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Abstract 
Early detection  of cancer is a  significant unmet clinical  need. Improved  technical  ability to  detect 
circulating  tumor-derived  DNA (ctDNA) in  the  cell-free  DNA (cfDNA) component of blood  plasma 
via  next-generation  sequencing  and  established  correlations between  ctDNA load  and  tumor 
burden  in  cancer patients have  spurred  excitement about the  possibilities of detecting  cancer 
early by performing  ctDNA mutation  detection. 
 
We  reanalyze  published  data  on  the  expected  ctDNA allele  fraction  in  early-stage  cancer and 
the  population  statistics of cfDNA concentration  to  show that under conservative  technical 
assumptions, high-sensitivity cancer detection  by ctDNA mutation  detection  will  require  either 
more  blood  volume  (150-300mL) than  practical  for a  routine  screen  or variant filtering  that may 
be  impossible  given  our knowledge  of cancer evolution, and  will  likely remain  out of economic 
reach  for routine  population  screening  without multiple-order-of-magnitude  decreases in 
sequencing  cost. Instead, new approaches that integrate  ctDNA mutations with  multiple  other 
blood-based  analytes (such  as exosomes, circulating  tumor cells, ctDNA epigenetics, 
metabolites) as well  as integration  of these  signals over time  for each  individual  may be  needed. 
 

Introduction 
In  the  last decade, rapid  technological  development has dramatically improved  our 
understanding  of the  underlying  molecular basis of cancer [Vogelstein2013]. Such  insights have 
contributed  to  the  development of numerous molecularly targeted  therapeutic agents and 
improved  patient outcomes. Genomic tests are  now used  routinely to  interrogate  the  genomes 
of patients with  different diseases and  identify targetable  alterations. A frequent application  of 
these  tests is in  cancer patients. Current estimates suggest that in  the  late-stage  setting  up  to 
50% of patients may receive  genomic test results that alter their treatment [Blumenthal2016, 
LimaPereira2017]. However, the  clinical  utility of genomic tests remains controversial  and  is 
likely to  evolve  as new targets and  their associated  therapies emerge.  
  
The  finding  that tumor-derived  genomic alterations are  detectable  in  “cell-free  DNA” circulating 
in  the  plasma  of patients with  malignancy [Sorenson1994, Nawroz1996] has inspired  the 
development of blood-based  assays for tumor genomic profiling. In  particular, sequencing  of 
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circulating  cell-free  tumor DNA (ctDNA) has been  employed  as an  adjunct to  DNA derived  from 
tissue  biopsies to  inform treatment decision-making  with  the  first such  test (Guardant360, 
Guardant Health) launched  in  2014  [Lanman2015]. ctDNA can  be  used  to  monitor minimal 
residual  disease  following  treatment [GarciaMurillas2015, Chaudhuri2017], as well  as the 
emergence  of resistant clones prior to  clinical  resistance  detectable  via  imaging  [Misale2012, 
Diaz2012]. 
 
Not surprisingly, there  is significant interest in  the  potential  utility of ctDNA for the  early 
non-invasive  detection  of cancer [Table  1], with  over 1  billion  USD invested  in  companies 
developing  such  technologies in  2017  alone  [CNBC2017, GlobeNewsWire2017]. Indeed, ctDNA 
is detectable  in  some  patients with  early-stage  cancers [Bettegowda2014, Phallen2017], but 
assay sensitivity has so  far precluded  their use  for screening. The  motivation  for early detection 
of tumors is clear. It has long  been  appreciated  that earlier detection  of malignancy results in 
significant reduction  in  cancer-specific mortality [Etzioni2003, Cho2014]. This has led  to 
screening  guidelines for breast cancer via  mammography and  colorectal  cancer via 
colonoscopy or stool-based  assays, but such  approaches are  cancer-type  specific. Serum 
protein  biomarkers such  as carcinoembryonic antigen  (CEA) and  cancer antigen  125  (CA-125) 
are  often  used  to  monitor disease  progression; however, generalizable  biomarkers that detect 
cancer early have  remained  elusive.  
 
