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Abstract1

Though epidemiology dates back to the 1700s, most mathematical representations of epidemics2

still use transmission rates averaged at the population scale, especially for wildlife diseases. In3

simplifying the contact process, we ignore the heterogeneities in host movements that complicate4

the real world, and overlook their impact on spatiotemporal patterns of disease burden. Move-5

ment ecology offers a set of tools that help unpack the transmission process, letting researchers6

more accurately model how animals within a population interact and spread pathogens. Ana-7

lytical techniques from this growing field can also help expose the reverse process: how infection8

impacts movement behaviors, and therefore other ecological processes like feeding, reproduction,9

and dispersal. Here, we synthesize the contributions of movement ecology in disease research,10

with a particular focus on studies that have successfully used movement-based methods to quan-11

tify individual heterogeneity in exposure and transmission risk. Throughout, we highlight the12

rapid growth of both disease and movement ecology, and comment on promising but unexplored13

avenues for research at their overlap. Ultimately, we suggest, including movement empowers14

ecologists to pose new questions expanding our understanding of host-pathogen dynamics, and15

improving our predictive capacity for wildlife and even human diseases.16
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Introduction17

Disease ecology is a fairly young field, especially compared to epidemiology, which dates back18

centuries. The two fields overlap often, and share a similar goal: to understand, predict, and19

(sometimes) prevent disease outbreaks. However, disease ecologists face at least two additional20

challenges unique to wildlife research. First, disease ecology frequently requires a broad, multi-21

species perspective that captures complex and counter-intuitive ecosystem dynamics; for ex-22

ample, invasive Burmese pythons’ selective feeding within mammal communities has indirectly23

increased mosquitoes’ feeding on rodents, in turn amplifying the Everglades virus, which causes24

encephalitis in humans (Hoyer et al. 2017). Second, and equally challenging, is the fact that25

behavior is just as important for wildlife as for human disease, but harder for researchers to26

directly interrogate. Epidemiologists frequently use interviews and observational work to study27

how human behaviors such as sexual activity, international travel, or outdoor labor become risk28

factors for infectious disease—often directly inspiring interventions; animal behavior, while just29

as important to disease transmission, is harder to observe and predict in nature.30

Movement ecology, also a comparatively young field, uses high-resolution spatiotemporal31

data to make sense of animal behavior. The “movement ecology paradigm” treats movement as32

the outcome of behavioral decisions influenced by the interplay of animals’ internal states (e.g.,33

physiological needs), external biological factors (e.g., predation or competition), and the physical34

environment (e.g., mountain ranges or water sources) (Nathan et al. 2008). Researchers track-35

ing and modeling animal movement can extract behavioral states from telemetry and associated36

datasets, test hypotheses about what best predicts animal behavior, and explain how individ-37

ual behavior scales up to landscape-level patterns of animal distributions. Recent advances in38

telemetry technology (Kays et al. 2015), the development of corresponding analytical methods39

(Long & Nelson 2013), and the integration of complimentary datasets (e.g., acceleration data;40

Wilmers et al. 2015; Spiegel et al. 2015a) have all dramatically increased movement ecologists’41

inferential power. Especially in light of these developments, ecologists can decompose the im-42

pact of individual behavioral heterogeneity on pathogen spread with much greater ease, making43

movement ecology a promising avenue for exploring the behavioral underpinnings of how and44

why diseases spread in wildlife.45

Both movement and disease originate in animal behavior at the individual level, and a46

feedback loop between the two emerges over time at broader ecological scales. For example,47
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ecological theory suggests that the source-sink dynamics that naturally emerge between high- and48

low-quality habitat (respectively) can be reversed by an environmentally-transmitted disease,49

which turns high-quality habitat into an ecological “trap” (Leach et al. 2016). In practice, animal50

movement is driven by decisions that balance this trade-off between habitat quality and disease51

risk, and behavioral polymorphisms might even evolve as a consequence (Getz et al. 2015).52

