
Single-cell transcriptomic characterization of 20 organs and tissues from individual mice 1 
creates a Tabula Muris 2 
 3 
 4 
The Tabula Muris Consortium 5 
 6 
We have created a compendium of single cell transcriptome data from the model 7 
organism Mus musculus comprising more than 100,000 cells from 20 organs and 8 
tissues.  These data represent a new resource for cell biology, revealing gene 9 
expression in poorly characterized cell populations and allowing for direct and 10 
controlled comparison of gene expression in cell types shared between tissues, such 11 
as T-lymphocytes and endothelial cells from distinct anatomical locations. Two 12 
distinct technical approaches were used for most tissues: one approach, microfluidic 13 
droplet-based 3’-end counting, enabled the survey of thousands of cells at relatively 14 
low coverage, while the other, FACS-based full length transcript analysis, enabled 15 
characterization of cell types with high sensitivity and coverage. The cumulative 16 
data provide the foundation for an atlas of transcriptomic cell biology. 17 
 18 
 The cell is a fundamental unit of structure and function in biology, and multicellular 19 
organisms have evolved a wide variety of different cell types with specialized roles.  20 
Although cell types have historically been characterized on the basis of morphology and 21 
phenotype, the development of molecular methods has enabled ever more precise 22 
defining of their properties, typically by measuring protein or mRNA expression 23 
patterns1.  Technological advances have enabled increasingly greater degrees of 24 
multiplexing of these measurements2-7, and it is now possible to use highly parallel 25 
sequencing to enumerate nearly every mRNA molecule in a given single cell7,8. This 26 
approach has provided many novel insights into cell biology and the composition of 27 
organs from a variety of organisms9-18.  However, while these reports provide valuable 28 
characterization of individual organs, it is challenging to compare data taken with varying 29 
experimental techniques in independent labs from different animals. It therefore remains 30 
an open question whether data from individual organs can be synthesized and used as a 31 
more general resource for biology. 32 
 33 
Here we report a compendium of cell types from the mouse Mus musculus. We analyzed 34 
multiple organs and tissues from the same animal, thereby generating a data set 35 
controlled for age, environment and epigenetic effects.  This enables the direct 36 
comparison of cell type composition between organs as well as comparison of shared cell 37 
types across the entire organism. The compendium is comprised of single cell 38 
transcriptome sequence data from 100,605 cells isolated from 20 organs and tissues (Fig. 39 
1). Those were collected from 3 female and 4 male, C57BL/6 NIA, 3 month old mice 40 
(10-15 weeks), whose developmental age is roughly analogous to humans at 20 years of 41 
age. All data, protocols, and analysis scripts from the Tabula Muris are shared as a public 42 
resource (http://tabula-muris.ds.czbiohub.org/), gene counts and metadata from all single 43 
cells are accessible on Figshare (https://figshare.com/account/home#/projects/27733), 44 
raw data are available on GEO (GSE109774), and all code used for analysis is available 45 
on GitHub (https://github.com/czbiohub/tabula-muris). While these data are by no means 46 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 29, 2018. ; https://doi.org/10.1101/237446doi: bioRxiv preprint 

