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ABSTRACT

Test-negative designs are commonplace in assessments of influenza vaccination effectiveness,
estimating this value from the exposure odds ratio (OR) of vaccination among individuals treated for acute
respiratory illness who test positive for influenza virus infection. This approach is widely believed to
recover the vaccine direct effect by correcting for differential healthcare-seeking behavior among
vaccinated and unvaccinated persons. However, the relation of the measured OR to true vaccine
effectiveness is poorly understood. We derive the OR under circumstances of real-world test-negative
studies. The OR recovers the vaccine direct effect when two conditions are met: (1) individuals’
vaccination decisions are uncorrelated with exposure or susceptibility to the test-positive or test-negative
conditions, and (2) vaccination confers “all-or-nothing” protection (whereby certain individuals have no
protection while others are perfectly protected). Biased effect size estimates arise if either condition is
unmet. Such bias may suggest misleading associations of vaccine effectiveness with time since
vaccination or the force of infection of influenza. The test-negative design may also fail to correct for
differential healthcare-seeking behavior among vaccinated and unvaccinated persons without stringent
criteria for enroliment and testing. Our findings demonstrate a need to reassess how data from test-

negative studies can inform policy decisions.
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Observational study designs (1,2) are needed to measure vaccine effectiveness (VE) when randomized
trials are infeasible or unethical, as with the new formulations of influenza vaccines used each year (3).
The “test-negative” design—a modification of the traditional case-control design—has become popular for
measuring clinical effectiveness of seasonal influenza vaccines (1). It resembles earlier designs such as
the indirect cohort method (4) and the selection of “imitation disease” controls in case-control studies (5).
Individuals who experience acute respiratory illness (ARI) and present for care receive a laboratory test
for influenza virus infection, and their vaccination history is ascertained. The exposure-odds ratio of
vaccination among test-positive and test-negative subjects (OR), in some instances adjusted for potential
confounding using stratification or regression, has frequently been used to measure VE (6), where VE =
(1 — OR)x100% (7). Causal interpretations of resulting estimates have become the basis for
policymaking, such as the US Advisory Committee on Immunization Practices recommendation that
quadrivalent live attenuated influenza vaccine (LAIV) should not be used in the US during the 2016-17

and 2017-18 seasons (3,8,9).

Unlike VE estimates from traditional case-control studies, the test-negative measure is expected to
correct for differential treatment-seeking behaviors among vaccinated and unvaccinated persons because
only individuals who seek care are included (10). However, potential confounding, misclassification, and
selection biases under the test-negative design (2,11-13) have ignited debate about the suitability of test-
negative studies as a basis for policymaking. Whereas directed acyclic graphs have been useful in
revealing such biases (9,14,15), quantitative implications of these biases for VE estimates remain

uncertain (16).

To resolve this uncertainty, we derived the relation of the test-negative OR to true VE, defined as the
vaccine-conferred reduction in susceptibility to influenza infection and/or influenza-caused ARI (vaccine
“direct effect” (17)) . We used this mathematical relationship to assess the quantitative impact of potential
biases in test-negative studies. We consider a test-negative study of VE against seasonal influenza as a
guiding example, noting that our findings have implications for test-negative studies of vaccines against

rotavirus (18,19), cholera (20,21), meningococcus (22), pneumococcus (4), and other infections.


https://doi.org/10.1101/237503

bioRxiv preprint doi: https://doi.org/10.1101/237503; this version posted July 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

NOTATION

For consistency, we use notation from a previous study (10) where possible; we list all parameters and
definitions in Table 1. Assume that ARI may result from influenza infection (/) or other causes (N).
Susceptible individuals acquire infection at time-constant rates A4, and Ay; we show later that results hold
for seasonal or otherwise time-varying acquisition rates A(f). We define =0 as the start of the influenza
season, and assume individuals are vaccinated around this time (before extensive transmission).
Infections cause ARI with probability 7y and my, respectively. Out of the entire population P, a proportion of
individuals (v) received vaccine. Because individuals who opted for vaccination may differ from others in
their likelihood for seeking treatment for ARI, define the probability of seeking treatment for an ARI
episode as uy among the vaccinated and yy among the unvaccinated; we address how differential

treatment seeking for test-positive and test-negative conditions influences estimates in a later section.

Because a single type or subtype of influenza typically dominates each season, assume that naturally-
acquired immunity protects against within-season re-acquisition of influenza. The proportion of individuals
remaining susceptible to infection at time t is thus e~%t. Assume further that the various non-influenza
causes of ARI (N) are unlikely to provide immunity against one another, so that the full population
remains at risk of N throughout; we show later that this assumption does not impact estimates (Web

Appendix 1).