Aravanis and  colleagues [Aravanis2017] recently proposed  that the  fundamental  limitations for 
such  a  ctDNA-based  early detection  test, beyond  the  current state-of-the-art, are  a  requirement 
for around  100x more  sequencing  bandwidth  and  improved  variant interpretation. Subsequently, 
in  the  most comprehensive  study of early stage  cancers to  date, Phallen  et al. [Phallen2017] 
reported  the  detection  of somatic alterations in  50-75% of patients depending  on  histology. 
While  this represents a  significant advance  over prior reports, achieved  through  both  deeper 
panel  sequencing  and  improved  variant calling  via  error correction, the  sensitivity remains well 
below that required  for broad  clinical  implementation. Despite  the  obvious shortfall  of this and 
prior approaches, there  has been  limited  examination  of the  feasibility of improving  sensitivity to 
the  levels required  to  demonstrate  clinical  utility. Here, we  reanalyze  published  ctDNA 
sequencing  data  from early-stage  cancer patients and  assert that statistical  and  physiological 
limitations suggest that a  ctDNA-based  mutational  assay for early detection  would  be  neither 
commercially nor biologically viable. 

Targeted  ctDNA mutation-detection  panels require 
infeasibly large  input volumes for early detection  
 
 
Detection  of tumor-derived  alleles in  the  blood  can  be  modeled  as a  binomial  process: we 
sequence  a  number of independent fragments of DNA, of which  only a  fraction  (given  by the 
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variant allele  fraction, or proportion  of cfDNA at a  given  locus carrying  a  tumor-derived  mutation) 
will  be  derived  from the  tumor. In  order to  detect cancer, the  most sensitive  test that could  be 
built would  be  one  that reported  “positive” upon  the  detection  of a  single  fragment carrying  a 
cancer-derived  allele. However, tumors exhibit a  remarkable  degree  of mutational  heterogeneity 
and  the  initiating  lesions are  largely unknown. This is further complicated  by the  presence  of 
somatic alterations in  normal  tissue   [Martincorena2015] and  blood  cells (so  called  clonal 
hematopoiesis of indeterminate  potential, or CHIP) [Jaiswal2014, Genovese2014, Xie2014]. 
Although  in  practice  such  factors will  contribute  to  an  unacceptably high  false-positive  rate, this 
simple  model  sets a  lower bound  on  the  amount of sequencing  required. If such  a  test were 
required  to  be  95% sensitive, this would  be  equivalent to  requiring  that in  95% of samples that 
carry a  tumor, at least one  fragment would  be  detected  by the  test. Figure  1a  illustrates the 
sensitivity of a  test modeled  by this process, as a  function  of variant allele  frequency (VAF) and 
(unique) sequencing  depth. 
 
Aravanis and  colleagues have  suggested  a  VAF target for early detection  of 0.01% 
[Aravanis2017] based  on  clinical  data  indicating  that  in  early-stage  cancer patients the  fraction 
of cfDNA attributable  to  ctDNA (“tumor fraction” or “ctDNA fraction”) is on  or below this order of 
magnitude. Bettegowda  and  colleagues were  able  to  detect ctDNA in  47-55% of 182  stage  I and 
II cancer cases [Bettegowda2014]. Newman  et al. sequenced  plasma  from 13  patients with 
non-small-cell  lung  cancer (NSCLC) and  found  that 63% of 11  patients exhibited  ctDNA fraction 
≤0.5%, including  all  four patients with  stage  I NSCLC; more  generally, the  ctDNA fraction  rose 
with  tumor volume  [Newman2014]. More  recently, Phallen  and  colleagues sequenced  an  81-kb 
region  in  cfDNA to  an  average  unique  coverage  of 6,182X in  138  stage  I/II solid  tumor patients 
[Phallen2017]. Figure  2a  illustrates the  distribution  of tumor VAF observed  in  their stage  I/II 
patients: 50% of stage  I and  nearly 30% of stage  II patients had  no  mutated  ctDNA observed. In 
the  remainder, most patients had  maximal  ctDNA VAFs between  0.1% and  1%; however, a 
steep  cutoff is visible  in  the  plot below 0.1%. 
 
The  binomial  model  for ctDNA detection  suggests that the  cutoff visible  in  Figure  2a  may arise 
from the  underlying  assay having  insufficient depth  to  recover rarer alleles. Figure  2b shows 
patients sequenced  by Phallen  et al. by their lowest VAF allele, as a  function  of the  unique 
coverage  achieved  on  each  patient. Also  illustrated  is the  95% sensitivity bounds derived  from 
the  binomial  model  in  Figure  1a; if the  models held, we  would  expect that these  lines would 
represent the  lower bounds on  the  data. Indeed, this is observed: no  patients appear below the 
95% sensitivity limit, and  the  handful  of patients with  alleles detected  at VAF below 0.05% also 
have  higher sequencing  depth, tracking  with  the  model  predictions. Thus, published  data 
suggests that a  substantial  fraction  of patients (perhaps 50% of stage  I cancer patients) have 
tumor-derived  alleles present below 0.1% that have  not been  sequenced  deeply enough  to 
detect. This model  thus suggests a  unique  coverage  of 30,000x as a  target for an  early 
detection  test (yielding  95% sensitivity for one  read  of a  single  allele  at 0.01%). 
 
