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Abstract

Early detection of cancer is a significant unmet clinical need. Improved technical ability to detect
circulating tumor-derived DNA (ctDNA) in the cell-free DNA (cfDNA) component of blood plasma
via next-generation sequencing and established correlations between ctDNA load and tumor
burden in cancer patients have spurred excitement about the possibilities of detecting cancer
early by performing ctDNA mutation detection.

We reanalyze published data on the expected ctDNA allele fraction in early-stage cancer and
the population statistics of cfDNA concentration to show that under conservative technical
assumptions, high-sensitivity cancer detection by ctDNA mutation detection will require either
more blood volume (150-300mL) than practical for a routine screen or variant filtering that may
be impossible given our knowledge of cancer evolution, and will likely remain out of economic
reach for routine population screening without multiple-order-of-magnitude decreases in
sequencing cost. Instead, new approaches that integrate ctDNA mutations with multiple other
blood-based analytes (such as exosomes, circulating tumor cells, ctDNA epigenetics,
metabolites) as well as integration of these signals over time for each individual may be needed.

Introduction

In the last decade, rapid technological development has dramatically improved our
understanding of the underlying molecular basis of cancer [Vogelstein2013]. Such insights have
contributed to the development of numerous molecularly targeted therapeutic agents and
improved patient outcomes. Genomic tests are now used routinely to interrogate the genomes
of patients with different diseases and identify targetable alterations. A frequent application of
these tests is in cancer patients. Current estimates suggest that in the late-stage setting up to
50% of patients may receive genomic test results that alter their treatment [Blumenthal2016,
LimaPereira2017]. However, the clinical utility of genomic tests remains controversial and is
likely to evolve as new targets and their associated therapies emerge.

The finding that tumor-derived genomic alterations are detectable in “cell-free DNA” circulating
in the plasma of patients with malignancy [Sorenson1994, Nawroz1996] has inspired the
development of blood-based assays for tumor genomic profiling. In particular, sequencing of
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circulating cell-free tumor DNA (ctDNA) has been employed as an adjunct to DNA derived from
tissue biopsies to inform treatment decision-making with the first such test (Guardant360,
Guardant Health) launched in 2014 [Lanman2015]. ctDNA can be used to monitor minimal
residual disease following treatment [GarciaMurillas2015, Chaudhuri2017], as well as the
emergence of resistant clones prior to clinical resistance detectable via imaging [Misale2012,
Diaz2012].

Not surprisingly, there is significant interest in the potential utility of ctDNA for the early
non-invasive detection of cancer [Table 1], with over 1 billion USD invested in companies
developing such technologies in 2017 alone [CNBC2017, GlobeNewsWire2017]. Indeed, ctDNA
is detectable in some patients with early-stage cancers [Bettegowda2014, Phallen2017], but
assay sensitivity has so far precluded their use for screening. The motivation for early detection
of tumors is clear. It has long been appreciated that earlier detection of malignancy results in
significant reduction in cancer-specific mortality [Etzioni2003, Cho2014]. This has led to
screening guidelines for breast cancer via mammography and colorectal cancer via
colonoscopy or stool-based assays, but such approaches are cancer-type specific. Serum
protein biomarkers such as carcinoembryonic antigen (CEA) and cancer antigen 125 (CA-125)
are often used to monitor disease progression; however, generalizable biomarkers that detect
cancer early have remained elusive.

Aravanis and colleagues [Aravanis2017] recently proposed that the fundamental limitations for
such a ctDNA-based early detection test, beyond the current state-of-the-art, are a requirement
for around 100x more sequencing bandwidth and improved variant interpretation. Subsequently,
in the most comprehensive study of early stage cancers to date, Phallen et al. [Phallen2017]
reported the detection of somatic alterations in 50-75% of patients depending on histology.
While this represents a significant advance over prior reports, achieved through both deeper
panel sequencing and improved variant calling via error correction, the sensitivity remains well
below that required for broad clinical implementation. Despite the obvious shortfall of this and
prior approaches, there has been limited examination of the feasibility of improving sensitivity to
the levels required to demonstrate clinical utility. Here, we reanalyze published ctDNA
sequencing data from early-stage cancer patients and assert that statistical and physiological
limitations suggest that a ctDNA-based mutational assay for early detection would be neither
commercially nor biologically viable.