Consider two mechanisms by which vaccination protects against infection. Define ¢ as the proportion of
individuals responding to vaccine, so that a proportion 1 — ¢ remain unaffected by vaccination; here we
assume individuals’ likelihood of responding is unassociated with exposure or susceptibility to infection.
Among the responders, define 0 as the hazard ratio for infection (measured relative to the hazard rate of
infection among non-responders and unvaccinated persons) resulting from vaccine-derived protection
(23,24). The special case where 6=0 and 0<¢<1 corresponds to a situation of “all-or-nothing” protection

for responders and non-responders, respectively, while “leaky” protection for all recipients arises under
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¢=1 and 0<6<1 (23,24,17), whereby all vaccine recipients experience a reduced rate of acquiring
infection. We note that this definition of “leaky” protection is unrelated to the relative risk for vaccine
recipients and non-recipients to experience progression of infection to symptomatic disease (17), and
consider this issue in a subsequent section. The general circumstances of 0<¢g<1 and 0<6<1 correspond
to an intermediate scenario of “leaky-or-nothing” protection. Perfect protection attains for 6=0 and ¢=1,
and no protection attains when ¢=0 (no individuals respond to vaccination) or 6=1 (responders receive no
protection). The vaccine direct effect on susceptibility to infection is the rate ratio of infection given

vaccination:

VE=1-[1-¢)+0p]=¢p(-0).

This parameter is of interest in vaccine studies as the basis for calculating the effective reproductive
number and the critical population to vaccinate (25). To highlight design-level features most pertinent to
the interpretation of test-negative studies, and in line with typical reporting of VE estimates, our analysis
does not address heterogeneity in vaccine response beyond the consideration of “all-or-nothing” and
“leaky-or-nothing” protection, nor do we address impacts of vaccination on infectiousness, as estimates
from conventional test-negative studies do not capture indirect effects. We refer readers to previous
studies addressing such issues in the contexts of differing study designs (17,26—28). Where applicable,
we address sources of confounding in test-negative studies that may lead to incorrect inferences of

heterogeneity in vaccine effects among individuals or over time.

PERFORMANCE OF THE ODDS RATIO UNDER VACCINATION UNCONFOUNDED BY EXPOSURE

OR SUSCEPTIBILITY TO THE CONDITIONS

Here we consider the case where individuals’ decision-making about whether to receive influenza vaccine
is uncorrelated with their a priori risk of acquiring influenza and test-negative conditions, and with the
probability that these conditions would cause ARI (or another clinical endpoint of interest for study

enrollment; m; and my). To examine the potential for the test-negative design to correct for treatment-
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seeking biases, we allow vaccine recipients and non-recipients to have different probabilities of seeking
treatment for ARI (uy and uy), assuming for now that these probabilities are unaffected by the cause of

the ARI. We relax this assumption in a later section.

To understand what the OR measures in test-negative studies, we derive the rate at which individuals
enter into the study as test-positive or test-negative subjects given their vaccination status. The rate of
ascertaining test-positive, vaccinated persons is
Ay () = Ly [(1 = @)e Mt + pe~Mt|vP,
where the force of infection (4,) is applied upon as-yet uninfected members of the vaccinated population;
we further account for the proportion (m; 1) of individuals expected to show symptoms and seek
treatment. The rate of ascertaining test-positive, unvaccinated subjects is
Ay () = 4ympge (1 — v)P.
Test-negative vaccinated and unvaccinated persons are ascertained at the rates
Ayn(8) = ATy py VP
and
Ayn(t) = Aymypy (1 —v)P,

respectively, assuming vaccination does not impact susceptibility to the test-negative conditions.

Test-negative studies typically measure the OR of vaccination among the test-positive and test-negative
subjects, similar to the exposure OR in case-control studies, using cumulative cases (C). For the test-
positive outcome,

Cy,(8) = ”l#v[(l —p)(1—e M)+ (P(l - e_mlt)]vp

Cyr(t) = mypy (1 — e MH)(1 — v)P.

Under the assumption that test-negative infections are not immunizing, cumulative cases are proportional
to the incidence rate and study duration:
Cyn(t) = AyTrypyvPt

Cyn(t) = Aymypy (1 — v)PL.
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We consider the case of immunizing test-negative outcomes in Web Appendix 1. Using the vaccine-

exposure OR measured from cumulative cases,

1—0RC(H) =1 U2 _
2 Cyr(£)Cyn (1) 1—e Mt 1— e-Mt

Cn®Cu (@) _ | A=p)A-e) +o(t—e) (1 1- e‘“ff)
(1a)
Under the special case of “all-or-nothing protection” (6=0),
1—-0R(t) = o,
equal to the vaccine direct effect against infection. In contrast, under the special case of “leaky” protection
for all recipients (p=1),

1— e—@}qt

— c e
1= 0R(t) = 1=

resulting in a bias toward the null value of 0. This bias is nonexistent near t=0 (ltir%[l — OR“(©)] = 9),

but grows as t increases (tlim[l — OR‘()] = 0).

Despite the lack of data in test-negative studies on the population (or person-time) at risk for infection,
this result (eq. 1a) is equal to VE measures from the relative risk in randomized controlled trials. While
methods have previously been proposed to recover the vaccine effect on susceptibility through uses of
population-at-risk or person-time-at-risk data (23,29), we note that the absence of such measurements

presents a unique obstacle to bias correction in test-negative studies.