We  have  so  far assumed  that it is possible  to  arbitrarily increase  sequencing  depth  as required 
to  detect rare  alleles. Also  illustrated  in  Figure  1a  is the  genomic input required  for the  test to 
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achieve  this level  of unique  coverage  (assuming  100% process efficiency from DNA extraction 
through  sequencing): it is not possible  to  have  30,000  unique  reads without 30,000  unique 
copies of the  locus being  sequenced. Figure  2c  illustrates the  amount of cfDNA that can  be 
expected  from healthy individuals and  those  with  early stage  cancer, drawing  from data  in 
[Phallen2017]. To  interpret these  data, it is critical  to  consider the  context in  which  an  early 
detection  test would  be  run: in  a  mostly healthy population, as a  test with  an  expectation  of 
having  a  result delivered. Consequently, it is appropriate  to  consider summary statistics of the 
healthy distribution; since  cancers are  rare, most patients will  be  healthy. Furthermore, the 
mean  and  median  are  not the  most useful  measurements: if a  test failure  rate  less than  5% (i.e., 
that 95% of prescribed  tests successfully return  a  result) is required, this implies that the 
minimum amount of DNA acceptable  for the  test can  be  no  higher than  the  5th  percentile  of the 
population  distribution. This is illustrated  in  Figure  2c : although  the  mean  healthy individual  has 
a  plasma  cfDNA concentration  of 6.6  ng/mL, an  individual  at the  5th  percentile  has 2.3  ng/mL, 
and  it is this concentration  that determines the  practical  limitation  for assay sensitivity. 
 
Based  on  the  minimum input established  in  Figure  1a  by sampling  considerations, and  the 
population  distribution  from Figure  2c , we  can  now compute  the  total  amount of plasma  or 
blood  input required  for an  early detection  test using  this approach: assuming  100% process 
efficiency (every molecule  of cfDNA in  the  collection  tube  makes it to  the  sequencer), 90  ng  of 
cfDNA are  required  for 95% sensitivity to  detect 0.01% VAF alleles. We  can  expect at least 2.3 
ng  cfDNA/mL  of plasma  and  therefore  must collect at least 39.1  mL of plasma from each 
patient; since  plasma  constitutes ~55% of total  blood  volume, we  must collect at least 71.1  mL 
of blood  per patient. However, 100% process efficiency is unrealistic: sequencing  involves a 
number of lossy steps (extraction, library preparation, target capture, sequencer loading, etc.). 
Figure  1b illustrates the  constraint imposed  by cfDNA concentration  and  process efficiency, 
modeling  sensitivity at various VAF levels as a  function  of blood  input volume  and  assuming 
50% process efficiency. Even  high  total  process efficiencies of 25-50% imply a  total  blood 
collection  volume  of 150-300  mL  -- a  substantial  fraction  of the  approximately 5000  mL  of total 
blood  in  an  adult!  
 
Thus, analysis of a  binomial  model  that assumes constant VAF suggests that detecting  alleles 
at 0.01% VAF with  95% confidence  would  require  150-300mL  blood  collection  with  30,000x 
unique depth  of sequencing  coverage. Even  if such  amounts can  in  theory be  collected  over 
repeat blood  draws, the  logistics and  limits of human  physiology make  the  approach  impractical 
for a  population  screening  test. Alternative  approaches that reduce  the  input requirements are 
therefore  required. 
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Broad  mutation-detection  panels require  infeasibly 
high  sequencing  bandwidth  and  are  limited  by 
somatic heterogeneity 
 
Data  from The  Cancer Genome  Atlas (TCGA) and  other large-scale  cancer genomics projects 
have  revealed  that most tumors harbor hundreds to  thousands of somatic variants 
[Kandoth2013], a  subset of which  are  are  highly recurrent across patients and  tumor types 
[Ciriello2013]. This affords an  opportunity to  improve  on  the  binomial  sampling  bounds derived 
in  the  previous section: If it is acceptable  to  detect any of a  large  number of tumor-derived 
mutations, instead  of one  or a  few mutations, then  for the  purposes of the  binomial  model  the 
effective  VAF becomes less than  or equal  to  the  sum of the  individual  VAFs (with  equality 
achieved  if the  presence  of each  variant is independent of the  others). That is, to  detect any of 
ten  independent VAF=0.01% mutations has the  same  sampling  difficulty as detecting  a  single 
0.1% variant. Because  this strategy is able  to  extract information  from multiple  loci, it gets more 
out of each  genome, reducing  input requirements as well  as depth  requirements. 
 