https://doi.org/10.1101/237446


a complete representation of all mouse organs and cell types, they provide a first draft 47 
attempt to create an organism-wide representation of cellular diversity and a comparative 48 
framework for future studies using the large variety of murine disease models. 49 
 50 
We developed a procedure to collect 20 organs and tissues from the same mouse in which 51 
aorta, bladder, bone marrow, brain (cerebellum, cortex, hippocampus, striatum),  52 
diaphragm, fat (brown, gonadal, mesenteric, subcutaneous), heart, kidney, large intestine, 53 
limb muscle, liver, lung, mammary gland, pancreas, skin, spleen, thymus, tongue, and 54 
trachea were immediately dissected and processed into single cell suspensions, which in 55 
turn were either single cell sorted into plates with FACS or loaded into microfluidic 56 
droplets (see Extended Data and Methods). Single cell transcriptomes were sequenced to 57 
an average depth of 814,488 reads per cell for the plate data and 7,709 unique molecular 58 
identifiers (UMI) per cell for the microfluidic droplet data.  After quality control filtering, 59 
44,949 FACS sorted cells and 55,656 microfluidic droplet processed cells were retained 60 
for further analysis.  A comparison of the two methods shows differences for each organ 61 
in the number of cells analyzed (Fig. 1b,c), reads per cell (Supp. Fig. 1a,c) and genes per 62 
cell (Supp. Fig. 1b,d).  63 
 64 
We performed unbiased graph-based clustering of the pooled set of transcriptomes across 65 
all organs, and visualized them using tSNE (Fig. 2 and Supp. Fig. 2). The majority of 66 
clusters contain cells from only one organ (n=29/54), but a number of clusters (n=25/54) 67 
(Supp. Fig. 2) contained cells from multiple organs.  To further dissect these clusters we 68 
analyzed each organ independently, first by performing principal component analysis 69 
(PCA) on the most variable genes in the organ, followed by nearest-neighbor graph-based 70 
clustering. We then used cluster-specific gene expression of known markers as well as 71 
genes differentially expressed between clusters to assign cell type annotations (Fig. 3, 72 
Supp.Fig.3, TableS1). A detailed description of the cell types and defining genes for each 73 
organ and tissue is available in the Supplementary Information. We used a standardized 74 
analysis approach for all organs and tissues and an example using liver can be found in 75 
the Organ Annotation Vignette. For each cell, we provide annotations in the controlled 76 
vocabulary of a cell ontology19 to facilitate comparisons with other experiments. Many of 77 
these cell clusters have not previously been obtained in pure populations and our data 78 
provide a wealth of new information on their characteristic gene expression profiles. 79 
Initial annotation of the cellular diversity of each organ and tissue can be found in the 80 
extended data, and a detailed discussion of each cell type on an organ by organ basis can 81 
be found in the supplement.  Some unexpected discoveries include a potential new role 82 
for genes Neurog3, Hex3, and Prss53 in the adult pancreas, a cell population expressing 83 
Chodl in limb muscle, transcriptional heterogeneity of brain endothelial cells, the 84 
expression of MHCII genes by adult mouse T cells, and sets of transcription factors that 85 
can specifically distinguish between similar cell types across multiple organs and tissues.  86 
 87 
Any individual single-cell sequencing experiment offers a partial view of the diversity of 88 
cell types within an organism and the gene expression within each cell type. We illustrate 89 
the variability to be expected between methods and experiments by comparing our two 90 
measurement approaches to one another, and to data from Han et al.20 generated using a 91 
third method, microwell-seq. One striking feature is the variability in the number of 92 
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genes detected per cell between organs and tissues and between methods. For example, 93 
the median number of genes detected per cell in bladder is about 4900 in the FACS data, 94 
2900 in the droplet data, and 900 in the microwell-seq data, while the number detected in 95 
kidney is about 1400 in the FACS data, 1900 in the droplet data, and 500 in the 96 
microwell-seq data. The bladder, liver, lung, mammary gland, trachea, tongue, and spleen 97 
all show nearly twice as many genes detected per cell in the FACS data as compared to 98 
the microfluidic data, whereas heart and marrow show comparable numbers detected in 99 
both methods (Supp. Fig. 4a). This difference does not appear to be due to sequencing 100 
depth, as the microfluidic droplet libraries are nearly saturated (Supp. Fig. 4b) and deeper 101 
sequencing of the FACS libraries could only increase the number of genes detected. In 102 
every organ, there are fewer genes detected per cell in microwell-seq data than either 103 
droplet or FACS data. In these comparisons, a gene is considered detected if a single read 104 
maps to it, as that is the only standard for expression at which reads and UMIs can be 105 
treated equally. We also looked at how the number of detected genes across each organ 106 
changes with different thresholds on the number of reads or UMIs (Supp. Fig. 5). We 107 
found that the number of detected genes decreases monotonically with increasing 108 
thresholds at similar rates across different organs and tissues within each method. We 109 
observed that in the droplet data more than half of the detected genes are represented by 110 
only a single UMI; this is to be expected given that only a few thousand UMIs are 111 
captured per cell. The FACS data are sampled much more deeply and one needs to set a 112 
relatively high threshold of 40 reads to see a comparable reduction in gene detection 113 
sensitivity.  114 
 115 
Next, we investigated whether the three methods demonstrate concordance on the genes 116 
which define each of the cell clusters. To do so, we computed lists of genes (see Methods 117 
“Differential expression overlap analysis”) that differentiate between each cell cluster and 118 
the rest of the cell clusters in each organ across all three methods, focusing on common 119 
organs and cell clusters for the three methods. As expected, data from FACS and 120 
microfluidic droplet are in better agreement due to the fact that cells originated from the 121 
exact same organ or tissue and were prepared in parallel. For each cell cluster there 122 
appears to be a core of a few hundred defining genes on which all three methods agree 123 
(Supp. Fig. 6 and Table S2). This comparison suggests that independent datasets 124 
generated from the various tissue atlases that are beginning to arise can be combined and 125 