Studies may also measure time-specific ORs, for instance by stratifying analyses into sub-seasonal
intervals (30—33) or by interacting vaccination and time in logistic regression models fitted to individual-
level data (34,35). In comparison to ORs estimated from cumulative cases, such estimates are often
sought to gauge differences over time in VE, for instance due to waning of protection. As the time
increment approaches zero, terms included in the OR approach the ascertainment rates of test-positive
and test-negative subjects. We therefore define this measurement as

Ay (O Ay () _

L-OoRI® =1~ Ay () Ayy (1) B

1-[(1 = @) + pBe~HtO-D] = o(1 — ge4t@-1),

(1b)
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again reducing to
1-0RAt) =9
under “all-or-nothing” protection but allowing bias to persist under “leaky” protection for all recipients
1—ORA(t) = 1 — e~ 1t(O-1),
Here bias is again nonexistent at =0 and worsens as t — oo, further increasing with A,. Intuitively, the bias
arises due to differential depletion of vaccinated and unvaccinated susceptible individuals, consistent with
other study designs (23,36,37). Presuming the vaccine is efficacious, more unvaccinated than vaccinated

individuals will have been depleted later in the epidemic, confounding instantaneous comparisons.

We illustrate functional forms of 1 — OR¢(t) and 1 — OR“(t) under scenarios of “leaky” and “leaky-or-
nothing” protection in Figure 1 and Figure 2, respectively. Considering first a “leaky” vaccine with 1 — 6 =
50% efficacy, under conditions of 4,=0.001, 0.005, and 0.01 infections/person-day, VE estimates based
on cumulative cases are 2.2%, 11.2%, and 22.1% lower than the true vaccine efficacy, respectively, after
90 days of influenza transmission (Figure 1); by this point, 8.6%, 36.7%, and 59.3% of unvaccinated
individuals are expected to have been infected. Serological studies have revealed cumulative infection
rates in the range of 20-40% for seasonal influenza (38,39) and up to 47% for influenza A(H1N1)pdm09
(40) among unvaccinated (and presumably susceptible) children, suggesting reported VE estimates may
fall in the middle of this range in terms of bias; differences in susceptibility across ages and risk strata
may, however, result in differential rates of infection and differential degrees of bias in estimates (41). The
exposure-dependent biases we identify worsen with lower vaccine efficacy: for 1 — 6 = 20%, estimated
values fall 3.6%, 17.1%, and 32.4% below the true effect for 4,=0.001, 0.005, and 0.01, respectively.
Estimates based on the ascertainment rate (1 — OR?(t)) would show greater bias at the same point in
time: VE estimates are reduced by 4.6%, 25.2%, and 56.8% for a vaccine conferring 50% efficacy, and by

7.3%, 37.7%, and 78.9% for a vaccine conferring 20% efficacy.

Figure 2 illustrates how bias is further influenced by the contributions of vaccine response probabilities to

overall vaccine efficacy. For a vaccine conferring 50% efficacy based on 90% of individuals responding
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(so that § = @ = 44.4%), and again defining ,=0.001, 0.005, and 0.01 infections/person-day, 1 —

ORC(t) as of t=90 yields values subject to 2.0%, 10.0%, and 20.0% downward bias, respectively. With the
same efficacy based on 60% of individuals responding (6=16.7%), the degree of bias is reduced to 0.8%,

3.9%, and 8.2% below the true effect.

To aid interpretation in the context of previous studies (2,11), we also illustrate the modeled causal
process using a directed acyclic graph (Figure 3), revealing that the special case of “all-or-nothing”
protection precludes bias from vaccine-derived protection against influenza infections occurring before
the ARI episode for which an individual seeks care. We derive VE estimators accounting for additional
real-world circumstances—including time-varying transmission intensity during an influenza season and
the use of naturally immunizing test-negative endpoints—in Web Appendix 1, showing that the OR

retains the biases identified under our simpler initial assumptions.
Conditions for sign bias

In some applications, testing for a protective or harmful effect of the vaccine may take priority over
obtaining precise measurements of effect size. The conclusions of such hypothesis tests rest on an
assumption that the OR is not subject to sign bias, reflecting the circumstance OR(t) > 1 for an effective
vaccine (as defined by the condition 8 < 1), or OR(t) < 1 for an ineffective vaccine (for which 8 > 1). The
plots of 1 — OR4(¢) in Figures 1 and 2 illustrate that VE estimates based on the ascertainment rate of
cases may encounter sign bias. The OR measured from ascertainment rates reaches one—suggesting
no vaccine effect—when the cumulative transmission to which a population has been exposed (1;xt)
reaches a particular threshold:

In (8)
At = ;
"~ 9—-1

we derive this threshold in Web Appendix 2. Once at least this proportion of the unvaccinated population
has become immune to infection, cases will appear with higher frequency among vaccinated than

unvaccinated individuals even when vaccine-derived protection does not wane. These circumstances
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demonstrate the need for caution in interpreting time-specific (continuous or sub-seasonal) VE
measurements from test-negative studies (30—33), or for strategies to account for previous infection

prevalence among vaccinated and unvaccinated persons.