Targeted ctDNA mutation-detection panels require
infeasibly large input volumes for early detection

Detection of tumor-derived alleles in the blood can be modeled as a binomial process: we
sequence a number of independent fragments of DNA, of which only a fraction (given by the
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variant allele fraction, or proportion of cfDNA at a given locus carrying a tumor-derived mutation)
will be derived from the tumor. In order to detect cancer, the most sensitive test that could be
built would be one that reported “positive” upon the detection of a single fragment carrying a
cancer-derived allele. However, tumors exhibit a remarkable degree of mutational heterogeneity
and the initiating lesions are largely unknown. This is further complicated by the presence of
somatic alterations in normal tissue [Martincorena2015] and blood cells (so called clonal
hematopoiesis of indeterminate potential, or CHIP) [Jaiswal2014, Genovese2014, Xie2014].
Although in practice such factors will contribute to an unacceptably high false-positive rate, this
simple model sets a Jower bound on the amount of sequencing required. If such a test were
required to be 95% sensitive, this would be equivalent to requiring that in 95% of samples that
carry a tumor, at least one fragment would be detected by the test. Figure 1a illustrates the
sensitivity of a test modeled by this process, as a function of variant allele frequency (VAF) and
(unique) sequencing depth.

Aravanis and colleagues have suggested a VAF target for early detection of 0.01%
[Aravanis2017] based on clinical data indicating that in early-stage cancer patients the fraction
of cfDNA attributable to ctDNA (“tumor fraction” or “ctDNA fraction”) is on or below this order of
magnitude. Bettegowda and colleagues were able to detect ctDNA in 47-55% of 182 stage | and
Il cancer cases [Bettegowda2014]. Newman et al. sequenced plasma from 13 patients with
non-small-cell lung cancer (NSCLC) and found that 63% of 11 patients exhibited ctDNA fraction
<0.5%, including all four patients with stage | NSCLC; more generally, the ctDNA fraction rose
with tumor volume [Newman2014]. More recently, Phallen and colleagues sequenced an 81-kb
region in cfDNA to an average unique coverage of 6,182X in 138 stage I/ll solid tumor patients
[Phallen2017]. Figure 2a illustrates the distribution of tumor VAF observed in their stage I/l
patients: 50% of stage | and nearly 30% of stage Il patients had no mutated ctDNA observed. In
the remainder, most patients had maximal ctDNA VAFs between 0.1% and 1%; however, a
steep cutoff is visible in the plot below 0.1%.

The binomial model for ctDNA detection suggests that the cutoff visible in Figure 2a may arise
from the underlying assay having insufficient depth to recover rarer alleles. Figure 2b shows
patients sequenced by Phallen et al. by their Jowest VAF allele, as a function of the unique
coverage achieved on each patient. Also illustrated is the 95% sensitivity bounds derived from
the binomial model in Figure 1a; if the models held, we would expect that these lines would
represent the lower bounds on the data. Indeed, this is observed: no patients appear below the
95% sensitivity limit, and the handful of patients with alleles detected at VAF below 0.05% also
have higher sequencing depth, tracking with the model predictions. Thus, published data
suggests that a substantial fraction of patients (perhaps 50% of stage | cancer patients) have
tumor-derived alleles present below 0.1% that have not been sequenced deeply enough to
detect. This model thus suggests a unique coverage of 30,000x as a target for an early
detection test (yielding 95% sensitivity for one read of a single allele at 0.01%).

We have so far assumed that it is possible to arbitrarily increase sequencing depth as required
to detect rare alleles. Also illustrated in Figure 1a is the genomic input required for the test to
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achieve this level of unique coverage (assuming 100% process efficiency from DNA extraction
through sequencing): it is not possible to have 30,000 unique reads without 30,000 unique
copies of the locus being sequenced. Figure 2c¢ illustrates the amount of cfDNA that can be
expected from healthy individuals and those with early stage cancer, drawing from data in
[Phallen2017]. To interpret these data, it is critical to consider the context in which an early
detection test would be run: in a mostly healthy population, as a test with an expectation of
having a result delivered. Consequently, it is appropriate to consider summary statistics of the
healthy distribution; since cancers are rare, most patients will be healthy. Furthermore, the
mean and median are not the most useful measurements: if a test failure rate less than 5% (i.e.,
that 95% of prescribed tests successfully return a result) is required, this implies that the
minimum amount of DNA acceptable for the test can be no higher than the 5th percentile of the
population distribution. This is illustrated in Figure 2c: although the mean healthy individual has
a plasma cfDNA concentration of 6.6 ng/mL, an individual at the 5th percentile has 2.3 ng/mL,
and it is this concentration that determines the practical limitation for assay sensitivity.

