotyping, QC and imputing was done in 23 waves. In this study 

individuals from the first four waves were excluded as only a few cannabis use disorder cases were 

present in these waves (range 0-15 cases). The waves represent approximate birth years and the four 

waves that were excluded represent to a large extend individuals, which in 2013 (the time of 

extraction of register diagnoses) were children. 

 

Genotyping, quality control and GWAS  

DNA was extracted from dried blood spot samples and whole genome amplified in triplicates as 

described previously99,100. Genotyping was performed at the Broad Institute of Harvard and MIT 

(Cambridge, MA, USA) using Illumina’s Beadarrays (PsychChip; Illumina, CA, San Diego, USA) 

according to the manufacturer’s protocols. Genotypes were a result of merging call sets from three 

different calling algorithms (GenCall, Birdseed and Zcall). GenCall101 and Birdseed102 was used to 

call genotypes with minor allele frequency (maf) > 0.01 and zCall103 was used to call genotypes 

with maf < 0.01. The merging was done after pre-QC on individual call sets. 
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Stringent quality control was applied to the individual call rate (> 0.98) and only genotypes with 

high call rate (> 0.98), no strong deviation from Hardy-Weinberg equilibrium (P > 10−6 in controls 

or P > 10−10 in cases) and low heterozygosity rates (| Fhet | < 0.2) were included. Genotypes were 

phased and imputed using the 1000 Genomes Project phase 3 (1KGP3)29,104 imputation reference 

panel and SHAPEIT27 and IMPUTE228. Relatedness and population stratification were evaluated 

using a set of high quality markers (genotyped autosomal markers with minor allele frequency 

(maf) > 0.05, HWE P > 1x 10-4 and SNP call rate > 0.98), which were pruned for linkage 

disequilibrium (LD) (r2 < 0.075) resulting in a set of 37,425 pruned markers (markers located in 

long-range LD regions defined by Price et al.105 were excluded). Genetic relatedness was estimated 

using PLINK v1.9106,107 to identify first and second-degree relatives (! > 0.2) and one individual 

was excluded from each related pair (cases preferred kept over controls). Genetic outliers were 

identified for exclusion based on principal component analyses (PCA) using EIGENSOFT108,109. A 

genetic homogenous sample was defined based on a subsample of individuals being Danes for three 

generations (identified based on register information about birth country of the individuals, their 

parents and grandparents). The subsample of Danes was used to define the center based on the 

mean values of principal component (PC) 1 and PC2. Subsequently PC1 and PC2 were used to 

define a genetic homogenous population by excluding individuals outside an ellipsoid with axes 

greater than six standard deviations from the mean. 

Association analysis was done using logistic regression and the imputed marker dosages. The 

following covariates were used: principal component 1-4 and principal components from the PCA 

associated with case-control status, the 19 data-processing waves and diagnosis of major psychiatric 

disorders studied by iPSYCH (supplementary Table 2). Results for 9,729,295 markers were 

generated, subsequently markers with imputation info score < 0.7 (n = 608.367), markers with maf 

< 0.01 (n=10.220) and multi-allelic markers (n = 143,083) were removed. In total after filtering 
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8,969,939 markers remained for further analysis. All analyses of the iPSYCH sample were 

performed at the secured national GenomeDK high performance-computing cluster in Denmark 

(https://genome.au.dk).  

 

Replication 

The genome-wide significant locus on chromosome 8 was replicated in an independent European 

cohort consisting of 5,501 cases with diagnosed CUD and 301,041 population controls collected by 

deCODE genetics. The characteristics of the SAA treatment sample have been described 

previously110 and currently diagnoses at Vogur Hospital are made using DSM-V, but most of the 

diagnoses in this study are based on DSM-IV or DSM-IIIR.  The genotypes were obtained based on 

SNP array data and whole genome sequences using long range phasing and two types of 

imputations111.  For the replication study, markers were looked up in the results of a genome-wide 

association study performed by logistic regression treating disease status as the response and 

genotype counts as covariates. Other available individual characteristics that correlate with disease 

status were also included in the model as nuisance variables, using previously described methods112. 