PERFORMANCE OF THE ODDS RATIO UNDER DIFFERENTIAL EXPOSURE OR SUSCEPTIBILITY

OF VACCINATED AND UNVACCINATED PERSONS TO THE CONDITIONS

The test-negative design is typically employed in observational studies where individuals have received
vaccination voluntarily. In contrast to assumptions in the above section that vaccination is uncorrelated
with exposure or susceptibility to infection, variation in vaccine uptake across risk groups is well-
recognized (2). For instance, preferential vaccine receipt has been reported among relatively healthy
older adults (42,43) and among persons prioritized for vaccination such as healthcare workers (who may
have elevated risk of encountering infected persons) and individuals with underlying health conditions
(who may be at risk for severe outcomes if infected) (44,45). This circumstance corresponds to the

presence of a confounder (“G” in Figure 3) related to disease risk as well as vaccination.

Absent vaccine-derived protection, define “V’/aw and “VN/aUN as the relative rates at which individuals

who seek vaccination would be expected to acquire influenza and test-negative conditions, respectively,
measured against the expected rates among individuals who do not seek vaccination. These relative
rates do not consider the biological effect of the vaccine, but only the counterfactual associated with

vaccine-seeking status.

Accounting further for vaccine-induced protection, the ascertainment rates of test-positive and test-

negative subjects are
Ay () = aVIAIT[IMV[(l — p)e vt 4 ¢ge-9av111t]vp
Ay () = ay 4ypye VMt (1 — v)P
Ayn(t) = ayyAnTtypy VP

Ayn () = agyAymypy (1 = v)P,

10
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resulting in cumulative case measures
Cyi () = mpy[(1 — @) (A — e~ V14T + (1 — e~ Wi%4t)|[pp
Cur(t) = mypy(1 — e"@0rht) (1 — v)P
Cyn(t) = ayyAyTypyvPt
Cyn(6) = ayyAymyuy (1 — v)PL.

Estimating VE from cumulative cases,

1-ont =1 - (),
(2a)
whereas the estimate based on ascertainment rates is
1-0RA(t)=1- % =1- (Z—Z%) [(1 — p)e Ht@vi—auD) + pge-Hitlavif-auD],
(2b)

These estimates reduce to

ayy (1 — e~ vkt
1-0R°(t) =1- (1—<p)a—””<—>

VN 1-— e—OlUI)LIt

1-0RAt)=1-(1-¢) (?Zﬂ) e ~Mtlavi—ayr)
ul Avn

under “all-or-nothing” protection, and

a 1-— e—aVIG)L[t
1-0RS(t)=1- ﬂ(—)

aUN 1 - e_“UMIt

1-0RAt)=1-6 (@M) e~ Mt(ayi0-ayp)
Qyr Ayn

under “leaky” protection.

Consider alternatively that 7T"’/nw and ”VN/HUN are the relative risks of ARI given influenza and test-

negative infections, respectively, for individuals who seek vaccination, measured against the risk among
individuals who do not seek vaccination; we again distinguish that these differences owe to factors other
than vaccine-derived protection (17), and consider vaccine protection against disease progression in a

subsequent section. Incorporating 7; and my into the ORs formulated above,

11
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_ ,—0Apt
—0RS(t) =1~— E”ﬂ) _ l1-e

1-0RS(D) = 1 (nw o ((1 Do

(3a)
and
1-0R*(t)=1- (ﬂ@) [1 — (p(l —_ ee—}{]t(ﬂ—l))].
Ty; tyn

(3b)

Under “all-or-nothing” protection,

Ty T
1—0Rc(t)=1—0RA=1—(1—¢)(lﬂ>,

Tyr Tyn
reducing to ¢ if differences between vaccinated and unvaccinated persons equally affect progression of

influenza and test-negative conditions to symptoms, i.e. ? = :ﬂ For a vaccine conferring “leaky”
u1 UN

protection to all recipients,

Ty T 1— e 0Ut
1-ore(o = 1 - (22 (12 )

TIUI T[VN 1 - e_llt

and

1—0Rt)=1- (@M) e~Mt(0-1)
Ty Tyn

reducing when ? = :ﬂ to the bias present when vaccine-seeking is uncorrelated with exposure or
Ul UN

susceptibility to infection (egs. 1a and 1b).

Incorporating heterogeneity in both acquisition and progression,

ayy (Ty T 1—@)(1 — e ihit) 4 (1 — g~ avifMt
1 - 0Re(e) = 1 - Lo (T Tuw) a— o) )+ o )

Qyy \Tty; Ty 1— e ourit

(4a)
and
1-0RY(t)=1- (@“ﬂ) (ﬂ@) [(1 — @)e~Mt@vi—auD 4 pge—tlavif— auz)].
Qyp Ayn/ \y; Tyn

(4b)

12
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These circumstances underscore that differential vaccine uptake among persons at high and low risk for
infection or for symptoms given infection—a well-known phenomenon in observational studies of vaccines

and other health interventions—may undermine causal interpretations of the OR in test-negative studies.