Based on the minimum input established in Figure 1a by sampling considerations, and the
population distribution from Figure 2c, we can now compute the total amount of plasma or
blood input required for an early detection test using this approach: assuming 100% process
efficiency (every molecule of cfDNA in the collection tube makes it to the sequencer), 90 ng of
cfDNA are required for 95% sensitivity to detect 0.01% VAF alleles. We can expect at least 2.3
ng cfDNA/mL of plasma and therefore must collect at least 39.1 mL of plasma from each
patient; since plasma constitutes ~55% of total blood volume, we must collect at least 71.1 mL
of blood per patient. However, 100% process efficiency is unrealistic: sequencing involves a
number of lossy steps (extraction, library preparation, target capture, sequencer loading, etc.).
Figure 1b illustrates the constraint imposed by cfDNA concentration and process efficiency,
modeling sensitivity at various VAF levels as a function of blood input volume and assuming
50% process efficiency. Even high total process efficiencies of 25-50% imply a total blood
collection volume of 150-300 mL -- a substantial fraction of the approximately 5000 mL of total
blood in an adult!

Thus, analysis of a binomial model that assumes constant VAF suggests that detecting alleles
at 0.01% VAF with 95% confidence would require 150-300mL blood collection with 30,000x
unique depth of sequencing coverage. Even if such amounts can in theory be collected over
repeat blood draws, the logistics and limits of human physiology make the approach impractical
for a population screening test. Alternative approaches that reduce the input requirements are
therefore required.
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Broad mutation-detection panels require infeasibly
high sequencing bandwidth and are limited by
somatic heterogeneity

Data from The Cancer Genome Atlas (TCGA) and other large-scale cancer genomics projects
have revealed that most tumors harbor hundreds to thousands of somatic variants
[Kandoth2013], a subset of which are are highly recurrent across patients and tumor types
[Ciriello2013]. This affords an opportunity to improve on the binomial sampling bounds derived
in the previous section: If it is acceptable to detect any of a large number of tumor-derived
mutations, instead of one or a few mutations, then for the purposes of the binomial model the
effective VAF becomes less than or equal to the sum of the individual VAFs (with equality
achieved if the presence of each variant is independent of the others). That is, to detect any of
ten independent VAF=0.01% mutations has the same sampling difficulty as detecting a single
0.1% variant. Because this strategy is able to extract information from multiple loci, it gets more
out of each genome, reducing input requirements as well as depth requirements.

In the best case, if all mutations had the same frequency and all were independent, a panel
capturing N potential variant loci would have N times the power (and require 1/N the genomic
input) of a single-site assay. However, real-world data from tumor sequencing suggests that this
best-case scenario is not likely to be achieved in practice, because mutation frequency
distributions are not uniform. This then requires additional sequencing bandwidth. Newman and
colleagues developed a protocol (CAPP-Seq) to sequence recurrently mutated regions in
NSCLC and modeled its analytical performance versus whole-exome and whole-genome
sequencing. Table 1 shows the results of their model: more extensive panels (e.g.,
whole-genome vs CAPP-seq) were able to capture more mutations, but this actually reduced
sensitivity (even when given additional sequencing bandwidth). Thus, although panel expansion
may offer a way to reduce input requirements the non-uniform distribution of mutation
frequencies implies that dramatically more sequencing depth is required to recover comparable
sensitivity to assays focused on high-frequency sites.

Furthermore, a well understood problem in next-generation sequencing (NGS) is that per-base
error rates in NGS reads are substantially higher than 0.01%, often in the 0.1-0.5% range
[Minoche2011]. A variety of techniques utilizing molecular barcoding and computational
postprocessing have been developed to reduce this error rate [Schmitt2012, Newman2016,
Phallen2017] but with the tradeoff of requiring higher read depth: individual molecules are
sequenced more than once, with unique molecular identifiers used to group multiple reads of a
single read and correct errors by consensus. This oversampling therefore inflates the total
sequencing depth (as opposed to unique sequencing) required to perform a ctDNA assay: in
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TEC-Seq [Phallen2017], the reported interquartile range of oversampling was 4.77- to 9.38-fold,
with a mean of 9-fold. Therefore, error correction may conservatively increase sequencing
requirements fivefold.