For example, in an anthrax-endemic region of Namibia, zebra (Equus quagga) demonstrate a53

pattern of partial migration, where dominant herds appear to migrate away from high-quality54

habitat during the anthrax season, leaving behind lower-ranking resident herds to graze despite55

the higher disease risk (Zidon et al. 2017). Researchers posing questions solely about movement56

(why would zebra migrate away from high quality habitat?) or disease (why do some zebra57

select for areas with higher anthrax exposure risk?) would miss the overall pattern.58

Understanding ecological links between movement and disease has direct implications for59

the way researchers model, forecast, and simulate wildlife disease outbreaks. The most basic60

models in epidemiology treat disease transmission as a function of the number of healthy and61

infected individuals in a population, linked by a transmission parameter (β). Doing so implicitly62

combines contact rates and transmission efficiency into one rate (McCallum et al. 2017), but63

individual heterogeneity in both is universally recognized as an important contributor to disease64

dynamics in humans (Lloyd-Smith et al. 2005a) and animals (Paull et al. 2012), and heterogene-65

ity in movement can be an important predictor of this variation (Spiegel et al. 2017a). Where66

tools in movement ecology can help measure, describe, and predict heterogeneity in transmis-67

sion between hosts, there are opportunities to pose novel questions relating to the effects of68

movement on contact (e.g., how do social networks structure contact rates?), the effects of69

contact on transmission (e.g., how does duration and proximity of contact affect the pathogen70

dose transmitted?), and the impact of infection on movement (e.g., does infection decrease or71

increase future contacts?). According to appropriate complexity methods in modeling (Larsen72

et al. 2016; Getz et al. 2017), the degree to which movement data should be incorporated into73

disease models depends on the kinds of questions being asked; but simultaneously, the resolution74

of available data on both movement and disease, and the level of prior knowledge, constrain the75

questions that ecologists can feasibly answer (Figure 1).76

Here we synthesize the main ways that movement data are currently used to shed light on77

the processes underlying disease transmission, connecting animal behavior to broad patterns of78

wildlife (and human) health. Researchers unfamiliar with one or both fields are encouraged to79
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refer to Boxes 1 and 2 for short primers on disease and movement ecology, respectively. We begin80

by describing how tools and methods from movement ecology can inform our understanding of81

how movement affects disease, potentially improving epidemiological models by better represent-82

ing behavioral variation. Subsequently, we explore a more tentative application showing how83

movement data might directly improve disease surveillance. Throughout, we emphasize case84

studies that have successfully applied movement-based methods in these ways, and comment on85

particularly unexplored avenues and underutilized tools. Finally, we highlight the current state86

of synthesis work at the intersection of movement and disease ecology, and discuss the advances87

in data and models needed to move the field forward. In doing so, we recommend relevant88

movement ecology tools for studying processes underlying disease transmission (Table 1), and89

conclude by highlighting the broader implications for conservation and human health.90

Movement affects Disease91

Depending on a pathogen’s mode of transmission, different tools in movement ecology will be92

more or less suitable for exploring transmission risk. We make the broadest possible division,93

placing pathogen life histories along a spectrum between direct and indirect transmission (Fig-94

ure 2). Direct transmission refers to pathogens that require contact between an infected and95

susceptible animal at the same place and at the same time. Indirect transmission, on the other96

hand, describes pathogens that can occupy some intermediate reservoir or vector between hosts97

(i.e., a host of another species, or an environmental reservoir like soil or water), making spatial98

overlap a more significant requirement than temporal overlap. Whether a pathogen is treated99

as directly or indirectly transmitted should depend on both the duration of time it can survive100

outside of hosts, and its ability to disperse in the environment separate from host movement.101