BIAS ASSOCIATED WITH DIFFERENTIAL TREATMENT SEEKING AMONG THE VACCINATED AND

UNVACCINATED

To this point we have considered ARI as a singular clinical entity and assumed all individuals seeking
care for ARI are tested for influenza. However, different infections may cause clinically-distinct
presentations influencing the likelihood that individuals seek treatment, or the likelihood that clinicians test
for influenza (46). Here we address the possibility for such a scenario to lead to selection bias from

conditioning on the collider T (testing), the pathway VeH—> <l in Figure 3.

Consider that the spectrum of clinical presentations can be discretized into “moderate” (M) and “severe”
(S) classes, occurring with probabilities m,; = nll + my;, my, = nhy + 5y, myy = whly + Ty, and

myy = mihy + miy. Define ulf, uy, u¥, and u as the associated probabilities of seeking care given
symptoms and vaccination status, and let §M and éS indicate the probabilities of receiving a test given
symptoms. Bias associated with differential treatment-seeking persists unless the relative risk of testing
given infection (which includes experiencing symptoms, seeking treatment, and being tested) does not

differ for influenza and other conditions:

mopy § + S iy §Y + mp S

”lI/WNﬂny + ”51\/.“58“ nlAI/IN“?]/IfM + ”51\1#555 '

we derive the associated VE estimators in Web Appendix 3. Expressed more generally, this bias arises
unless

Pr (Test|V,I)  Pr(Test|V,N)
Pr (Test|U,I)  Pr (Test|U,N)

13
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when accommodating all possible factors that influence whether individuals are tested. Ensuring that the
above condition is met can guide study implementation and circumvent possible biases owing to
associations of vaccination with care-seeking given illness, receipt of clinical testing, and willingness to

participate in the study.

Correction of bias through the use of clinical criteria for enroliment and testing

A possible correction exists when enrollment and testing are tied to stringently-defined clinical criteria, i.e.
criteria for which eq. 5 holds. For example, if tests are performed conditioning on cases resembling a well-
defined and monotypic “Severe” entity (substituting §M=0 in egs. 5a and 5b), the OR retains bias only from

differential infection rates and symptom risk between the vaccinated and unvaccinated:

1-0R(t) =1~ (1 - ¢) (“ﬂ> (’i”@) <(1 —@)A—em i + (1 - e_“”“’t)>

ayn/ \ 7y, iy 1 — e-auiist
(6a)
when measured from cumulative incidence, or
Ay Ayn ”51 7TLSJN
1-0RAt)=1-(1-¢) (__> —— [(1 — p)e Mtlavi—aun) 4 ppe~tit(avio- aUI)]
Qur Ayn/ \Ty Tyn
(6b)

when measured from the ascertainment rate (resembling egs. 4a and 4b). Absent any association of the
decision to receive the vaccine with individuals’ exposure or susceptibility to infection and ARI, egs. 6a

and 6b reduce to egs. 1a and 1b.

MEASURING VACCINE EFFECTIVENESS AGAINST PROGRESSION

In addition to protection against infection, reductions in symptom risk given infection are of interest in VE
measures (17). Define p as the relative risk for vaccine-protected individuals to experience symptoms
given infection owing to vaccine-derived immunity. When decisions to vaccinate are not correlated with
exposure or susceptibility to the infections, other than through vaccine-derived immunity,

Ay () = Ly [(1 = @le ™ + ppoe~04|vp

14
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and
Cri(®) = mpy[(1 — 9)(1 — e~ M) + @p(1 — e~ %) |vP,
so that

I

_ Cc —
1-OR (t)—(p(l T

1— ORA(t) = p(1 — phe~M1tO-D),

Under the special case that a vaccine reduces risk of symptoms without protecting against infection

(6=1)—as might apply to oral cholera vaccines (47—49)—these measures reduce to
1—0R‘(t)=1-0R" =1 - p),

an unbiased estimate of VE against progression. Under confounding between vaccination and exposure

or susceptibility to the infections,

c —
1-0R‘()=1- e

Ayn (TEVI 7TUN> ((1 —)(1— e~ wrkity + gp(1 — e‘“W“If)>

Qyn \Tlyp Ty

1—ORA(t) =1-— (ﬂ“ﬂ) (E”ﬂ

> [(1 _ ¢)e—11t(aV1—aU1) + (ppge-ht(awe-auﬂ]'
Ayr Ayn

Ty Tyn

reducing to

ayy [Ty T 1 — e-avilit
1—O0RC(t) = 1 _ﬂ<ﬂﬂ> ——
(ZVN 1 —e Qui It

)[1 — o1 -p)]

Tyr Tyn

Ay Ayn\ (v Tun
1-0RAt)=1- <—_> (__> [1— @ — p)le Ht@vi-avn
Qyy Qyn/ \Ty; Ty

for a vaccine protecting against symptoms only (6=1).
IMPLICATIONS

Recent years have seen growing enthusiasm about the integration of data from observational studies in
decisions surrounding influenza vaccine policy (50), in part based on belief that vaccine direct effects—
which have traditionally been measured in prospective, randomized controlled trials—can be recovered

under the test-negative design (6,10,16,24). However, uptake of the test-negative design by researchers
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and policymakers has preceded thorough examination of its theoretical justification (14). Our analysis

highlights limitations to interpreting VE estimates based on the exposure OR from test-negative studies.