An assay targeting an ideal (independent, uniform frequency) panel of mutations with
cumulative VAF of 0.01% would require 30,000x unique coverage or, optimistically 150,000x
raw depth with error correction. However, as established in the previous section, such a panel
would require too much blood to be feasible. An ideal panel with 0.1% VAF might only require
3,000x unique coverage, and therefore 15-30mL blood collection; however, the CAPP-Seq
experience suggests that in fact the total amount of sequencing required may be tenfold higher
than that of the small panel -- equivalent to 1,500,000x coverage of the smaller panel! Thus,
while panel expansion may constrain input requirements, it can only do so at an exorbitant
sequencing cost.

Beyond mere technical difficulty, expanding the region of interest poses a fundamental
biological challenge. Recent data exploring the mutational landscape in healthy individuals has
revealed mutations in cancer driver genes at frequencies comparable to the VAF ranges being
explored in early detection tests. For example, Martincorena and colleagues assayed healthy
sun-exposed eyelid skin and found a dense landscape of low-level somatic variants in cancer
genes such as NOTCH1/2/3, TP53, FGFR3, FAT1, and RBM10 [Martincorena2015]. Clonal
hematopoiesis associated with aging [Jaiswal2014, Genovese2014, Xie2014] also represents a
major confounder of mutational heterogeneity in ctDNA. Results summarized in Table 2 show
that 10-40% of individuals carry low-level somatic mosaicism in cancer-associated genes. The
presence of such variants in healthy individuals is thus a significant challenge for early cancer
detection by mutation analysis because many such variants are expected to be present in the
blood of older individuals (the intended population for cancer screening) and since
hematopoietic stem cells dominate cfDNA signals [Snyder2016]. Moreover, the binomial limits
derived above are highly optimistic - many of the detected alleles may need to be filtered out
and more than one mutation will likely be required to mitigate false positives.

It is increasingly appreciated that many somatic variants are present prior to transformation and
malignant outgrowth, reflective of the relatively long time period leading up to cancer formation
[Tomasetti2013, Sottoriva2015]. The presence of such variants is likely to complicate the task of
identifying the presence of a tumor. As the spectrum of somatic variation in a given healthy
organ tends to resemble the spectrum found in tumors originating in that tissue [Hoang2016], it
may be difficult to distinguish which mutations are truly indicative of a tumor’s presence, and a
difference in the rate at which tumor cells and the surrounding normal tissue shed cfDNA would
be needed to extract signal [Hori2011].

Tumor initiating mutations will be present in all cells of the tumor (clonal), and therefore should
be more readily detectable in ctDNA than subclonal mutations would be [Izumchenko2015], and
may be more specific than passenger mutations that may occur in the peripheral normal.
Indeed, established tumor initiating mutations and presumed cancer driver genes that are


https://doi.org/10.1101/237578
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/237578; this version posted December 21, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

recurrently mutated across patient tumors have formed the basis for mutational-based ctDNA
assays. However, even when such canonical driver mutations (KRAS, PIK3CA, BRAF) are
present in the tumor tissue, they may not be detectable in corresponding ctDNA using the most
sensitive techniques (ddPCR or TEC-seq) [Phallen2017], thus highlighting the challenge of
mutation-only based strategies. While the landscape of somatic alterations in solid tumors have
been catalogued, defining the functional drivers of individual cancers remains a challenge due
to the high degree of mutational heterogeneity and the fact that drivers are both cell-of-origin
and context dependent. Further, it is well established that multiple alterations are necessary for
tumor development and that they need not be exclusively genomic [Vogelstein2013]. As such,
biomarkers of malignant transformation in diverse histologies remain elusive and a better
understanding of the earliest events of tumorigenesis could inform early detection efforts.

Health Economics of Mutation Calling for Early Detection

Early screening tests for cancer are not novel to the medical system; existing tests provide a
benchmark for the costs that payers are willing to tolerate for screening in the general
population. As an example, in the USA, Medicare agreed to reimburse the Cologuard fecal
screening test for colorectal cancer at $502 every three years [Pickhardt2016]. Assuming the
physical limitation of sample volume and interpretive limitations of somatic heterogeneity could
be successfully overcome, reimbursement may still pose a fundamental economic threat to the
viability of mutation-based ctDNA assays for early detection. This is likely to be true even for a
broad test intended to screen for most common solid cancers, for which the appropriate
benchmark would be the combined costs from each individual traditional screen.