The resulting P values were corrected for inflation by the method of genomic controls (correction 

factor=1.42).  Nine genetic variants all representing the same association signal on chromosome 8 

with P values less than 1x10-6 were looked up in the deCODE results. The variants in the locus were 

selected based on LD (0.2 < r2 < 0.7). We included additional markers besides the index SNP in 

order to be able evaluate the consistency of direction of association in the replication cohort over a 

set of markers located in the associated risk locus. The data were meta-analyzed using summary 

statistics and inverse variance weighted fixed effects model, implemented in the software 

METAL113. All tested variants demonstrated consistent direction of association in the replication 

cohort. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted January 4, 2018. ; https://doi.org/10.1101/237321doi: bioRxiv preprint 

https://doi.org/10.1101/237321


 16 

Heritability 

SNP heritability (h2
SNP) was estimated by LD score regression30 using summary statistics from the 

GWAS of CUD and pre-computed LD scores (available on https://github.com/bulik/ldsc). The SNP 

heritability was calculated on the liability scale using a prevalence of 1% in the population. The 

h2
SNP estimated by LD score regression was inaccurate as the ratio between the estimated h2

SNP and 

the standard error was less than four (h2
SNP/SE = 2,86). Therefore, the h2

SNP was also estimated 

using GCTA31. A genomic relationship matrix (GRM) between all pairwise combinations of 

individuals was estimated for each autosome separately and subsequently merged using the GCTA 

software. The strict best-guess-genotypes (i.e. 4,299,887 SNPs with info score > 0.8, missing rate < 

0.01 and MAF > 0.01) from imputation with phase 3 of 1000 genomes were used for GRM 

estimation. Univariate GREML analyses in GCTA was used to estimate h2
SNP on the liability scale, 

using the combined GRM and the same covariates as in the GWAS.  

 

Leave-one phenotype out GWAS 

In the GWAS of CUD we corrected, by covariates, for five major psychiatric disorders analysed in 

iPSYCH (Supplementary Table 2). However, in order to further evaluate the potential impact on the 

association signal of the index SNP from the psychiatric phenotypes, sensitivity analyses were 

performed where one phenotype at a time was excluded from the association analysis. The 

phenotypes evaluated were schizophrenia, bipolar disorder, major depressive disorder, attention-

deficit hyper activity disorder, autism and individuals not having any of the five diagnoses. GWASs 

were performed as previously described excluding one of the six phenotypes one at a time (sample 

size for number of cases and controls is shown in Table 2). 
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Permutation based evaluation of the odds ratio of rs56372821 for schizophrenia with and 

without CUD  

We applied a permutation based approach in order to evaluate how the inclusion and exclusion of 

individuals with CUD affected the association of our index SNP rs56372821 with schizophrenia. 

The analyses were based on the iPSYCH sample consisting of 2,281 schizophrenia cases and 

23,134 population based controls (genotyping, QC and imputation were done using the same 

procedures as explained above).  Odds ratios were obtained by the glm() function in R  using 

dosage data from the imputed SNP rs56372821, and including principle components PC1-PC4  + 

PCs signicantly associated with SZ and/or CUD and wave number as covariates.  

In the association analysis of schizophrenia the odds ratio of 56372821(CI95%)  was OR=0.9 (0.81-

0.99). When excluding all individuals with CUD, among cases and controls (1,727 cases and 23,033 

controls) the odds ratio of rs56372821(CI95%) was OR = 0.97 (0.87-1.09). To evaluate whether 

this change in the odds ratio is due to removal of individuals with CUD (554 cases and 101 control 

with CUD removed)  or due to reduction in sample size, a null distribution of OR's was generated 

by randomly removing 554 individuals among schizophrenia cases and 101 individuals among 

controls (removing a total of 655 individuals). This permutation of sample exlcusion was done 

9,999 times to generate the null distribution of the odds ratio for rs56372821. To obtain a two-sided 

P-value, the observed ln(ORrs56372821) = -0.03 was mirrored around the mean ln(ORrs56372821) of the 

null distribution, as shown in Supplementary Figure 1. Removal of individuals with CUD (554 SZ 

cases and 101 controls) changed the OR of rs56372821 significantly, compared to random removal 

of the same number of schizophrina cases and controls (Ptwo-sided=0.0027), producing a significant 

increase of ORrs56372821 compared to random removal (Pone-sided=0.0015).  

F 

F 
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Association with age at first diagnosis 

In order to test for a potential impact of the risk locus on age at first diagnosis, a case only study 

was performed testing for association of the index SNP (rs56372821) and SNPs in LD with this (r2 

> 0.7; 19 variants) with age at first diagnosis. Date of diagnosis was identified from register 

information in the Danish Psychiatric Central Research Register95. Analysis for association with age 

at first diagnosis (natural logarithm (age at first diagnosis)) was done using linear regression and the 

same covariates as used in the GWAS (PCs, wave and the psychiatric disorders). A dominant model 

with respect to the risk allele, was applied. 