Our most troubling finding is that the OR measured by test-negative studies is unsuited to estimating the
vaccine direct effect on susceptibility to infection even under circumstances consistent with randomized
vaccine allocation, unless protection is known to follow an “all-or-nothing” mechanism of action. These
results echo longstanding concerns about measurement of the effectiveness of “leaky” vaccines in case-
control studies (23,51-53) as well as clinical trials (36,37), and occur because unvaccinated persons
become immune via natural infection faster than unvaccinated ones. Researchers rarely know a priori to
what extent a vaccine confers “leaky” or “all-or-nothing” protection, making it difficult to know under what

circumstances studies may be subject to the resulting bias.

We also show that certain traditionally-recognized sources of confounding in observational studies—
arising due to differential exposure or susceptibility to infection and symptoms among vaccinated and
unvaccinated persons—opersist under the test-negative design. Because resulting biases may lead to
time-varying estimates of VE, declines in 1-OR over a season may not support inference of waning
vaccine protection (31-35). Last, whereas the test-negative design has been viewed as a strategy to
eliminate treatment-seeking bias, we find that bias may persist under differential symptom severity for

influenza and test-negative infections.

Several assessments of test-negative studies based on DAGs (2,11) have pointed to similar sources of
confounding, and the practical importance of these findings has been debated amid uncertainty about the
magnitude of associated bias in estimates (16). The framework we have taken provides a basis for
quantifying bias directly. We show that the OR of test-negative studies can supply VE estimates that are
not equal to the causal vaccine effect on susceptibility and that sign bias may arise such that the
instantaneous OR leads to incorrect inferences about whether a vaccine is effective or not. This is
contrary to the frequent assumption that the OR provides, at minimum, a valid and direction-unbiased test

of the null hypothesis of no causal effect (11).
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Other approaches have been taken to assess bias in test-negative studies. In informal comparisons, VE
estimates from test-negative studies of live oral rotavirus vaccines and oral cholera vaccines have
appeared similar to vaccine efficacy estimates from randomized controlled trials in the same settings
(54,55). While these findings may suggest the biases we identify are not always large in practice, our
study and others (36,37) have pointed to potential sources of bias that may also affect estimates of the
vaccine direct effect in randomized controlled trials. Moreover, seasonal influenza vaccine trials are not
conducted on a year-to-year basis amid alterations to the strain composition of vaccines and changes to
the immune profile of hosts. This has led to difficulty accounting for instances where conclusions of
randomized controlled trials and test-negative studies have appeared to be in conflict. For instance, LAIV
effectiveness has appeared poor in test-negative studies undertaken since the emergence in 2009 of a
novel H1N1 influenza A virus (56,57), despite superior efficacy of LAIV over inactivated influenza vaccine

among children in earlier randomized controlled trials (58—60).

Many of the biases we identify result from differential acquisition of natural immunity among vaccinated
and unvaccinated persons. The strength and duration of such immunity differs among infectious diseases
for which test-negative studies have been undertaken to estimate VE; specific implications for weakly-
immunizing infections such as rotavirus (18,19) and respiratory bacterial agents (4,22) should be
assessed. Uses of the test-negative design in increasingly innovative applications, for instance an
evaluation of cluster-randomized deployments of Wolbachia-infected mosquitoes to prevent dengue
(61,62), further merit consideration in terms of transmission dynamic parameters such as we consider

here.

STRATEGIES TO COUNTERACT BIAS

While our analysis identifies limitations to the validity of VE estimates based on the vaccine-exposure OR

under the test-negative design, the results highlight specific improvements that can be made to the

interpretation of data from test-negative studies. We have shown that the use of strict clinical criteria or
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case definitions for enroliment and testing can reduce bias due to differential healthcare-seeking behavior
among vaccinated and unvaccinated persons. Whereas test-negative studies typically stratify estimates
according to influenza type/subtype or even the genetic clade, our findings suggest bias may persist if
there are meaningful epidemiologic differences in risk factors for infection and disease among vaccinated
and unvaccinated persons. This bias can be reduced by stratifying estimates to minimize within-stratum
differences in exposure or susceptibility to infection among vaccinated and unvaccinated persons. While
we point out the inability of test negative studies to measure “leaky” or “leaky-or-nothing” protection
accurately, the persistence of such bias in randomized controlled trials echoes a broader need to
consider epidemiological approaches for the measurement of imperfect forms of immunity (23,51-53).
Because biases resulting from the “leaky” nature of vaccine protection have lower impact in populations
less exposed to transmission, VE estimates from early in the influenza season may be more reliable than
those obtained later. This circumstance suggests a need to maximize statistical power for test-negative
studies in the initial weeks or months of seasonal or pandemic influenza transmission. In addition,
monitoring the cumulative incidence of infections in populations, for instance through serological studies,
could facilitate correction for the differential prevalence of naturally-acquired immunity among vaccinated
and unvaccinated persons. Evidence from test-negative studies of VE against influenza should be

interpreted with the limitations we report here in mind, in particular for vaccination policymaking.
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Table 1: Parameters (referenced in order of appearance)