collectively analyzed to generate more robust characterizations of gene expression. 126 
 127 
To understand the relationships between cell types, we mapped the annotations of organ-128 
specific cell types onto the unbiased clustering of all cells. It is evident that the clusters in 129 
Figure 2 (also Supp. Fig. 2) containing cells from multiple organs generally represent 130 
shared cell types common to those organs (Fig. 4).  For example, B cells from fat, limb 131 
muscle, diaphragm, lung, spleen and marrow cluster together, as do T cells from spleen, 132 
marrow, lung, limb muscle, fat and thymus. Interestingly, while endothelial cells from 133 
fat, heart, and lung cluster together, they are segregated from endothelial cells from the 134 
mammary gland, kidney, trachea, limb muscle, aorta, diaphragm, and pancreas. Such 135 
differences could be caused by true differential gene expression signatures across 136 
different organs, but could also potentially be influenced by organ-specific batch effects. 137 
The fact that many cells cluster together across organs and biological replicates is 138 
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evidence that batch effects are not the main source of variance in the dataset. Our 139 
findings show that manual annotation of cell types is consistent with unbiased 140 
transcriptomic clustering, and that most cell types are unique enough to enable their 141 
unbiased identification across organs and tissues. We expect that further refinements of 142 
comparison algorithms will facilitate the discovery of finer, organ-specific distinctions 143 
between these shared cell types. 144 
 145 
To investigate common cell types across all organs, we pooled all cells annotated as T 146 
cells and analyzed them collectively (Fig. 5). Our analysis revealed 5 clusters. Cluster 0 147 
comprises cells from the thymus that are undergoing VDJ recombination characterized by 148 
the expression of RAG (Rag1, Rag2) and TdT (Dntt), and includes uncommitted double 149 
positive T-cells (Cd4+, Cd8a+). Cluster 4 contains proliferating T cells, predominantly 150 
from the thymus. We hypothesize that these are pre-T cells expanding after the 151 
completion of VDJ recombination. Clusters 1-3 contain predominantly single positive T 152 
cells (Cd4+ or Cd8a+). Cluster 3 contains Cd5high thymic T cells possibly undergoing 153 
positive selection while Cluster 2 contains mostly non-thymic T cells expressing the high 154 
affinity IL2 receptor (Il2ra, Il2rb), suggesting they are activated. Interestingly, they also 155 
express MHC type II genes (H2-Aa, H2-Ab1). While this is known to occur in human T 156 
cells, MHCII was previously thought restricted to professional antigen presenting cells in 157 
mice11. Finally, Cluster 1 also represents mature T cells, but primarily from the spleen.   158 
 159 
A key challenge for many single cell studies is understanding the potential changes to the 160 
transcriptome caused by handling, dissociation and other experimental manipulation.  A 161 
previous study in limb muscle showed that quiescent satellite cells tend to become 162 
activated by dissociation and consequently express immediate early genes among other 163 
genes21. We found that expression of these dissociation-related markers was also clearly 164 
observed in our limb muscle data, as well as in mammary gland and bladder (Supp. Fig. 165 
7), but that many organs and tissues showed little evidence of similar cellular activation.  166 
Therefore the dissociation-related activation markers found in limb muscle are not 167 
universal across all organs and tissues.  This is not to say that other organs lack 168 
dissociation-related gene expression changes, but that some of the genes involved are 169 
specific to a given organ.  Importantly, the presence of such gene expression changes 170 
does not prevent the identification of cell type or the comparison of cell types across 171 
organs and tissues.  172 
 173 
One major goal of defining cell identities is to understand the transcription factor (TF) 174 
regulatory networks that underlie them. We first investigated the combinatorial 175 
specificity of TF expression across all cell types (defined as unique combinations of cell 176 
ontology annotation and tissue)  (Fig. 6). We searched for the combination of four (n=4) 177 
enriched TFs that best specified each target cell type over all others. For each 178 
combination of TFs, we counted every cell expressing all four TFs as a positive, and 179 
anything else as a negative. We then calculated cell type-specificity by the precision 180 
(ratio of number of positive target cells to total number of positive cells) and recall (ratio 181 
of number of positive target cells to total number of target cells) of each combination of 182 
TFs for the target cell type over the rest of the cells (Table S3). We found 41 cell types 183 
with TF combinations with precision > 0.3 and recall > 0.3. We noted that the 184 
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combinatorial nature of TF expression was critical to specificity; for example, Ctnnb1, 185 
combined with one of two TF sets, specified either skin keratinocyte stem cells or lung 186 
type II pneumocytes (Fig. 6a). We found many TF combinations for cell types with 187 
challenging in vitro differentiation protocols22 (e.g., hepatocytes; Creb3l3, Nr1h3, Hnf4a, 188 
and Klf15) and cell types with no established direct differentiation protocol (e.g., 189 
microglia; Mafb, Sall1, Irf5, and Maf) (Fig. 6a). 190 
 191 
We then analyzed organ-specific TFs by isolating a set of closely-related, cross-organ 192 
cell groups (epithelial cells and endothelial cells). We performed TF correlation analysis, 193 
similar to 15 within the cell groups (Fig. 6b-g). We found many TFs within epithelial cells 194 
that clustered strongly by organ and were enriched in organ-specific epithelial clusters 195 
(Fig. 6b). For example, Sox4 (mammary basal cells), Foxq1 (bladder basal cells of the 196 
urothelium), Pax9 (tongue basal cells of the epidermis), and Lhx2 (skin keratinocyte stem 197 
cells) were highly organ-specific (Fig. 6c,d). Within endothelial cells, liver, brain, 198 
mammary gland/limb muscle, and lung-specific clusters of TFs were evident (Fig. 6e-g). 199 
Gata4, known to specify liver endothelium, appeared in a cluster of liver-enriched TFs 200 
(Fig. 6g). Another cluster of TFs, including Pbx1, were enriched in kidney endothelial 201 
cells (Fig. 6g). The roles of Pbx1 in kidney endothelial development are not explored, 202 
and could aid in tissue engineering for kidney regeneration. A highly distinct cluster of 203 
cells specified the heart endocardium, including Plagl1, a TF whose role in endocardial 204 
specification is unknown (Fig. 6g). These results illustrate how single cell data taken 205 