Temporal overlap between animals matters less when infective stages survive for extended peri-102

ods outside of hosts, or when the infective stage moves independently (e.g., when environmental103

forces induce relatively long-distance dispersion, a feature common in marine systems where104

pathogens are often at the mercy of currents; Lafferty 2017).105

Broad categories of infectious agents (bacteria, viruses, parasites, etc.) are unlikely to map106

neatly onto direct or indirect transmission. For example, some ectoparasites are directly trans-107

mitted among members of a social group (e.g., some species of avian lice; Rózsa et al. 1996),108

whereas others often spend time freely moving off-host (e.g., several tick species that infect rep-109
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tiles; Sih et al. 2017). Some pathogens may also alternate between direct and indirect modes;110

for example, Zika virus and canine leishmanisis are both vector-borne diseases with rare sex-111

ual transmission events. Similarly, influenza is usually directly transmitted through air or direct112

contact, but can sometimes persist in the environment via fomites (nonliving object or substance113

capable of carrying infectious material) for hours or days (Weber & Stilianakis 2008). Whether114

researchers choose to focus on spatial or spatiotemporal overlap, corresponding to direct or in-115

direct contact, is likely to depend on the scale at which other host processes are modeled, and116

the spatial and temporal extent of the analysis (see Box 3).117

Direct Transmission118

Directly transmitted pathogens rely on contact between infected and susceptible individuals.119

Contact rates (process C in Figure 1) are most easily thought of based on the frequency and120

strength of interactions between animals in a population, a problem that lends itself naturally121

to network methods (Silk et al. 2017a,b). Meanwhile, the probability of transmission during122

contact (P in Figure 1) will depend largely on the duration and nature (e.g., grooming vs.123

fighting) of the contact needed for pathogens to spread, which can be incorporated into network124

analyses in various ways.125

Networks are a statistical model that abstract population structure as a set of connected126

nodes, traditionally representing individual animals in the population. Edges indicate the con-127

nections between individuals, whether these are defined as interactions of a certain duration, or128

individuals coming within a certain distance of one another. Such information can be displayed129

graphically through the use of directionality (arrows) or weight (line thickness). Directionality130

could indicate an epidemiologically-relevant behavior that impacts the actors differently (e.g.,131

grooming), while weight can be derived from the frequency or duration of such interactions132

(Cross et al. 2005). The components of a social network may ultimately be spatially implicit133

(i.e., animals’ position in the network cannot be projected onto a map), but these networks can134

be informed by movement data in cases where in-person behavioral observation is impractical135

or infeasible, making them a valuable tool for reconstructing the spread of directly-transmitted136

disease. Networks can also be constructed in the context of indirect transmission, but might137

require different data (e.g., capture histories from an array of traps; Davis et al. 2015) or the138

inclusion of a time lag to emphasize the spatial component of transmission (e.g., Sih et al. 2017).139

For a visual example of these concepts, see Figure 3.140

6

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 6, 2018. ; https://doi.org/10.1101/237891doi: bioRxiv preprint 

https://doi.org/10.1101/237891
http://creativecommons.org/licenses/by-nd/4.0/


Most networks extracted from movement data are proximity based social networks (PBSNs).141

They can be constructed using either special proximity sensors, or from movement data using142

a spatiotemporal threshold value to designate contact between animals (e.g., within Mc meters143

for at least Tc time units; Farine & Whitehead 2015). Observed association patterns in social144

networks are often compared to expected patterns in null models (e.g., ideal gas model) or ran-145

domized networks, to test hypotheses about the mechanisms underlying social structure (Farine146

2017; Silk et al. 2017b). For example, by randomizing the order of daily movement paths within147

each individual, rather than between individuals (as is typical in most network randomization148

methods), Spiegel et al. (2016) developed a method to assess sociality separate from associations149

resulting from the spatial structure of the environment. An extension of this approach allowed150

for the identification of the locations of interactions and revealed the sex-specific patterns un-151

derlying the network structure (Spiegel et al. 2017b). These networks have been a key part of152

efforts to understand how ticks are transmitted in sleepy lizards (Tiliqua rugosa), reptiles with153

an unusual life-long pair breeding pattern that may facilitate tick transmission (Sih et al. 2017).154