In  the  best case, if all  mutations had  the  same  frequency and  all  were  independent, a  panel 
capturing  N potential  variant loci  would  have  N times the  power (and  require  1/N the  genomic 
input) of a  single-site  assay. However, real-world  data  from tumor sequencing  suggests that this 
best-case  scenario  is not likely to  be  achieved  in  practice, because  mutation  frequency 
distributions are  not uniform. This then  requires additional  sequencing  bandwidth. Newman  and 
colleagues developed  a  protocol  (CAPP-Seq) to  sequence  recurrently mutated  regions in 
NSCLC and  modeled  its analytical  performance  versus whole-exome  and  whole-genome 
sequencing. Table  1  shows the  results of their model: more  extensive  panels (e.g., 
whole-genome  vs CAPP-seq) were  able  to  capture  more  mutations, but this actually reduced 
sensitivity (even  when  given  additional  sequencing  bandwidth). Thus, although  panel  expansion 
may offer a  way to  reduce  input requirements the  non-uniform distribution  of mutation 
frequencies implies that dramatically more  sequencing  depth  is required  to  recover comparable 
sensitivity to  assays focused  on  high-frequency sites. 
 
Furthermore, a  well  understood  problem in  next-generation  sequencing  (NGS) is that per-base 
error rates in  NGS reads are  substantially higher than  0.01%, often  in  the  0.1-0.5% range 
[Minoche2011]. A variety of techniques utilizing  molecular barcoding  and  computational 
postprocessing  have  been  developed  to  reduce  this error rate  [Schmitt2012, Newman2016, 
Phallen2017] but with  the  tradeoff of requiring  higher read  depth: individual  molecules are 
sequenced  more  than  once, with  unique  molecular identifiers used  to  group  multiple  reads of a 
single  read  and  correct errors by consensus. This oversampling  therefore  inflates the  total 
sequencing  depth  (as opposed  to  unique  sequencing) required  to  perform a  ctDNA assay: in 
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TEC-Seq  [Phallen2017], the  reported  interquartile  range  of oversampling  was 4.77- to  9.38-fold, 
with  a  mean  of 9-fold. Therefore, error correction  may conservatively increase  sequencing 
requirements fivefold.  
 
An  assay targeting  an  ideal  (independent, uniform frequency) panel  of mutations with 
cumulative  VAF of 0.01% would  require  30,000x unique  coverage  or, optimistically 150,000x 
raw depth  with  error correction. However, as established  in  the  previous section, such  a  panel 
would  require  too  much  blood  to  be  feasible. An  ideal  panel  with  0.1% VAF might only require 
3,000x unique  coverage, and  therefore  15-30mL  blood  collection; however, the  CAPP-Seq 
experience  suggests that in  fact the  total  amount of sequencing  required  may be  tenfold  higher 
than  that of the  small  panel  -- equivalent to  1,500,000x coverage  of the  smaller panel! Thus, 
while  panel  expansion  may constrain  input requirements, it can  only do  so  at an  exorbitant 
sequencing  cost. 
 
Beyond  mere  technical  difficulty, expanding  the  region  of interest poses a  fundamental 
biological  challenge. Recent data  exploring  the  mutational  landscape  in  healthy individuals has 
revealed  mutations in  cancer driver genes at frequencies comparable  to  the  VAF ranges being 
explored  in  early detection  tests. For example, Martincorena  and  colleagues assayed  healthy 
sun-exposed  eyelid  skin  and  found  a  dense  landscape  of low-level  somatic variants in  cancer 
genes such  as NOTCH1/2/3, TP53,  FGFR3,  FAT1,  and  RBM10 [Martincorena2015]. Clonal 
hematopoiesis associated  with  aging  [Jaiswal2014, Genovese2014, Xie2014] also  represents a 
major confounder of mutational  heterogeneity in  ctDNA. Results summarized  in  Table  2  show 
that 10-40% of individuals carry low-level  somatic mosaicism in  cancer-associated  genes. The 
presence  of such  variants in  healthy individuals is thus a  significant challenge  for early cancer 
detection  by mutation  analysis because  many such  variants are  expected  to  be  present in  the 
blood  of older individuals (the  intended  population  for cancer screening) and  since 
hematopoietic stem cells dominate  cfDNA signals [Snyder2016]. Moreover, the  binomial  limits 
derived  above  are  highly optimistic - many of the  detected  alleles may need  to  be  filtered  out 
and  more  than  one  mutation  will  likely be  required  to  mitigate  false  positives. 
 