It is possible to estimate the costs of running a mutation detection assay using simple
assumptions about test parameters. Table 3 estimates the input volume required and
sequencing cost of a mutation-calling ctDNA-based early detection assay under highly
conservative assumptions. Under these assumptions, it is evident that reasonably sized panels
for tumor liquid biopsy are commercially possible with present-day technology: 15 mL sample
draw (compared to 20 mL reported in a real-world validation [Lanman2015]), with sequencing
cost in the tens to hundreds of USD. However, early detection appears infeasible: while small
panels (e.g., the 81-kb TEC-Seq panel) have achievable sequencing costs, their input volumes
are likely prohibitive. In contrast, larger panels (e.g., the 2-Mb panel reported by Razavi and
colleagues [Razavi2017b]) have sequencing costs alone that are nearly tenfold the total
reimbursement for existing screening tests -- even without considering the likely increase in
sequencing required to exploit lower-VAF mutations in the expanded panel or the need to
perform repeat assays to improve assay sensitivity (or evaluate a change in ctDNA abundance).
While sequencing costs fell dramatically in the early days, in recent years such cost reductions
have slowed dramatically, and technological advances have focused on physical or synthetic
long-read technologies that do not aid sequencing of short (~170 bp) cfDNA fragments.
Consequently, it is not clear that the large cost gap between value-based reimbursement and
sequencing cost for ultra-deep ctDNA mutation calling could be bridged in the near term.
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Summary: Clinical Performance of Early Detection by Mutation
Calling

Although the challenges outlined in the previous sections are formidable, if it were possible to
overcome them to significantly improve on current screening efforts, there may yet be value in
pursuing this approach. However, clinical data (summarized in Table 4) casts doubt on this.
Phallen and colleagues analyzed 138 individuals with stage /Il breast, colorectal, lung, or
ovarian cancer using the TEC-Seq ctDNA 81-kb panel, at an average effective (unique,
error-corrected) coverage of 6,182x [Phallen2017]. This method achieved a clinical sensitivity
(fraction of clinically affected patients called positive by the assay) of 59-71% depending on
disease stage, with tumor fraction and sequencing coverage the probable limiting factors.

Analysis of late-stage cancer patients, in whom ctDNA burden is higher [Bettegowda2014],
offers a means to probe the limits of mutation detection. Razavi and colleagues presented data
from 124 metastatic breast, lung, and prostate cancer patients using a sequencing panel
covering 2.1 Mb at an average effective depth of 3,000-4,000x, achieving a clinical sensitivity of
89% [Razavi2017b]. While the 89% sensitivity achieved in metastatic patients is much higher
than that achieved by similar sequencing depth (but smaller ROI) in early stage patients, it
compares poorly to the performance of previously described early detection assays. Menon and
colleagues described the prospective clinical validation of multimodal screening for ovarian
cancer, combining measurement of serum CA-125 with ultrasound. The trial evaluated 50,078
individuals, of whom 47 had cancer within one year of trial completion (48% of cancers in stage
I/ll) [Menon2009]. The screening approach achieved 89.4% clinical sensitivity (42 TP detected
with 5 FN discovered in 1-year followup). Imperiale and colleagues evaluated the performance
of a fecal test for colorectal cancer, combining detection of occult blood with measurement of
DNA markers in 9,989 individuals, achieving a clinical sensitivity of 92.3%, benchmarked
relative to colonoscopy (which remains the gold standard for screening) [Imperiale2014]. Thus
even given an unrealistic advantage (assuming ctDNA burdens equivalent to those present in
metastatic cancer patients), the ctDNA-based mutation detection approach is unable to reach
the sensitivity of existing assays for early cancer detection, making the exorbitant cost of
sequencing difficult to reconcile.

Conclusions

The advent of high-throughput sequencing, coupled with the demonstration that ctDNA can be
detected non-invasively in plasma at various stages of malignancy, has led to significant
investment in mutation-based ctDNA assays for early detection. However, there has yet to be a
systematic exploration of the statistical and biological limits of such an approach. Here we have
demonstrated that intrinsic biological characteristics likely set a performance bound for mutation
detection that is insufficient to achieve high sensitivity and specificity in early-stage cancer
detection using ctDNA detection alone.
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The fundamental limitations described by the binomial model of tumor fraction pertain to
quantity (because tumor-derived alleles are present at very low concentrations in bulk plasma,
large volumes of plasma and huge sequencing bandwidth are required to detect even one
tumor-derived molecule) and the specificity challenges posed by somatic heterogeneity arise
from the requirement to interpreting a sample from a single patient at a single time, with no
other context. Relaxation of either constraint may admit viable strategies for early detection.