Social networks can provide insights into disease spread even in the absence of explicit dis-155

ease data (Craft & Caillaud 2011). Different species’ social behavior may correspond broadly156

to different network structures, and corresponding outbreak dynamics; for example, social hi-157

erarchies may comparatively limit the rapid spread of epidemics, whereas “gregarious” species158

with connected, unfragmented social networks are prone to major outbreaks (Sah et al. 2017b).159

At the population level, the overall characteristics of a network (e.g., average degree of nodes,160

path lengths, and edge densities) can be vital for understanding the hypothetical implications161

for transmission (Craft 2015), including vulnerability to epidemic spread (Porphyre et al. 2008;162

Craft et al. 2011). In a meta-analysis, Sah et al. (2017a) found that modularity (i.e., the strength163

of division of a network into separable components) has a surprisingly limited effect on outbreak164

size and duration, especially for higher levels of modularity. However, fragmented networks with165

high subgroup cohesion still experience comparatively limited and brief outbreaks. In a rele-166

vant case study, Hamede et al. (2009) used proximity sensors to build a comprehensive contact167

network of Tasmanian devils (Sarcophilus harrisii) in a population at risk from the introduc-168

tion of a directly-transmitted parasitic cancer. The entire population was connected in a single169

network, allowing the spread of a pathogen from a single individual—and therefore, preventing170

most containment efforts in the event of an outbreak (Figure 3).171

At the individual scale, networks can show where individual heterogeneity in transmission172
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occurs (Lloyd-Smith et al. 2005b; Perkins et al. 2009; Paull et al. 2012). Similar metrics to173

those employed at the population level can also describe single nodes or edges within a network,174

potentially illuminating differences among individuals within a population (White et al. 2017;175

Silk et al. 2017a). For instance, Weber et al. (2013) found that degree (the number of connections176

a given node has to other nodes), closeness (effective distance between an individual and all177

others in the network), and flow betweenness (a measure of the role of a particular node in178

connecting all other pairs of nodes in the network) were associated with tuberculosis infections179

in badgers (Meles meles). Because causality could not be determined, the researchers concluded180

that either an individual’s network position could affect infection risk, or that infection could181

affect network position. By showing how heterogeneity among hosts propagates an infection182

through a susceptible population, analyses such as these could help identify super-spreaders,183

which in turn could help improve estimates of R0 (i.e., the expected number of secondary cases184

produced by a single infection in a completely susceptible population; see Box 1; Lloyd-Smith185

et al. 2005b).186

The use of proximity data synchronized with GPS and accelerometer data can help better187

identify social interactions that are epidemiologically-relevant (Nathan et al. 2012; Brown et al.188

2013). Some pathogens require sexual contact for transmission (like herpes viruses), whereas oth-189

ers need only a brief physical contact (like influenza). In this sense, movement-based behavioral190

analyses can decompose sociality into interactions with implications for disease transmission,191

improving the relevance of network analyses. Even without network data, movement analyses192

might identify behaviors that can be linked to interactions among individuals (Bartumeus et al.193

2005; Fryxell et al. 2008) or to the social standing of individuals (Wittemyer et al. 2008), al-194

lowing for inferences about the vulnerability of individuals to disease. For example, Wittemyer195

et al. (2008) used wavelet analysis of three-hourly location data to infer that the social rank of196

elephants (Loxodonta africana) affects the periodicity of their movement at a multiday scale.197

In addition, they found that lower social standing correlated with higher movement variability198

during the resource-deficient dry season. This and similar analyses can be used to identify which199

individuals might interact most frequently (here, based on social rank). They could also be used200

to identify individuals whose irregular access to resources stresses them to the point where they201

become vulnerable to infection. Social structure could influence susceptibility in other ways202

(Altizer et al. 2003). For example, social rank can determine the form and frequency of breeding203

behaviors in the group, making it especially relevant for sexually-transmitted infections. Addi-204
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tionally, social living could confer anti-parasite benefits such as increased parasite resistance or205

tolerance (e.g., due to regular or low dose transmission between conspecifics), or could mitigate206

disease (e.g., due to increased fitness as a result of superior resource acquisition in a group;207