It is increasingly appreciated  that many somatic variants are  present prior to  transformation  and 
malignant outgrowth, reflective  of the  relatively long  time  period  leading  up  to  cancer formation 
[Tomasetti2013, Sottoriva2015]. The  presence  of such  variants is likely to  complicate  the  task of 
identifying  the  presence  of a  tumor. As the  spectrum of somatic variation  in  a  given  healthy 
organ  tends to  resemble  the  spectrum found  in  tumors originating  in  that tissue  [Hoang2016], it 
may be  difficult to  distinguish  which  mutations are  truly indicative  of a  tumor’s presence, and  a 
difference  in  the  rate  at which  tumor cells and  the  surrounding  normal  tissue  shed  cfDNA would 
be  needed  to  extract signal  [Hori2011]. 
 
Tumor initiating  mutations will  be  present in  all  cells of the  tumor (clonal), and  therefore  should 
be  more  readily detectable  in  ctDNA than  subclonal  mutations would  be  [Izumchenko2015], and 
may be  more  specific than  passenger mutations that may occur in  the  peripheral  normal. 
Indeed, established  tumor initiating  mutations and  presumed  cancer driver genes that are 
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recurrently mutated  across patient tumors have  formed  the  basis for mutational-based  ctDNA 
assays. However, even  when  such  canonical  driver mutations (KRAS, PIK3CA, BRAF) are 
present in  the  tumor tissue, they may not be  detectable  in  corresponding  ctDNA using  the  most 
sensitive  techniques (ddPCR or TEC-seq) [Phallen2017], thus highlighting  the  challenge  of 
mutation-only based  strategies. While  the  landscape  of somatic alterations in  solid  tumors have 
been  catalogued, defining  the  functional drivers of individual  cancers remains a  challenge  due 
to  the  high  degree  of mutational  heterogeneity and  the  fact that drivers are  both  cell-of-origin 
and  context dependent. Further, it is well  established  that multiple  alterations are  necessary for 
tumor development and  that they need  not be  exclusively genomic [Vogelstein2013]. As such, 
biomarkers of malignant transformation  in  diverse  histologies remain  elusive  and  a  better 
understanding  of the  earliest events of tumorigenesis could  inform early detection  efforts. 

Health  Economics of Mutation  Calling  for Early Detection 
Early screening  tests for cancer are  not novel  to  the  medical  system; existing  tests provide  a 
benchmark for the  costs that payers are  willing  to  tolerate  for screening  in  the  general 
population. As an  example, in  the  USA, Medicare  agreed  to  reimburse  the  Cologuard  fecal 
screening  test for colorectal  cancer at $502  every three  years [Pickhardt2016]. Assuming  the 
physical  limitation  of sample  volume  and  interpretive  limitations of somatic heterogeneity could 
be  successfully overcome, reimbursement may still  pose  a  fundamental  economic threat to  the 
viability of mutation-based  ctDNA assays for early detection. This is likely to  be  true  even  for a 
broad  test intended  to  screen  for most common  solid  cancers, for which  the  appropriate 
benchmark would  be  the  combined costs from each  individual  traditional  screen.  
 
It is possible  to  estimate  the  costs of running  a  mutation  detection  assay using  simple 
assumptions about test parameters. Table  3  estimates the  input volume  required  and 
sequencing  cost of a  mutation-calling  ctDNA-based  early detection  assay under highly 
conservative  assumptions. Under these  assumptions, it is evident that reasonably sized  panels 
for tumor liquid  biopsy are  commercially possible  with  present-day technology: 15  mL  sample 
draw (compared  to  20  mL  reported  in  a  real-world  validation  [Lanman2015]), with  sequencing 
cost in  the  tens to  hundreds of USD. However, early detection  appears infeasible: while  small 
panels (e.g., the  81-kb  TEC-Seq  panel) have  achievable  sequencing  costs, their input volumes 
are  likely prohibitive. In  contrast, larger panels (e.g., the  2-Mb  panel  reported  by Razavi  and 
colleagues [Razavi2017b]) have  sequencing  costs alone  that are  nearly tenfold  the  total 
reimbursement for existing  screening  tests -- even  without considering  the  likely increase  in 
sequencing  required  to  exploit lower-VAF mutations in  the  expanded  panel  or the  need  to 
perform repeat assays to  improve  assay sensitivity (or evaluate  a  change  in  ctDNA abundance). 
While  sequencing  costs fell  dramatically in  the  early days, in  recent years such  cost reductions 
have  slowed  dramatically, and  technological  advances have  focused  on  physical  or synthetic 
long-read  technologies that do  not aid  sequencing  of short (~170  bp) cfDNA fragments. 
Consequently, it is not clear that the  large  cost gap  between  value-based  reimbursement and 
sequencing  cost for ultra-deep  ctDNA mutation  calling  could  be  bridged  in  the  near term.  
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Summary: Clinical  Performance  of Early Detection  by Mutation 
Calling 
Although  the  challenges outlined  in  the  previous sections are  formidable, if it were  possible  to 
overcome  them to  significantly improve  on  current screening  efforts, there  may yet be  value  in 
pursuing  this approach. However, clinical  data  (summarized  in  Table  4 ) casts doubt on  this. 
Phallen  and  colleagues analyzed  138  individuals with  stage  I/II breast, colorectal, lung, or 
ovarian  cancer using  the  TEC-Seq  ctDNA 81-kb  panel, at an  average  effective  (unique, 
error-corrected) coverage  of 6,182x [Phallen2017]. This method  achieved  a  clinical  sensitivity 
(fraction  of clinically affected  patients called  positive  by the  assay) of 59-71% depending  on 
disease  stage, with  tumor fraction  and  sequencing  coverage  the  probable  limiting  factors. 
 