across many organs and organs can identify the transcriptional regulatory programs 206 
which are specific to cell types of interest. 207 
  208 
In conclusion, we have created a compendium of single-cell transcriptional 209 
measurements across 20 organs and tissues of the mouse. This Tabula Muris, or “Mouse 210 
Atlas”, has many uses, including the discovery of new putative cell types, the discovery 211 
of novel gene expression in known cell types, and the ability to compare cell types across 212 
organs and tissues.  It will also serve as a reference of healthy young adult organs and 213 
tissues which can be used as a baseline for current and future mouse models of disease. 214 
While it is not an exhaustive characterization of all organs of the mouse, it does provide a 215 
rich data set of the most highly studied organs and tissues in biology. The Tabula Muris 216 
provides a framework and description of many of the most populous and important cell 217 
populations within the mouse, and represents a foundation for future studies across a 218 
multitude of diverse physiological disciplines.   219 
 220 
Supplementary Information is available in the online version of the paper. 221 
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Methods 423 
 424 
Mice and Tissue Collection 425 
Four 10-15 week old male and four virgin female C57BL/6 mice were shipped from the 426 
National Institute on Aging colony at Charles River to the Veterinary Medical Unit 427 
(VMU) at the VA Palo Alto (VA). At both locations, mice were housed on a 12-h 428 
light/dark cycle, and provided food and water ad libitum. The diet at Charles River was 429 
NIH-31, and Teklad 2918 at the VA VMU. Littermates were not recorded or tracked, and 430 
mice were housed at the VA VMU for no longer than 2 weeks before euthanasia. Prior to 431 
tissue collection, mice were placed in sterile collection chambers for 15 minutes to collect 432 
fresh fecal pellets. Following anesthetization with 2.5% v/v Avertin, mice were weighed, 433 
shaved, and blood drawn via cardiac puncture before transcardial perfusion with 20 ml 434 
PBS. Mesenteric adipose tissue (MAT) was then immediately collected to avoid exposure 435 
to the liver and pancreas perfusate, which negatively impacts cell sorting. Isolating viable 436 
single cells from both pancreas and liver of the same mouse was not possible, therefore, 2 437 
males and 2 females were used for each. Whole organs were then dissected in the 438 
following order: large intestine, spleen, thymus, trachea, tongue, brain, heart, lung, 439 
kidney, gonadal adipose tissue (GAT), bladder, diaphragm, limb muscle (tibialis 440 
anterior), skin (dorsal), subcutaneous adipose tissue (SCAT, inguinal pad), mammary 441 
glands (fat pads 2, 3, and 4), brown adipose tissue (BAT, interscapular pad), aorta, and 442 
bone marrow (spine and limb bones). Following single cell dissociation as described 443 
below, cell suspensions were either used for FACS sorting of individual cells into 384-444 
well plates, or for microfluidic droplet library preparation. All animal care and 445 
procedures were carried out in accordance with institutional guidelines approved by the 446 
VA Palo Alto Committee on Animal Research. 447 
 448 
Tissue dissociation and sample preparation 449 
Specific protocols for each tissue are described in the supplement. 450 
 451 
Single Cell Methods 452 
 453 
Lysis plate preparation 454 
Lysis plates were created by dispensing 0.4 μl  lysis buffer (0.5 U Recombinant RNase 455 
Inhibitor (Takara Bio, 2313B), 0.0625% TritonTM X-100 (Sigma, 93443-100ML), 3.125 456 
mM dNTP mix (Thermo Fisher, R0193), 3.125 μM  Oligo-dT30VN (IDT, 457 
5’AAGCAGTGGTATCAACGCAGAGTACT30VN-3’) and 1:600,000 ERCC RNA 458 
spike-in mix (Thermo Fisher, 4456740)) into 384-well hard-shell PCR plates (Biorad 459 
HSP3901) using a Tempest liquid handler (Formulatrix). 96-well lysis plates were also 460 
prepared with 4 μl lysis buffer. All plates were sealed with AlumaSeal CS Films (Sigma-461 
Aldrich Z722634) and spun down (3,220 x g, 1 minute) and snap frozen on dry ice. Plates 462 
were stored at -80°C until sorting.   463 
 464 
FACS sorting 465 
After dissociation, single cells from each organ and tissue were isolated into 384- or 96-466 
well plates via Fluorescence Activated Cell Sorting (FACS). Most organs were sorted 467 
into 384-well plates using SH800S (Sony) sorters. Heart and liver were sorted into 96-468 
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well plates and cardiomyocytes were hand-picked into 96-well plates. Limb muscle and 469 
diaphragm were sorted into 384-well plates on an Aria III (Becton Dickinson) sorter. The 470 
last two columns of each 384 well plate were intentionally left as blanks.  For most 471 
organs, single cells were selected with forward scatter, and dead cells and common cell 472 
types were excluded with a single color channel. Combinations of fluorescent antibodies 473 
were used for most organs to enrich for rare cell populations (see supplemental text), but 474 
some were stained only for viable cells. Color compensation was used whenever 475 
necessary. On the SH800, the highest purity setting (“Single cell”) was used for all but 476 
the rarest cell types, for which the “Ultrapure” setting was used. Sorters were calibrated 477 
using FACS buffer every day before collecting any cells, and also after every 8 sorted 478 
plates. For a typical sort, 1-3 ml of pre-stained cell suspension was filtered, vortexed 479 
gently, and loaded onto the FACS machine. A small number of cells were flowed at low 480 
pressure to check cell and debris concentrations. The pressure was then adjusted, flow 481 
paused, the first destination plate unsealed, loaded and sorting started. If a cell suspension 482 
was too concentrated, it was diluted using FACS buffer or 1X PBS. For some cell types 483 
like hepatocytes, 96-well plates were used because it was not possible to sort individual 484 
cells accurately into 384-well plates. Immediately after sorting, plates were sealed with a 485 
pre-labeled aluminum seal, centrifuged, and flash frozen on dry ice. On average, each 486 
384-well plate took 8 minutes to sort. 487 
 488 
cDNA synthesis and library preparation 489 
cDNA synthesis was performed using the Smart-seq2 protocol2,3. Briefly, 384-well plates 490 
containing single-cell lysates were thawed on ice followed by first strand synthesis. 0.6 μl 491 
of reaction mix (16.7 U/μl SMARTScribe Reverse Transcriptase (Takara Bio, 639538), 492 
1.67 U/μl Recombinant RNase Inhibitor (Takara Bio, 2313B), 1.67X First-Strand Buffer 493 
(Takara Bio, 639538), 1.67 μM TSO (Exiqon, 5’-494 
AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG-3’), 8.33 mM DTT (Bioworld, 495 
40420001-1), 1.67 M Betaine (Sigma, B0300-5VL), and 10 mM MgCl2 (Sigma, M1028-496 