Ezenwa et al. 2016).208

Indirect Transmission209

In the case of pathogens and parasites that are transmitted indirectly (Figure 2), the processes by210

which a one host sheds a pathogen and another host is exposed are independent and might rely211

upon different host behaviors (e.g., defecation for the former and foraging for the latter). Tools212

from movement ecology offer a way to consider these processes separately from the perspective213

of the infected individual and susceptible individual at various time scales (sub-hourly to multi-214

week time, as depicted in Figure 1).215

High resolution movement data (i.e., sub-hourly: Figure 1) enable researchers to estimate216

the frequency and duration of encounters with known pathogen hotspots on a landscape (e.g.,217

mosquito breeding sites at standing water). Though practical considerations might limit the218

number of animals that can be monitored in a study population (Williams et al. 2014), appro-219

priate sampling schemes offer a basis for statistical inferences that apply more broadly. For220

example, existing tools can identify associations between habitats or time periods and animal221

presence, thereby offering insight into overlaps with infectious sites (Figure 4). Further, if move-222

ment data help identify behavioral drivers (e.g., resource distribution and its seasonal changes),223

then insights from the monitored subset of the population could be used to mechanistically224

model encounter probabilities or factors contributing to shared space use (e.g., Cross et al. 2005;225

Spiegel et al. 2015b).226

Clustered observations reflect spatial regions that individuals frequent, and can indicate areas227

where encounters among individuals (tagged or untagged) are more likely. Applying techniques228

to identify such clusters in data from multiple animals (Webb et al. 2008; Seidel & Boyce 2015;229

Van Moorter et al. 2016) can aid in identifying population-wide aggregation points with potential230

epidemiological significance. These aggregation points might reflect underlying environmental231

heterogeneity (e.g., waterholes) or social contacts (e.g., leks) (McNaughton 1988; Carter et al.232

2009); regardless of the mechanism driving aggregation, these locations are likely to be im-233

portant for estimating relative exposure risk. Various methods can help distinguish social and234

environmental causes of such aggregation patterns (e.g., Spiegel et al. 2016; Borchering et al.235
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2017), potentially offering a way to assess transmission risk.236

Areas of dense use are also identifiable through the construction of utilization distributions237

(UD), which illustrate the relative frequency distribution of the location of a particular individual238

over time (Van Winkle 1975). UDs are most commonly derived using kernel density estimation239

techniques (Worton 1989). Methods for estimating space use at broader scales, especially es-240

timates of seasonal range size and overlap, have been included in epidemiological models. For241

example, Ragg & Moller (2000) used radiocollars, in conjunction with other methods, to track242

the microhabitat selection of both active and denning feral ferrets (Mustela furo), a vector of243

bovine tuberculosis (Mycobacterium bovis) in New Zealand. Ferret movements were found to be244

concentrated in grazed areas and at ecotones between pastures and vegetation cover, thereby245

increasing their risk of transmitting tuberculosis to possums and livestock. Similarly, Conner &246

Miller (2004) used cluster analysis on mule deer (Odocoileus hemionus) location data to iden-247

tify population units, and used kernel density estimation to delineate seasonal ranges for each248

population. Subsequent analysis showed that winter ranges rarely overlapped (< 1%), likely249

due to their smaller size, whereas summer ranges had >22% overlap among population units.250