Box 1 summarizes a number of blood-based analytes with potential applicability for early cancer
screening. While diverse, these analytes all have in common that they occupy more accessible
points in the concentration-quantity space than ctDNA: options exist to find concentrated
compartments of tumor-derived material, high-copy-number analytes (e.g., protein and RNA)
that are present in measurable quantity even at low concentration. Particularly appealing
opportunities arise in the search for signals that are not tumor-derived: if the tumor comprises
0.01% or less of circulating material, perhaps there is relevant signal in the other 99.99%, such
as measurement of the body’s own immunosurveillance response to the presence of ‘foreign’
tumor cells. Integration of germline risk information may also boost the predictive power of a
phenotype classifier [Shieh2016]. Computational integration of these multi-analyte signals may
further provide improved power for phenotype classification [Argelaguet2017].

Furthermore, the screening context offers a unique opportunity to use longitudinal data on single
individuals to improve accuracy. As cancer screening tests are typically repeated on a 1-3 year
cycle, it may become possible to use not only an individual's most recent test result but also his
or her previous test results to precisely estimate changes in health status over time. Such a
longitudinal testing approach may be able to use individualized data to reduce error by
calibrating a predictor to individual baselines or known individual patterns of somatic variation
and could also incorporate phenomena in the larger medical record. While such systems are
current open areas of research, recent results on modeling of electronic medical record data
suggest that the integration of structured data (such as diagnostic results) with temporal
variables can improve accuracy in practice [Fiterau2017].

It has long been appreciated that early detection and intervention are perhaps the most effective
means for reducing cancer related mortality. This significant unmet need has long motivated the
search for accurate detectors of early-stage cancer, including potential signals in tumor-derived
cell-free DNA. While statistical analysis suggests that sequencing of this ctDNA alone may be
insufficient to achieve clinical sufficiency in this task, the presence of additional biological
signals in the blood combined with multi-analyte or longitudinal analysis methods motivates
further research towards the development of clinically usable early detection protocols.
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Capture panel

Average # NSCLC
SNVs in capture
region

Sequencing
bandwidth used

Minimum VAF with
80% sensitivity to
detect 2 mutant
alleles

CAPP-Seq 4 0.01%
1/12 lane
0.5%
WES 218
0.05%
1 lane
WGS 15,659 0.25%

Table 1: Effect of panel size and sequencing bandwidth on ability to detect somatically mutated
alleles in plasma. Data from [Newman2014], figure 1d.

Cohort Age VAF threshold Fraction of Cohort Citation

with VAF within

designated range
>65yr >10% 10% [Genovese2014]
Avg 44yr 0.16-5.28% 16% [Phallen2017]
<50yr 10%

>=0.1% [Razavi2017a]

>70yr ~40%

Table 2: Prevalence of somatic variation observed in genes associated with clonal

hematopoiesis.
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Sequencing cost by panel size

VAF Corrected | Raw Input TEC-Seq | Razavietal | WES
95% depth depth vol. 58 genes | 508 genes | ~20k genes
sens (blood) | 81kb 2,000Kb 50,000Kb
Tumor | 0.1% 3,000x 15,000x 15mL $14 $340 $8,300
liquid
biopsy
Early @ 0.01% | 30,000x 150,000x | 150mL | $140 $3,400 $83,000
cancer
detection

Table 3: Assay requirements for tumor liquid biopsy and mutation-based early cancer detection.
Assumptions as described in the main text:

No more than 5% of samples may fail because of insufficient cfDNA quantity.

We require 95% sensitivity to detect one read from any cancer-derived allele, assuming
that one is present in the sample.

50% process efficiency: half of the cfDNA molecules in the input blood sample are
represented in the sequencer output.

5x oversampling in sequencing for error correction.

100% on-target rate in target enrichment.

“$1000 genome” sequencing costs: US$1000 / (30 x 3 Gbp) of sequencing bandwidth
Only sequencing costs computed; all other costs (labor, equipment, facilities,
depreciation, etc.) accounted at $0.