Analysis of late-stage  cancer patients, in  whom ctDNA burden  is higher [Bettegowda2014], 
offers a  means to  probe  the  limits of mutation  detection. Razavi  and  colleagues presented  data 
from 124  metastatic breast, lung, and  prostate  cancer patients using  a  sequencing  panel 
covering  2.1  Mb  at an  average  effective  depth  of 3,000-4,000x, achieving  a  clinical  sensitivity of 
89% [Razavi2017b]. While  the  89% sensitivity achieved  in  metastatic patients is much  higher 
than  that achieved  by similar sequencing  depth  (but smaller ROI) in  early stage  patients, it 
compares poorly to  the  performance  of previously described  early detection  assays. Menon  and 
colleagues described  the  prospective  clinical  validation  of multimodal  screening  for ovarian 
cancer, combining  measurement of serum CA-125  with  ultrasound. The  trial  evaluated  50,078 
individuals, of whom 47  had  cancer within  one  year of trial  completion  (48% of cancers in  stage 
I/II) [Menon2009]. The  screening  approach  achieved  89.4% clinical  sensitivity (42  TP detected 
with  5  FN discovered  in  1-year followup). Imperiale  and  colleagues evaluated  the  performance 
of a  fecal  test for colorectal  cancer, combining  detection  of occult blood  with  measurement of 
DNA markers in  9,989  individuals, achieving  a  clinical  sensitivity of 92.3%, benchmarked 
relative  to  colonoscopy (which  remains the  gold  standard  for screening) [Imperiale2014]. Thus 
even  given  an  unrealistic advantage  (assuming  ctDNA burdens equivalent to  those  present in 
metastatic cancer patients), the  ctDNA-based  mutation  detection  approach  is unable  to  reach 
the  sensitivity of existing  assays for early cancer detection, making  the  exorbitant cost of 
sequencing  difficult to  reconcile. 

Conclusions 
The  advent of high-throughput sequencing, coupled  with  the  demonstration  that ctDNA can  be 
detected  non-invasively in  plasma  at various stages of malignancy, has led  to  significant 
investment in  mutation-based  ctDNA assays for early detection. However, there  has yet to  be  a 
systematic exploration  of the  statistical  and  biological  limits of such  an  approach. Here  we  have 
demonstrated  that intrinsic biological  characteristics likely set a  performance  bound  for mutation 
detection  that is insufficient to  achieve  high  sensitivity and  specificity in  early-stage  cancer 
detection  using  ctDNA detection  alone.  
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The  fundamental  limitations described  by the  binomial  model  of tumor fraction  pertain  to 
quantity (because  tumor-derived  alleles are  present at very low concentrations in  bulk plasma, 
large  volumes of plasma  and  huge  sequencing  bandwidth  are  required  to  detect even  one 
tumor-derived  molecule) and  the  specificity challenges posed  by somatic heterogeneity arise 
from the  requirement to  interpreting  a  sample  from a  single  patient at a  single  time, with  no 
other context. Relaxation  of either constraint may admit viable  strategies for early detection. 
 