Therefore, researchers concluded that summer ranging behavior was likely responsible for the251

spread of CWD among subpopulations, whereas winter ranging behavior had the potential to252

amplify CWD prevalence within a subpopulation if an infected individual was present. In an253

extension of the study, Farnsworth et al. (2006), used area estimates of summer, winter, and in-254

dividual home ranges to frame regression models at different scales. They found that movements255

within individual home ranges had the greatest implications for CWD exposure, highlighting256

the potential of high-resolution movement data to alter our understanding of the mechanisms257

underlying observed patterns of transmission.258

Novel methods that consider the temporal autocorrelation inherent in movement data enable259

more detailed home-range delineations than those that emerge from traditional, purely spatial,260

estimators (Benhamou & Riotte-Lambert 2012; Lyons et al. 2013). Additionally, these methods261

might produce more accurate results when home-range overlap is used as a proxy for exposure262

risk, especially in cases where the pathogen’s ability to survive outside a host is limited. One263

such method, time-local convex hulls (T-LoCoH; Lyons et al. 2013), creates time-dependent264

hulls within the utilization distribution from which various metrics can be derived. Two such265

metrics are the duration of a visit to a particular point or area of interest, known as the residence266

time, and the rate at which individuals return to them, known as the visitation or return rate.267
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Used together, these metrics can offer a means of evaluating the relative risk of contact or268

exposure among individuals (Dougherty et al. 2017). Site-fidelity metrics such as these could269

be particularly important in the case of indirectly transmitted pathogens, because high levels270

of fidelity increase exposure risk if an infectious reservoir is present in the range, but will buffer271

an individual from exposure if the range is free of relevant pathogens or parasites. Thus, higher272

mean visitation and duration rates should indicate greater heterogeneity of infection risk across273

individuals in a spatially-structured population.274

Beyond general descriptions of space use, tools that explore landscape level patterns and275

probability of use—which are some of the most developed in movement ecology—can offer pre-276

dictions regarding where susceptible individuals might be exposed to disease. Habitat-selection277

methods, such as resource-, path-, or step-selection functions (RSF, PSF, and SSF, respectively),278

can illuminate landscape features and types preferred by individual hosts or the population as279

a whole (Leclerc et al. 2016). These methods, used to infer the probability of use of any given280

resource unit within the range of a population, quantify which habitats animals select within281

their range (Boyce & McDonald 1999; Manly et al. 2002). By comparing points used by animals282

in the population to those available but unused within their range, RSFs provide a statistical283

model of habitat preference (Boyce et al. 2002). In the context of disease, these models can284

identify habitats where pathogen deposition and, thus, exposure are most likely to occur based285

upon their relative probability of selection. For example, Morris et al. (2016) built an RSF for286

elk (Cervus elaphus) ranging in the presence of soil-borne anthrax (Bacillus anthracis) in south-287

western Montana. Based on the preferences of the elk and a parallel evaluation of the landscape288

features that enabled long-term persistence of anthrax spores (with ecological niche modeling),289

Morris et al. (2016) mapped the areas of highest risk to the elk population.290

In cases where pathogens or parasites are difficult to study but follow predictable patterns of291

occurrence on a landscape, RSFs and other movement tools could allow researchers to identify292

potential hotspots for vector-borne or environmental transmission (Figure 4) using GIS technol-293

ogy. The application of GIS is particularly suitable when vector preferences on a landscape are294

well understood, as in studies of the use of fragmented forests near agricultural land by ticks (a295

vector for Lyme disease; Allan et al. 2003; Brownstein et al. 2005) or mosquito use of standing296

water for breeding sites (Perkins et al. 2013). The relevance of these approaches will be strongly297

dependent on how far vectors can move, as well as the importance of dispersal in the life cycle298

of vectors and the overall prevalence of disease. A similar application can easily be imagined for299

11

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 6, 2018. ; https://doi.org/10.1101/237891doi: bioRxiv preprint 

https://doi.org/10.1101/237891
http://creativecommons.org/licenses/by-nd/4.0/


pathogens maintained in soil, such as anthrax (Bacillus anthracis) or plague (Yersinia pestis); or300

in water, such as cholera (Vibrio cholerae) or cryptosporidiosis (Cryptosporidium parvum). The301

pathogens in all four of these examples follow predictable patterns of occurrence and persistence302

based on abiotic environmental variables (Carlson et al. 2017). The dual RSF framework helps303

researchers to identify whether host populations select for areas with high infection risk. In304

addition, such methods can indicate whether certain individuals are using these features more305

than others, offering insight into the heterogeneity of exposure throughout the population.306