 

PrediXcan 

The genetically regulated gene expression was imputed in 11 brain tissues using PrediXcan35 

(models downloaded from: https://github.com/hakyimlab/PrediXcan; version 6 data). PrediXcan 

was used to impute the transcriptome for cases and the control group using SNP weights derived 

from models trained on reference transcriptome data sets including 10 brain tissues from GTEx 

(https://www.gtexportal.org/home/) and transcriptome data from dorsolateral prefrontal cortex 

generated by the CommonMind Consortium37,(Huckins et al. submitted to Nature Genetics). The models were 

trained on 1000 genome SNPs and contained only gene expression prediction models with a false 

discovery rate less than 5%. Gene expression levels in the iPSYCH data were imputed wave-wise 

and subseqeuntly the imputed data were merged. We tested for association of 2,459 – 10,930 

protein coding genes (depending on the tissue; see Supplementary Table 3), with CUD using 

logistic regression corrected by the relevant principal components from PCA and the psychiatric 

disorder as described for the GWAS. Since gene expression among the different brain tissues is 

highly correlated, evaluated based on GTEx data114, we corrected the P-value for each gene by the 
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total number genes tested in all tissues with a valid model available for the gene, with respect to 

CHRNA2 we corrected for 13,166 genes tested in three tissues. 

 

PRS risk score analyses 

PRS analyses were done using GWAS summary statistics from 22 GWASs (Supplementary Table 

6).  The summary files were downloaded from public databases and processed using the munge 

script which is a part of the LDscore regression software30. All variants with INFO < 0.9, MAF < 

0.01, missing values, out of bounds P-values, ambiguous strand alleles and duplicated rs-ids were 

removed using the munge script. In addition, mult-allelic variants and insertion and deletion (indels) 

were removed. The processed summary files were then LD-clumped using Plink, with the following 

parameter settings: --clump-p1 1 --clump-p2 1 --clump-r2 0.1 --clump-kb 500. The clumped file 

were used as the training dataset. Genetic risk scores were estimated at different P-value thresholds 

for SNP inclusion: 5x10-8, 1x10-6, 1x10-4, 1x10-3, 0.01, 0.05, 0.1, 0.2, 0.5 and 1.0 for all individuals 

in the target sample (CUD cases and the control group) from the genotype dosages using Plink’s ‘--

score’ method, with default arguments. However the PRS scores for ADHD, were generated using 

the approach described Demontis et al.90. For each P-value threshold the variance in the phenotype 

explained by PRS was estimated using Nagelkerke’s R (R package ‘BaylorEdPsych’)2, and 

association of PRS with CUD was estimated using logistic regression including the same covariates 

used in the GWAS analysis (PCs from PCA and the psychiatric disorders listed in Supplementary 

Table 2). In PRS analyses of psychiatric disorders (ADHD, schizophrenia and depression related 

phenotypes) individuals with a diagnosis of the disorder being analysed were excluded. The number 

of individuals excluded with ADHD, schizophrenia and major depressive disorder are listed in 

Supplementary Table 2.  
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Table 1.  Genome-wide significant SNPs associated with cannabis use disorder 

Results for genome-wide significant SNPs in the associated locus at chromosome 8 in the primary GWAS and/or in the meta-analysis with results 

from an independent cohort collected by deCODE. Results for the index SNP (Index SNP) is shown together with results from supporting correlated 

SNPs in the locus (0.2 < r2 < 0.7) (LD SNPs). Alleles for the variants (A1 and A2), frequency of A1 in controls (Frq A1 con), the odds ratio (OR) for 

the effect of A1, and P-values (P) are given.  

		
	

		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

	

 

   
		 		 		 iPSYCH		 		

	
		 		 		 deCODE	

	
		 meta-analysis	

Index	SNP	
	
LD	SNPs	 CHR	 BP	(hg19)	 		 A1	 A2	 Frq	A1	con	 OR	 P	 		 A1	 A2	 Frq	A1	con	 OR	 P	 		 A1	 A2	 OR	 P	