Box  1  summarizes a  number of blood-based  analytes with  potential  applicability for early cancer 
screening. While  diverse, these  analytes all  have  in  common  that they occupy more  accessible 
points in  the  concentration-quantity space  than  ctDNA: options exist to  find  concentrated 
compartments of tumor-derived  material, high-copy-number analytes (e.g., protein  and  RNA) 
that are  present in  measurable  quantity even  at low concentration. Particularly appealing 
opportunities arise  in  the  search  for signals that are  not tumor-derived: if the  tumor comprises 
0.01% or less of circulating  material, perhaps there  is relevant signal  in  the  other 99.99%, such 
as measurement of the  body’s own  immunosurveillance  response  to  the  presence  of ‘foreign’ 
tumor cells. Integration  of germline  risk information  may also  boost the  predictive  power of a 
phenotype  classifier [Shieh2016]. Computational  integration  of these  multi-analyte  signals may 
further provide  improved  power for phenotype  classification  [Argelaguet2017].  
 
Furthermore, the  screening  context offers a  unique  opportunity to  use  longitudinal  data  on  single 
individuals to  improve  accuracy. As cancer screening  tests are  typically repeated  on  a  1-3  year 
cycle, it may become  possible  to  use  not only an  individual's most recent test result but also  his 
or her previous test results to  precisely estimate  changes in  health  status over time. Such  a 
longitudinal  testing  approach  may be  able  to  use  individualized  data  to  reduce  error by 
calibrating  a  predictor to  individual  baselines or known  individual  patterns of somatic variation 
and  could  also  incorporate  phenomena  in  the  larger medical  record. While  such  systems are 
current open  areas of research, recent results on  modeling  of electronic medical  record  data 
suggest that the  integration  of structured  data  (such  as diagnostic results) with  temporal 
variables can  improve  accuracy in  practice  [Fiterau2017]. 
 
It has long  been  appreciated  that early detection  and  intervention  are  perhaps the  most effective 
means for reducing  cancer related  mortality. This significant unmet need  has long  motivated  the 
search  for accurate  detectors of early-stage  cancer, including  potential  signals in  tumor-derived 
cell-free  DNA. While  statistical  analysis suggests that sequencing  of this ctDNA alone  may be 
insufficient to  achieve  clinical  sufficiency in  this task, the  presence  of additional  biological 
signals in  the  blood  combined  with  multi-analyte  or longitudinal  analysis methods motivates 
further research  towards the  development of clinically usable  early detection  protocols. 
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Capture  panel Average  #  NSCLC 
SNVs  in capture 
region 

Sequencing 
bandwidth used 

Minimum VAF with 
80% sensitivity  to 
detect 2  mutant 
alleles 

CAPP-Seq 4 
1/12  lane 

0.01% 

WES 218 
0.5% 

1  lane 
0.05% 

WGS 15,659 0.25% 

 
Table  1 : Effect of panel  size  and  sequencing  bandwidth  on  ability to  detect somatically mutated 
alleles in  plasma. Data  from [Newman2014], figure  1d. 
 
 

Cohort Age VAF threshold Fraction of Cohort 
with VAF within 
designated range 

Citation 

>65yr >10% 10% [Genovese2014] 

Avg  44yr 0.16-5.28% 16% [Phallen2017] 

<50yr 
>=0.1% 

10% 
[Razavi2017a] 

>70yr ~40% 

Table  2 : Prevalence  of somatic variation  observed  in  genes associated  with  clonal 
hematopoiesis.  
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     Sequencing cost by  panel size 

 VAF 
95% 
sens 

Corrected 
depth 

Raw 
depth 

Input 
vol. 
(blood) 

TEC-Seq 
58  genes 
81kb 

Razavi et al 
508  genes 
2,000Kb 

WES 
~20k genes 
50,000Kb 

Tumor 
liquid 

biopsy 

0.1% 3,000x 15,000x 15mL $14 $340 $8,300 

Early 
cancer 

detection 

0.01% 30,000x 150,000x 150mL $140 $3,400 $83,000 

Table  3 : Assay requirements for tumor liquid  biopsy and  mutation-based  early cancer detection. 
Assumptions as described  in  the  main  text: 

● No  more  than  5% of samples may fail  because  of insufficient cfDNA quantity. 
● We  require  95% sensitivity to  detect one  read  from any cancer-derived  allele, assuming 

that one  is present in  the  sample. 
● 50% process efficiency: half of the  cfDNA molecules in  the  input blood  sample  are 

represented  in  the  sequencer output. 
● 5x oversampling  in  sequencing  for error correction. 
● 100% on-target rate  in  target enrichment. 
● “$1000  genome” sequencing  costs: US$1000  / (30  x 3  Gbp) of sequencing  bandwidth 
● Only sequencing  costs computed; all  other costs (labor, equipment, facilities, 

depreciation, etc.) accounted  at $0. 
● Panel  expansion  neither reduces input requirements nor increases sequencing 

requirements.  
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ctDNA  tests 

Cancer  type Stage Total 
Samples 

Panel 
size 

Avg Raw 
Depth 

Avg Eff Depth Clin. Sens. 