Disease affects Movement307

Movement tools may also provide a more direct (but underexplored) tool for disease surveillance,308

as infection often affects host behavior in observable ways. Pathogens can alter host movements309

either through vigor loss (i.e., the appropriation of resources towards an immune response) or310

host manipulation (direct chemical or physical modification by the pathogen). Examples of311

infection-induced behavioral shifts range from Cordyceps fungi in arthropods, which cause hosts312

to climb to the upper part of a plant before death (Roy et al. 2006), to Toxoplasma gondii313

in rats (Rattus norvegicus), which results in higher activity levels and loss of fear in infected314

hosts (Berdoy et al. 2000). Importantly, such changes can alter movement trajectories (Murray315

et al. 2015; Cross et al. 2016) in ways detectable by movement tools (e.g., risk-taking behavior316

or a dramatic shift in habitat preference), potentially allowing researchers to identify shifts in317

individuals’ behavioral patterns once individuals become infected.318

Movement trajectories can be characterized by sets of metrics extracted from consecutive319

relocations. These include step length (the distance between two consecutive points), relative320

turning angle (the angle between the trajectory indicated by two points relative to that inferred321

from the previous step), and persistence (the tendency of a movement to persist in a particular322

direction). Since these telemetry data are discrete, if they are not sufficiently fine-scaled, they323

cannot be used to characterize fundamental movement elements (FMEs, Box 2; Getz & Saltz324

2008). They can, however, be used to cluster movement path segments into canonical activity325

modes (CAMs; Figure 5; Getz & Saltz 2008) using thresholds, clustering, and behavioral change-326

point techniques (Gutenkunst et al. 2007; Van Moorter et al. 2010; Gurarie et al. 2009, 2016).327

The above movement trajectory metrics might differ sufficiently between healthy and in-328

fected individuals to allow them to be used to identify an individual’s disease state. Further,329
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infection with a pathogen could affect daily activity budgets, potentially altering the number330

or distribution of change points seen across a day. The segmentation of movement paths into331

CAMs or, at a finer scale, behavioral states (Nathan et al. 2012), represents an active area of332

study in disease ecology (Edelhoff et al. 2016). For example, Cross et al. (2016) established that333

infection with mange (Sarcoptic scabiei) in wolves (Canis lupus) was associated with decreased334

daily movements, with later stages of infection reducing total distance more than earlier stages.335

In addition, infected wolves spent significantly less time in an active behavioral mode (defined336

as hourly movements greater than 50 meters) than healthy wolves, with degree of infection337

once again affecting activity level. Similar comparisons can be performed with data collected338

at a coarser scale, as exemplified by Murray et al. (2015), who demonstrated that disease state339

was related to differences in home-range size of coyotes (Canis latrans) infected with mange.340

Movement data derived from complementary sensors, on the other hand, offers researchers even341

deeper insight into the impacts of disease on movement behavior. Accelerometers, for example,342

enable the detection of tremors in individual paths and can help differentiate between bold ver-343

sus submissive walking gaits, which can be indicative of different disease states. In a study of344

cockroaches (Blaberus craniifer), Wilson et al. 2014 extracted the vectorial dynamic acceleration345

(VDA; Shepard et al. 2008), a metric for characterizing the tremors in an animal’s movement,346

and found that the dynamism in each stride decreased with progressing fungal infection.347

While the the application of movement ecology to disease diagnostics remains relatively348

unexplored, an ability to identify infected individuals from movement tracks could be highly349

useful in systems where diagnosis is difficult, invasive, or lethal (especially important for species350

of conservation concern). These methods might also enable researchers to infer the approximate351

onset time of symptoms, in turn improving disease models. The increasing availability of detailed352

movement data provides researchers an opportunity to develop and validate new methods along353

these lines.354

Synthesizing Movement and Disease355

Ecology, as a scientific discipline, advances through the interplay of data, models, and theory:356

work at the interface of movement and disease ecology is rapidly growing on all three fronts. We357

briefly comment on how models can bridge data-driven understanding into theoretical results,358

and then present a systematic literature review showing the biases in how different movement359
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tools are currently used to explain and predict disease dynamics.360