10X1ML)) was added to each well using a Tempest liquid handler. Reverse transcription 497 
was carried out by incubating wells on a ProFlex 2 x 384 thermal-cycler (Thermo Fisher) 498 
at 42°C for 90 minutes, and stopped by heating at 70°C for 5 minutes.  499 
  500 
Subsequently, 1.5 μl of PCR mix (1.67X KAPA HiFi HotStart ReadyMix (Kapa 501 
Biosystems, KK2602), 0.17 μM IS PCR primer (IDT, 5’-502 
AAGCAGTGGTATCAACGCAGAGT-3’), and 0.038 U/μl Lambda Exonuclease (NEB, 503 
M0262L)) was added to each well with a Mantis liquid handler (Formulatrix), and second 504 
strand synthesis was performed on a ProFlex 2x384 thermal-cycler by using the 505 
following program: 1) 37°C for 30 minutes, 2) 95°C for 3 minutes, 3) 23 cycles of 98°C 506 
for 20 seconds, 67°C for 15 seconds, and 72°C for 4 minutes, and 4) 72°C for 5 minutes.  507 
 508 
The amplified product was diluted with a ratio of 1 part cDNA to 10 parts 10mM Tris-509 
HCl (Thermo Fisher, 15568025), and concentrations were measured with a dye-510 
fluorescence assay (Quant-iT dsDNA High Sensitivity kit; Thermo Fisher, Q33120) on a 511 
SpectraMax i3x microplate reader (Molecular Devices). Sample plates were selected for 512 
downstream processing if the mean concentration of blanks (ERCC-containing, non-cell 513 
wells) was greater than 0 ng/μl, and, after linear regression of the values obtained from 514 
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the Quant-iT dsDNA standard curve, the R2 value was greater than 0.98. Sample wells 515 
were then selected if their cDNA concentrations were at least one standard deviation 516 
greater than the mean concentration of the blanks. These wells were reformatted to a new 517 
384-well plate at a concentration of 0.3 ng/μl and final volume of 0.4 μl using an Echo 518 
550 acoustic liquid dispenser (Labcyte).  519 
 520 
Illumina sequencing libraries were prepared as described in Darmanis et al. 2015.4 521 
Briefly, tagmentation was carried out on double-stranded cDNA using the Nextera XT 522 
Library Sample Preparation kit (Illumina, FC-131-1096). Each well was mixed with 0.8 523 
μl Nextera tagmentation DNA buffer (Illumina) and 0.4 μl Tn5 enzyme (Illumina), then 524 
incubated at 55°C for 10 minutes. The reaction was stopped by adding 0.4 μl “Neutralize 525 
Tagment Buffer” (Illumina) and centrifuging at room temperature at 3,220 x g for 5 526 
minutes. Indexing PCR reactions were performed by adding 0.4 μl of 5 μM i5 indexing 527 
primer, 0.4 μl of 5 μM i7 indexing primer, and 1.2 μl of Nextera NPM mix (Illumina). 528 
PCR amplification was carried out on a ProFlex 2x384 thermal cycler using the following 529 
program: 1) 72°C for 3 minutes, 2) 95°C for 30 seconds, 3) 12 cycles of 95°C for 10 530 
seconds, 55°C for 30 seconds, and 72°C for 1 minute, and 4) 72°C for 5 minutes. 531 
 532 
Library pooling, quality control, and sequencing 533 
Following library preparation, wells of each library plate were pooled using a 534 
Mosquito liquid handler (TTP Labtech). Pooling was followed by two purifications using 535 
0.7x AMPure beads (Fisher, A63881). Library quality was assessed using capillary 536 
electrophoresis on a Fragment Analyzer (AATI), and libraries were quantified by qPCR 537 
(Kapa Biosystems, KK4923) on a CFX96 Touch Real-Time PCR Detection System 538 
(Biorad). Plate pools were normalized to 2 nM and equal volumes from 10 or 20 plates 539 
were mixed together to make the sequencing sample pool. A PhiX control library was 540 
spiked in at 0.2% before sequencing. 541 
 542 
Sequencing libraries from 384-well and 96-well plates 543 
Libraries were sequenced on the NovaSeq 6000 Sequencing System (Illumina) using 2 x 544 
100bp paired-end reads and 2 x 8bp or 2 x 12bp index reads with either a 200- or 300-545 
cycle kit (Illumina, 20012861 or 20012860). 546 
 547 
Microfluidic droplet single cell analysis 548 
Single cells were captured in droplet emulsions using the GemCode Single-Cell 549 
Instrument (10x Genomics, Pleasanton, CA, USA), and SC RNA-seq libraries were 550 
constructed as per the 10X Genomics protocol using GemCode Single-Cell 3′ Gel Bead 551 
and Library V2 Kit. Briefly, single cell suspensions were examined using an inverted 552 
microscope, and if sample quality was deemed satisfactory, the sample was diluted in 553 
PBS with 2% FBS to a concentration of 1000 cells/μl.  If cell suspensions contained cell 554 
aggregates or debris, two additional washes in PBS with 2% FBS at 300 x g for 5 minutes 555 
at 4°C were performed. Cell concentration was measured either with a Moxi GO II (Orflo 556 
Technologies) or a hemocytometer. Cells were loaded in each channel with a target 557 
output of 5,000 cells per sample. All reactions were performed in the Biorad C1000 558 
Touch Thermal cycler with 96-Deep Well Reaction Module. 12 cycles were used for 559 
cDNA amplification and sample index PCR. Amplified cDNA and final libraries were 560 
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evaluated on a Fragment Analyzer using a High Sensitivity NGS Analysis Kit (Advanced 561 
Analytical). The average fragment length of 10x cDNA libraries was quantitated on a 562 
Fragment Analyzer (AATI), and by qPCR with the Kapa Library Quantification kit for 563 
Illumina. Each library was diluted to 2 nM, and equal volumes of 16 libraries were 564 
pooled for each NovaSeq sequencing run. Pools were sequenced with 100 cycle run kits 565 
with 26 bases for Read 1, 8 bases for Index 1, and 90 bases for Read 2 (Illumina 566 
20012862). A PhiX control library was spiked in at 0.2 to 1%.  Libraries were sequenced 567 
on the NovaSeq 6000 Sequencing System (Illumina) 568 
 569 
Data Processing 570 
Sequences from the Novaseq were de-multiplexed using bcl2fastq version 2.19.0.316. 571 
Reads were aligned using to the mm10plus genome using STAR version 2.5.2b with 572 
parameters TK. Gene counts were produced using HTSEQ version 0.6.1p1 with default 573 
parameters, except “stranded” was set to “false”, and “mode” was set to “intersection-574 
nonempty”. 575 
 576 
Sequences from the microfluidic droplet platform were de-multiplexed and aligned using 577 
CellRanger, available from 10x Genomics with default parameters. 578 
 579 
Clustering 580 
Standard procedures for filtering, variable gene selection, dimensionality reduction, and 581 
clustering were performed using the Seurat package. A detailed worked example, 582 
including the mathematical formulae for each operation, is in the Tissue Annotation 583 
Vignette. The parameters that were tuned on a per-tissue basis (resolution and number of 584 
PCs can be viewed in the tissue-specific Rmd files available on GitHub). For each tissue 585 
and each sequencing method (FACS and microfluidic droplet), the following steps were 586 
performed: 587 
 588 