Breast, Lung, 
Colorectal, 
Ovarian 
[Phallen2017] 

I / II 
 

N=138 81kb 38,589x 6,182x 59-71% 

Breast, Lung, 
Prostate 
[Razavi2017b] 

metastatic 
 

N=124 2100kb 60,000x 3,000-4,000x 89% 

Non-ctDNA-based tests 

Cancer  Type Stage TP+FN  / Total Modality FN  Set Clin. Sens. 

Ovarian 
[Menon2009] 

48%  I/II 42+5  / 50,078 CA-125  + 
ultrasound 

1yr followup 89.4% 

Colorectal 
[Imperiale2014] 

93%  I/II/III 60+5  / 9,989 FIT + DNA Colonoscopy 92.3% 

 
Table  4 : Comparison  of ctDNA-based  cancer detection  assays versus conventional  screening  tests. 
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Category  
Analyte 

Explanation References 

Tumor-derived 
material 

Tumor-derived  proteins 
and  RNAs 

Protein  and  RNA are 
present at higher copy 
number than  DNA, 
potentially enabling 
detection  via  nonzero 
count even  at low 
concentration. 

[Cohen2017] 

Exosomes / 
microvesicles / 
circulating  tumor cells or 
cell  clusters 

Tumor-derived  bodies may 
contain  macromolecular 
markers in  sufficiently high 
concentration  to  detect 
efficiently. 

[Thakur2014, 
Melo2015, 
Hannafon2016, 
Xu2017] 

Immuno- 
surveillance 

Platelets Platelets contain  proteins 
and  RNAs that function  in 
immune  signaling 
pathways, whose 
composition  may vary in 
the  presence  of cancer. 

[Senzel2009, 
Best2015, 
Best2017] 

Cytokines, antibodies, 
and  other immune 
signaling  molecules 

Differential  cytokine  and 
autoantibody production 
have  been  observed  in 
cancer patients as a 
component of the  immune 
response  to  a  tumor. 

[Hanash2008, 
Jett2014, 
Chen2016] 

Immune  cell 
subpopulations 

Differential  composition  of 
immune  cells may indicate 
the  presence  of cancer 
and  inform prognosis. 

[Coffelt2015, 
Gentles2015] 

Tumor 
microenvironment 
and host 
response 

cfDNA Patterns in  cfDNA beyond 
sequence  variation, 
including  epigenetic 
modifications and 
fragmentation, may serve 
as a  marker for host gene 
expression. 

[Snyder2016, 
Ulz2016, 
Li2017] 

 
Box  1: Biological  components other than  ctDNA with  potential  for cancer screening.  
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Figure  1: Binomial  model  for ctDNA sequencing: sensitivity achieved  by a  sequencing  assay to 
detect 1  mutant allele  at a  given  VAF. 
a) Upper bound  on  sensitivity as a  function  of sequencing  depth; note  logarithmic x-axis. Also 
shown  is the  minimum amount of unique  DNA input required  for sequencing, assuming  3pg 
haploid  genome  mass and  100% process efficiency. 
b) Sensitivity as a  function  of blood  input volume, assuming  2.3ng  cfDNA/mL  plasma, plasma 
volume  55% of blood  volume, and  50% process efficiency. 
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Figure  2: Analysis of ctDNA characteristics from early-stage  cancer patients in  Phallen  et al. 
[Phallen2017]. Panels clockwise  from top  left. 
a) Highest per-patient VAF observed  for any cancer-related  variant in  stage  I/II colorectal, 
breast, ovarian, or lung  cancer patients, as measured  by the  TEC-Seq  protocol. Samples listed 
as “ND” had  no  cancer-derived  alleles observed. In  patients with  multiple  cancer alleles 
detected  in  plasma, the  highest VAF is shown. 
b) Comparison  of observed  VAF to  binomial  model. Dots correspond  to  the  VAF of the 
lowest-frequency cancer-derived  variant detected  and  the  unique  depth  of coverage  for that 
patient. Red  and  blue  curves respectively show the  VAF expected  to  be  detected  with  95% 
confidence  by the  binomial  model  in  Figure  1. 
c) Distribution  of cfDNA concentrations observed  in  healthy individuals and  stage  I/II cancer 
patients. Red  line  is drawn  at the  5th  percentile  of the  distribution  of healthy individual  cfDNA 
concentration. 
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