rs56372821	
	

8	 27436500	
	

A	 G	 0.163	 0.728	 9.31x10-12	
	
A	 G	 0.144	 0.878	 3.27	x10-03	

	
A	 G	 0.803	 9.09	x10-12	

	
rs4732724	 8	 27423062	

	
C	 G	 0.324	 0.820	 1.34	x10-08	

	
C	 G	 0.367	 0.905	 1.60	x10-03	

	
C	 G	 0.866	 7.74	x10-10	

	
rs6558008	 8	 27438306	

	
A	 C	 0.755	 1.237	 2.54	x10-08	

	
C	 A	 0.228	 0.915	 1.45	x10-02	

	
A	 C	 1.159	 1.97	x10-08	

	
rs73229090	 8	 27442127	

	
A	 C	 0.110	 0.702	 7.41	x10-10	

	
A	 C	 0.105	 0.881	 1.30	x10-02	

	
A	 C	 0.797	 2.82	x10-09	

	
rs937220	 8	 27429730	

	
A	 G	 0.259	 0.8258	 2.46	x10-07	

	
A	 G	 0.269	 0.912	 7.56	x10-03	

	
A	 G	 0.871	 4.53	x10-08	

	
rs17466060	 8	 27422740	 		 A	 G	 0.418	 0.8594	 3.94	x10-06	 		 A	 G	 0.430	 0.900	 5.11	x10-04	 		 A	 G	 0.881	 1.29	x10-08	
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P-value cases
Freq 
cases con

Freq 
con OR SE

Cannabis 
GWAS 9.31x10-12 2387 0.124 48985 0.163 0.727 0.047

woADHD 2.68x10-10 1461 0.118 39284 0.165 0.683 0.060

woASD 7.19x10-10 2234 0.126 40287 0.164 0.744 0.048

woBP 5.61x10-10 2199 0.126 47809 0.163 0.742 0.048

woCON 2.35x10-11 2290 0.124 32716 0.162 0.726 0.048

woMDD 2.81x10-07 1253 0.121 32592 0.162 0.711 0.066

woSZ 7.15x10-10 1818 0.125 47196 0.163 0.725 0.052

ln(OR)

-0.45 -0.4 -0.35 -0.3 -0.25 

 

 

Table 2. The effect on the odds ratio of rs56372821 of leave-one-phenotype out association analysis 

In the analyses individuals with a psychiatric diagnosis are excluded one disorder at a time (without ADHD (woADHD), without autism spectrum 

disorder (woASD), without bipolar disorder (woBP), without the iPSYCH control cohort (woCON), without major depressive disorder 

(woMDD), without schizophrenia (woSZ). The P-value for association with CUD (P-value), number of cases (cases), frequency of the minor 

allele in cases (Freq cases), number of controls (con), frequency of the minor allele in controls (Freq con), odds ratio (OR) and standard error 

(SE), are given. For illustration ln(OR), and the corresponding standard error.  
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Figure legends 
 

 

Figure 1. A) Manhattan plot Manhattan plot of the results from the GWAS of CUD. The index is 

highlighted as a green diamond and SNPs in high LD with the index SNP are marked in green. B) 

Quantile-quantile plot of the expected and observed P-values from GWAS of CUD. 

 

Figure 2.  Regional association plot of the local association results for the risk locus at chromosome 8. 

The index SNP (rs56372821) and additional three correlated genome-wide significant SNPs (LD with 

index SNP: 0.2 < r2 < 0.7) are marked with letters (a-d), the triangle represents the P-value from meta-

analysis with the replication cohort from deCODE. The location and orientation of the genes in the 

region and the local estimates of recombination rate is shown. The association P-value (p), odds ratio 

(or), minor allele frequency (maf) and imputation info-score (info) is presented in upper right corner. 

Figure 3. Association of the imputed genetically regulated expression of CHRNA2 in three brain 

tissues with a valid model (cerebellar hemisphere, dorsolateret prefrontal contex and cerebellum). The 

P-value for association of expression with CUD (-log10(PrediXcan:P-value) and P-value from CUD 

GWAS (-log10(GWAS:P-value)) is given on the y-axis, with a red dotted line indicating statistical 

significance. Chromosome position is given on the x-axis and the light grey lines indicate which SNPs 

that are included in the models used to predict gene expression. The thin red lines indicate genetic 

predictors that are genome-wide significantly associated with CUD. 

Figure 4. Association of PRS with CUD. PRSs was generated for phenotypes related to cognition, 

personality, psychiatric disorders, reproduction and smoking behavior based on summary statistics 

from 22 published GWASs. The variance explained by the scores (Nagelkerke-R2) is given on the x-

axis and the P-value for association of the PRS with CUD on the y-axis. 
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Figure 1.A.  

 
 

Figure 1.B.  
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Figure 2. 
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Figure 3. 
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Figure 4. 

 

Human	Intelligence

Number	of	educational	years	
(SSGAC)

College	completion
(SSGAC) ADHD

Schizophrenia

Depressive	symptoms

Age	at	first	birth

Life-time	smoking

0

2

4

6

8

10

12

14

16

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

-lo
g1
0(
P)

Nagelkerke´s R2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted January 4, 2018. ; https://doi.org/10.1101/237321doi: bioRxiv preprint 

https://doi.org/10.1101/237321