1. Cells were lexicographically sorted by cell ID to ensure reproducibility. 589 
2. Cells with fewer than 500 detected genes were excluded. (A gene counts as 590 

detected if it has at least one read mapping to it). Cells with fewer than 50,000 591 
reads (FACS) or 1000 UMI (microfluidic droplet) were excluded. 592 

3. Counts were log-normalized for each cell using the natural logarithm of 1 + 593 
counts per million (for FACS) or 1 + counts per ten thousand (for microfluidic 594 
droplet). 595 

4. Variable genes were selected using a threshold (0.5) for the standardized log 596 
dispersion, where the standardization was done in separately according to binned 597 
values of log mean expression.  598 

5. The variable genes were projected onto a low-dimensional subspace using 599 
principal component analysis. The number of principal components was selected 600 
based on inspection of the plot of variance explained. 601 

6. A shared-nearest-neighbors graph was constructed based on the Euclidean 602 
distance in the low-dimensional subspace spanned by the top principal 603 
components. Cells were clustered using a variant of the Louvain method that 604 
includes a resolution parameter in the modularity function23.  605 
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7. Cells were visualized using a 2-dimensional t-distributed Stochastic Neighbor 606 
Embedding of the PC-projected data. 607 

8. Cell types were assigned to each cluster using the abundance of known marker 608 
genes. Plots showing the expression of the markers for each tissue appear in the 609 
extended data.  610 

9. When clusters appeared to be mixtures of cell types, they were refined either by 611 
increasing the resolution parameter for clustering or subsetting the data and 612 
rerunning steps 3-7. 613 