Parameter

Definition

A

QR T < TN

¢
)

Force of infection (baseline rate of infection acquisition per susceptible)
Probability of ARI given infection

Total population

Proportion of the population vaccinated

Probability of seeking treatment given ARI

Proportion of individuals responding to vaccine

Hazard ratio for infection resulting from vaccine-derived protection (among responders)
Hazard ratio for infection (relative to population average) due to factors other than
vaccine-derived protection

Probability of laboratory diagnostic testing given healthcare seeking for ARI
Relative risk of ARI given infection due to vaccine-derived protection

ARI: acute respiratory illness
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Figure 1: Test-negative measures under “leaky” protection. We illustrate test-negative VE estimates
obtained from the exposure odds ratio for a vaccine conferring “leaky” protection (¢=1) to all recipients;
Figure 2 includes extensions to “leaky-or-nothing” protection with differing values of ¢. Estimates use (A-
E) cumulative case data (1 — OR®) and (F-J) ascertainment rates (1 — OR*), under an assumption of no
correlation between vaccination and exposure or susceptibility. Panels A—C and F—H illustrate
measurements at set times (f) under differing transmission intensity (4, equal to rates of 0.001, 0.005, and
0.01 infections per susceptible day at risk for blue, orange, and purple lines, respectively). Panels D, E, |,
and J illustrate changes over time in estimated vaccine effectiveness, under scenarios of vaccine

effectiveness equal to —25%, 25%, 50%, and 75% for green, orange, blue, and purple lines, respectively.
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Figure 2: Test-negative measures under “leaky-or-nothing” protection. We illustrate test-negative VE

estimates obtained from the exposure odds ratio for a vaccine conferring “leaky-or-nothing” protection;

compare against Figure 1 for the special case of “leaky” protection (¢=1). Estimates use (A—E) cumulative

case data (1 — OR®) and (F-J) ascertainment rates (1 — OR%), under an assumption of no correlation

between vaccination and exposure or susceptibility. Panels A—C and F-H illustrate measurements at set

times (f) under differing transmission intensity (4, equal to rates of 0.001 and 0.01 infections per

susceptible day at risk for dotted and solid lines, respectively); we illustrate performance of the estimator

with differing degrees of vaccine response, illustrating ¢ equal to 0.8, 0.6, and 0.4 for blue, orange, and

purple lines, and 8 = (¢ — VE)¢ 1. Panels D, E, |, and J illustrate changes over time in estimated vaccine

effectiveness. As in Figure 1, green, orange, blue, and purple lines signify scenarios of —25%, 25%, 50%,

and 75% vaccine effectiveness; dashed, dotted, and solid lines signify ¢ equal to 0.4, 0.6, and 0.8,

respectively.
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Figure 3: Causal directed acyclic graph (DAG) illustrating a key source of bias for leaky vaccines.
Healthcare seeking (H) drives receipt of the vaccine (V) as well as receipt of a test (T). By design, studies
select on testing, as only tested individuals are included. The effect of interest, signified by the dotted
arrow, is that of vaccination on influenza at the time of testing (I)). However, influenza may also occur at a
preceding point in the season (lp, dashed arrow). The test-positive outcome (T") arises when an
individual is infected at the time of testing (I—T"). Natural immunity prevents influenza re-infection during
the season (l,.—l;). The fact that |, is not—and cannot be—conditioned on leads to a second pathway
not of direct interest (V—l,.—I;) biasing the estimate of the direct effect V— I; in the leaky-vaccine case.
This bias is not present in the case of all-or-nothing protection. Here, two distinct subgraphs can be
envisioned. In the first, applicable only to the proportion (¢) of protected, vaccinated individuals, the path
V—lpe—l; is not of concern, as Pr{l,.|V]=0. In the second, applying to the remaining proportion (1—¢) of
unprotected individuals, the paths V—l,.—I; and V—I; are null, consistent with the situation where V=0.
Subsequent sections of this manuscript focus on other sources of bias evident in this DAG. The first
concerns the impacts of a confounder (G) of exposure or susceptibility to influenza infection (here
indicated in blue; see also Figure 3 of Lipsitch and colleagues, 2017 (2)); the second concerns selection
bias resulting from differential healthcare-seeking behavior among vaccinated and unvaccinated persons

along the pathway V«H—T (here highlighted in red).
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FOOTNOTES PAGE

Abbreviations:

ARI: Acute respiratory illness

DAG: Directed acyclic graph

LAIV: Live attenuated influenza vaccine

OR: Odds ratio

VE: Vaccine effectiveness (used interchangeably with vaccine efficacy in this context as the estimand of
both observational and randomized studies, and defined as the causal effect of the vaccine on

susceptibility of individuals to infection and/or disease)

Running head:

Test-Negative Design for Vaccine Direct Effects
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WEB APPENDIX 1

Here we derive estimators maintaining the assumption of vaccination unconfounded by exposure or
susceptibility to the conditions to consider the impact of time-varying (seasonal) infection rates and the
use of immunizing test-negative conditions.