Panel expansion neither reduces input requirements nor increases sequencing
requirements.
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ctDNA tests

Cancer type Stage Total Panel Avg Raw Avg Eff Depth | Clin. Sens.
Samples | size Depth

Breast, Lung, I/ N=138 81kb 38,589x 6,182x 59-71%

Colorectal,

Ovarian

[Phallen2017]

Breast, Lung, metastatic | N=124 2100kb | 60,000x 3,000-4,000x 89%

Prostate

[Razavi2017b]

Non-ctDNA-based tests

Cancer Type Stage TP+FN / Total Modality FN Set Clin. Sens.

Ovarian 48% I/ 42+5 /50,078 CA-125 + 1yr followup 89.4%

[Menon2009] ultrasound

Colorectal 93% I/1i/1 | 60+5 /9,989 FIT + DNA Colonoscopy 92.3%

[Imperiale2014]

Table 4: Comparison of ctDNA-based cancer detection assays versus conventional screening tests.
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Category Explanation References
Analyte
Tumor-derived Tumor-derived proteins | Protein and RNA are [Cohen2017]
material and RNAs present at higher copy

number than DNA,
potentially enabling
detection via nonzero
count even at low
concentration.

Exosomes / Tumor-derived bodies may | [Thakur2014,
microvesicles / contain macromolecular Melo2015,
circulating tumor cells or | markers in sufficiently high | Hannafon2016,
cell clusters concentration to detect Xu2017]
efficiently.
Immuno- Platelets Platelets contain proteins [Senzel2009,
surveillance and RNAs that function in Best2015,
immune signaling Best2017]

pathways, whose
composition may vary in
the presence of cancer.

Cytokines, antibodies, Differential cytokine and [Hanash2008,
and other immune autoantibody production Jett2014,
signaling molecules have been observed in Chen2016]
cancer patients as a
component of the immune
response to a tumor.

Immune cell Differential composition of | [Coffelt2015,
subpopulations immune cells may indicate | Gentles2015]
the presence of cancer
and inform prognosis.

Tumor cfDNA Patterns in cfDNA beyond | [Snyder2016,
microenvironment sequence variation, Ulz2016,
and host including epigenetic Li2017]
response modifications and

fragmentation, may serve
as a marker for host gene
expression.

Box 1: Biological components other than ctDNA with potential for cancer screening.


https://doi.org/10.1101/237578
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/237578; this version posted December 21, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

100% 100% T
95% 95% 1 L—
900/0 1l 1
85% '
/ 80% 1
o 75% o /
© ©
® o
= =]
© ©
= S 60% / 1 .l
E E VAF
A 50% A — 0.1%
g e 8 — 0.01%
[%2] ]
° ° — 0.001%
= > 40% 1
2 =
B z
[ [ob)
5] »n /
- /
' 0% :
10x 30x 100x  300x 1Kx 3Kx 10Kx  30Kx  100Kx 0 25 50 75 100 125 150
30pg 90pg 300pg 900pg 3ng 9ng 30ng 90ng 300ng Blood input volume (mL)

Unique read depth
(Min equivalent genomes input)

Figure 1: Binomial model for ctDNA sequencing: sensitivity achieved by a sequencing assay to
detect 1 mutant allele at a given VAF.

a) Upper bound on sensitivity as a function of sequencing depth; note logarithmic x-axis. Also
shown is the minimum amount of unique DNA input required for sequencing, assuming 3pg
haploid genome mass and 100% process efficiency.

b) Sensitivity as a function of blood input volume, assuming 2.3ng cfDNA/mL plasma, plasma
volume 55% of blood volume, and 50% process efficiency.
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Figure 2: Analysis of ctDNA characteristics from early-stage cancer patients in Phallen et al.
[Phallen2017]. Panels clockwise from top left.

a) Highest per-patient VAF observed for any cancer-related variant in stage /1l colorectal,
breast, ovarian, or lung cancer patients, as measured by the TEC-Seq protocol. Samples listed
as “ND” had no cancer-derived alleles observed. In patients with multiple cancer alleles
detected in plasma, the highest VAF is shown.

b) Comparison of observed VAF to binomial model. Dots correspond to the VAF of the
lowest-frequency cancer-derived variant detected and the unique depth of coverage for that
patient. Red and blue curves respectively show the VAF expected to be detected with 95%
confidence by the binomial model in Figure 1.

c¢) Distribution of cfDNA concentrations observed in healthy individuals and stage /1l cancer
patients. Red line is drawn at the 5th percentile of the distribution of healthy individual cfDNA
concentration.
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