 614 
A similar analysis was done globally for all FACS processed cells and for all microfluidic 615 
droplet processed cells to produce an unbiased clustering. 616 
 617 
Differential expression overlap analysis 618 
 619 
For FACS and microfluidic droplet data differential expression analysis for each organ 620 
was performed using a Wilcox rank test as implemented in the “FindAllMarkers” 621 
function of the Seurat package. Differential expression was performed between cell 622 
ontology groups and resulted in a list of differentially expressed genes (logeFoldChange > 623 
0.25) between each cell ontology group and all other ontology groups of the same organ. 624 
For the microwellSeq we used the corresponding published lists for each cell type and for 625 
every organ. We then assessed the overlap (Supp. Fig. 6) of those lists between the three 626 
methods. As the nomenclature is not identical, the analysis was performed between cell 627 
types that could be matched with a certain degree of confidence between the three 628 
methods (TableS2).  629 
 630 
Calculation of dissociation scores 631 
 632 
For each organ, gene expression matrices were subset to 140 genes24, and principal 633 
component analysis was performed on this gene subset. The first principal component 634 
was used as the “dissociation score” as it corresponds to the variance within these genes.  635 
 636 
Defining cell type-enriched transcription factors 637 
 638 
Transcription factors were defined as the 1140 genes annotated by the Gene Ontology 639 
term “DNA binding transcription factor activity”, downloading from the Mouse Genome 640 
Informatics database (http://www.informatics.jax.org/mgihome/GO/project.shtml, 641 
accessed on 2017-11-10).  Cell types were defined as unique combinations of cell 642 
ontology and organ annotation (e.g. Lung__Endothelial_cell). All analysis was performed 643 
on the full 3 month dataset, subsampled by randomly selecting 60 cells from each cell 644 
type. Enriched TFs were defined by the Seurat FindMarkers function with the 645 
“Wilcoxon” significance test for the target cell type against the all of rest of the cell types 646 
combined. These were filtered by p_val < 10-3, avg_diff > 0.2, pct.1 – pct.2 > 0.1 647 
(percent detected difference > 0.1), and pct.1 > 0.3 (detected in > 30% of target cells).  648 
 649 
Discovering cell type-specific TF combinations 650 
 651 
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For each cell type that contained at least 6 cells, and had at least 4 enriched TFs, the top 652 
30 TFs or all that passed filter, whichever was smaller, were selected by highest avg_diff. 653 
The specificity of each four-TF combination (up to 27405 combinations for 30 TFs) was 654 
assessed by a score defined from two standard metrics, precision and recall: 655 