Time-varying infection rates

Consider that transmission intensity varies over time, so that acquisition rates are A7) at time 1,
consistent with the seasonal rise and fall of influenza transmission. Indexing by day, the probability of

evading infection to time t is e_Z’i“’l’(T"), which can be substituted for e~ in egs. 1a and 1b so that

_ e—9 er<t/11(fj)>

— c = —
1— ORE(t) <p<1 | o Zo<ei(E))

and
1-— ORA(t) =g (1 _ Ge—(G—l)er<t/11(Tj))’

resembling the expression for time-invariant 4, and retaining the relevant biases, which scale with
cumulative exposures transmission over time (2,j<t/1,(rj) in place of 4,xt).

Immunizing test-negative conditions

Under an assumption that test-negative conditions are selected which lend protective immunity after
infection, preventing reacquisition,

Ayy(t) = Aymypye NP

Ayn () = Aymypge N (1 — v)P

and
Cyon() = mypy (1 — e~ )P
Cun(®) = mypy(1 — e M) (1 - v)P.

The terms describing the cumulative proportions of vaccinated and unvaccinated persons infected by the
test-negative condition (exp[-Anf]), and the proportions of vaccinated and unvaccinated persons
remaining susceptible (1— exp[-at]), cancel in the expressions for ORC(t) and ORA(t), respectively,
which invoke (1— exp[—Aat])/(1— exp[-Ant]) and exp[-Ant]/exp[—Ant], respectively. Thus, our original VE
derivations apply to the scenario of immunizing test-negative conditions.
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WEB APPENDIX 2
Here we derive the conditions under which the OR may inaccurately convey the protective (or risk-

increasing) effect of vaccination, assuming no correlation of the decision to vaccinate with exposure or
susceptibility to infection and disease. Consider the condition

_ — oMt _ =0t
A-p)-etD+o(l—e)

C —
ORC(t) = — ,
which implies
1— e—G)qt
1-— ® >1- @W

and thus 6 > 1. Sign bias is present if § < 1, so that the necessary conditions for sign bias cannot be met.
In the converse situation, OR®(t) < 1 implies 8 < 1, which again cannot be true when 6 > 1. Thus, sign
bias does not occur in measurements based on cumulative cases, provided vaccination is uncorrelated
with exposure or susceptibility to the infections. Because such confounding is likely in real-world studies,
we assess resulting biases in a later section.

Figure 1 and Figure 2 illustrate that sign bias may affect measurements based on the ascertainment rates
of test-positive and test-negative subjects. For 8 < 1, the condition

ORA(t) = [(1 — @) + phe~MtE-D] > 1
implies
p[1— e~ Mt6-D] <0,
so that sign bias arises when

In ()
0—1

At >

Conversely, for 8 > 1, sign bias (indicated by OR4(t) < 1) arises under

In ()

At < .
F=g_-1
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WEB APPENDIX 3

Here we derive the OR under a scenario of differential severity of ARI caused by test-positive and test-
negative conditions. Considering “moderate” and “severe” classes of symptomatic infection,
ascertainment rates of subjects are

Ay () = ay 4 (Rl EM + g s €9)[(1 — @)e~ ikt + pge~wvikit|yp

Ay () = ay A (el M + mdug€S)e vt (1 — v)P

Ayn (1) = ayy Ay (aypy EY + miypsS)vP
Ay (®) = ayyAy (affyui € + minugES) (1 = v)P,
so that
Cri () = (il &M + w55 [(1 — ) (1 — emWihit) + (1 — e~ @164t) [pp

Cur(t) = (il €M + miup ) (1 — e~ writ) (1 — v)P

Con(t) = kayyAy My + mpyui ) vPt

Cyn(t) = kayyAy (mifyug " + miyugES) (1 — v)Pe.
The test-negative VE measures reduce to
1— 0RC(t)

_ G ((ﬂ%#x"/é’M + mpid®) iy §Y + ﬂ%#f;s‘ﬁ) ((1 — @)L —e ) + (1 - e‘“‘”“”))
() " + miuh§S) eyl € + iy §s) 1—e-aurhit

ayn

and

1-0RYt) =1~ (ﬂaﬂ> ((n%ung + i) vy € + miwpié®)
ayr ayn/ \ (g M + i, u5ES) (myyuy € + oy pp€S)

) [(1 — @)e Mt@vi—aun)
+ e~ Hitlavio- auz)]_
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