Precision 	

�


� � 
�
 

Recall 	  

�


� � 
�
 

Score 	 2 � Precision � Recall 
 656 
Where TP (true positive) is the number of cells in the target cell type expressing all 4 657 
TFs, FP (false positive) is the number of cells not in the target cell type expressing all 4 658 
TFs, and TN (true negative) is the number of cells in the target cell type not expressing 659 
all 4 TFs. The top TFs by this score for several cell types was plotted in Figure 6a.  660 
 661 
Defining TF networks by correlation analysis 662 
 663 
Organ-specific TF regulatory networks were measured by the correlations of TFs. TFs  664 
were selected by enrichment in a cell type over all other cell type with the test described 665 
in “Defining cell type-enriched transcription factors”, filtered by p_val < 10-8, avg_diff > 666 
0.3, and pct.1-pct.2 > 0.1. The top 8 markers per cell type (or however many passed the 667 
filters) were selected by avg_diff. The Pearson correlations between genes were 668 
calculated, and genes ordered by hierarchical clustering with optimal ordering (hclust and 669 
cba::optimal). For analysis of TFs within single broad cross-organ cell types, endothelial 670 
cells were defined as cell ontology annotations containing “endothelial” or “capillary” 671 
(Fig. 6e-g). Epithelial cells were defined as cell ontology annotations containing 672 
“epithelial”, “basal”, “keratinocyte”, or “epidermis” (Fig. 6b-d). Exemplary organ-673 
specific TFs were visualized on t-SNE plots. t-SNE was computed for a single cell 674 
annotation across all organs, by the top variable genes (Seurat FindVariableGenes, 675 
RunPCA with 10 PCs, and RunTSNE with perplexity = 30).    676 
  677 
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 678 
Figure captions  679 
 680 
Figure 1.  Overview of Tabula Muris 681 
a) 20 organs and tissues from 4 male and 3 female mice were analyzed.  After 682 
dissociation, cells were either sorted by FACS or captured in microfluidic oil droplets, 683 
after which they were lysed and their transcriptomes amplified, sequenced, and reads 684 
mapped, followed by data analysis.  b) Barplot showing number of sequenced cells 685 
prepared by FACS sorting from each organ (n=20).  c) Barplot showing number of 686 
sequenced cells prepared by microfluidic droplets from each organ (n=12).  687 
 688 
Figure 2.  tSNE visualization of all FACS sorted cells. 689 
tSNE plot of all cells sorted by FACS, color coded by organ.  690 
 691 
Figure 3.  tSNE visualization of individual organs. 692 
a) tSNE plots for each organ of cells sorted by FACS.  Color coding indicates distinct 693 
clusters.  b) Barplots of annotated cell types based on differential gene expression across 694 
all organs. Coloring of clusters within each organ is consistent between panels a and b.  695 
 696 
Figure 4. Comparison of cell type determination.  697 
Comparison of cell type determination as done by unbiased whole transcriptome 698 
comparison versus manual annotation by organ-specific experts.  The x-axis represents 699 
clusters from Figure 2 and Figure S2 with multiple organs contributing, while the y-axis 700 
represents manual expert annotation of cell types in an organ-specific fashion.  The 701 
unbiased method discovers relationships between similar cell types found in different 702 
organs (highlighted regions); in particular it groups T cells from different organs into a 703 
single cluster, B cells from different organs into a different single cluster, and endothelial 704 
cells from different organs into a single cluster.  705 
 706 
Figure 5. Analysis of all sorted T-cells. 707 
a) tSNE plot of all T cells colored by cluster membership. Five clusters were identified.  708 
b) Dotplot showing level of expression (color scale) and number of expressing cells 709 
(point diameter) within each cluster of T cells. c) tSNE plot of all T cells colored by 710 
organ of origin (Fat, Lung, Marrow, Limb Muscle, Spleen or Thymus). d) tSNE plot of 711 
all T cells colored by classification of T cells to 4 categories based on expression of Cd4 712 
and Cd8 (Cd4+/ Cd8+/ Cd4+Cd8+ / Cd4-Cd8-). 713 
 714 
Figure 6. Transcription factor (TF) expression analysis.   715 
a) Visualization of the precision (ppv) and recall of combinations of 4 TFs. Red bars 716 
indicate the number of cells expressing all 4 TFs in the target cell type (true positive) in 717 
both the ppv and recall columns. Other colored bars in the ppv column represent the 718 
number of cells in the non-target cell types expressing all 4 TFs (false positives). The 719 
height of the grey bar in the recall column is the number of cells in the target cell type not 720 
expressing all 4 TFs (false negatives). The legend indicates the target cell type next to the 721 
red square and all non-target cell types with coexpression. Data shown is the entire 722 
dataset subsampled to at most 60 cells per cell type. b) Correlogram of top organ-specific 723 
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TFs for epithelial cells. Row colors correspond to organ of the most-enriched cell type. c) 724 
tSNE visualization of epithelial cells, colored by organ. d) tSNE visualization of 725 
endothelial cell expression of select TFs. (grey/low to red/high).  e) Correlogram of top 726 
organ-specific TFs for epithelial cells. Row colors correspond to organ of the most-727 
enriched cell type. f) tSNE visualization of epithelial cells, colored by organ. g) tSNE 728 
visualization of epithelial cell expression of select TFs. 729 
 730 
 731 
  732 
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Supplementary Figure Captions 733 
 734 
Supplementary Figure 1  a) Histogram of number of reads per cell for each organ from 735 
FACS sorted cells.  b) Histogram of number of genes detected per cell for each organ 736 
from FACS sorted cells.  c) Histogram of number of unique molecular identifiers (UMI) 737 
sequenced per cell for each organ from cells prepared by microfluidic droplets.  d) 738 
Histogram of number of genes detected per cell for each organ for cells prepared by 739 
microfluidic droplets. 740 
 741 
Supplementary Figure 2.  tSNE visualization of all FACS sorted cells annotated by 742 
cluster. Clusters are discussed in the text and further analyzed in Figure 4. 743 
 744 
Supplementary Figure 3  a) tSNE plot of all cells captured by microfluidic droplets 745 
color coded by organ. b) Dimensionally reduced tSNE plots for each organ of cells sorted 746 
by microfluidic droplets.  Color coding indicates distinct clusters.  c) Barplots of 747 
manually annotated cell types based on differential gene expression across all organs. 748 
Coloring of clusters within each organ is consistent between panels b and c.  749 
 750 
Supplementary Figure 4 a) Number of genes detected by FACS (red), microfluidic 751 
droplets (green) and microwell-Seq (blue) (Han et al.). b) library saturation fraction for 752 
all 10x libraries included in the study. Dotted horizontal line demarcates the median 753 
(=0.86). 754 
 755 
Supplementary Figure 5 Fraction of all detectable genes, for each cell across all organs, 756 
(UMI/read threshold is >0) detected at increasing UMI/read thresholds for FACS (left), 757 
microfluidic droplet (middle) and microwell-Seq (right).  758 
 759 
Supplementary Figure 6 Venn diagrams showing the overlap between differentially 760 
expressed genes for each common cell type and organs across three methods (FACS, 761 
droplet, microwell-Seq). Plotted data are provided in tabular form in Table S2.  762 
 763 
Supplementary Figure 7  Analysis of dissociation induced gene expression scores 764 
across organs.   765 
 766 
Supplementary Tables 767 
 768 
Supplementary Table 1 Number of cells belonging to each annotated cell type across all 769 
organs for FACS and microfluidic droplets.  770 
 771 
Supplementary Table 2 Cell type comparisons and lists of differentially expressed 772 
genes across three methods (FACS, droplet, microwell-Seq) and all common organs and 773 
tissues. 774 
 775 
Supplementary Table 3 Combinatorial specificity of transcription factors (TFs) to single 776 
cell types. Three combinations of 4 TFs with the highest combinatorial specificity score 777 
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are presented. The precision (ppv) and recall of each 4-TF combination and cell type is 778 
calculated as described in the Methods and main text. 779 
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