Scaling Models to Theory361

Compartmental models (Box 1) are a nearly universal tool for studying human and wildlife362

diseases (Anderson et al. 1992; Keeling & Rohani 2008), and have been applied to a broad363

range of host-pathogen systems, with numerous extensions for host-age effects, pathogen-strain364

effects, or even the influence of pathogens on host behavior. Compartmental models, however,365

are not easily adapted to account for the effects of landscape and population spatial structures366

on risk of infection (Figure 4). Accounting for this level of variation requires a representative367

sample of individuals within the population to be tracked and their contact rates with other368

individuals (direct transmission) or infectious environmental locations (indirect transmission)369

recorded. Mechanistic models allow researchers to upscale individual patterns (such as behav-370

ioral rules or contact patterns) to a broader population, and are frequently used to validate371

or test experimental results. For example, disease outbreaks are easy to project on simulated372

networks, allowing researchers to confirm hypotheses about how modularity and fragmentation373

link animal social structure to outbreak size (Sah et al. 2017a,b). However, directly upscaling374

animal behavioral rules into spatiotemporal patterns of disease may require researchers to build375

individual- or agent-based models (IBM, ABM; Grimm et al. 2005).376

More specifically, IBMs can use step length, turning angle, canonical activity mode distribu-377

tions, habitat or resource preferences, or even various network-based metrics to generate likely378

movement paths for all individuals in the population. With basic assumptions about transmis-379

sion rates as a function of contact duration, these trajectories can be used to simulate disease380

outbreaks on real landscapes with “real” animal movement principles. An number of IBMs that381

incorporate mechanistic movement rules to explore disease dynamics have been constructed382

(Bonnell et al. 2010; Dion et al. 2011; Tracey et al. 2014; Belsare & Gompper 2015). One of383

these (Bonnell et al. 2010) used individual host energy levels to generate movements toward384

higher resource patches. These foraging decisions ultimately drove microparasite transmission385

dynamics among red colobus monkeys (Procolobus badius) as they shifted their distributions on386

the landscape in search of food.387

An obvious drawback of IBMs compared to compartmental models is the high computational388

demand associated with running simulations at this scale, though this limitation is becoming389

less prohibitive with the increasing availability of high performance computing. Perhaps a more390
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serious limitation, IBMs involve many more parameters than compartmental models, thereby391

increasing difficulties associated with verification and validation procedures (Filatova et al. 2013).392

In addition, IBMs generally include stochastic elements, which can make statistical inference393

using IBMs very challenging (Hartig et al. 2011). While recent methodological advances have394

overcome some of these limitations, they remain impediments to the broader application of IBMs395

in disease modeling. Continued efforts to synthesize movement and disease ecology, however,396

are likely to inspire the development of new solutions for translating risk (based on movement397

behaviors on a specific landscape) into generally applicable rates for epidemiological models.398

We also caution that mechanistic models (individual-based or otherwise) that explicitly in-399

corporate movement rules from empirical data might not be transferable across space, or even400

across seasons or years. For instance, if environmental change alters behavior (e.g., annual mi-401

gration targets shift in response to climate change), even mechanistic models based on empirical402

movement data might become inaccurate. This could be problematic for predicting pathogen403

dynamics in response to rare movement events (e.g., atypical long-distance dispersal events) or404

transmission (e.g., cross-species spillover events). Some tools exist in epidemiology to address405

model building based on limited data (e.g., fitting R0 for rare spillover diseases; Blumberg &406

Lloyd-Smith 2013; Kucharski & Edmunds 2015), but this problem requires special attention in407

the context of movement research, and given the ongoing anthropogenic changes to local and408

global environments.409

Current State of the Synthesis410

In a review of Web of Science, we found 70 papers published between 2000 - 2017 using move-411

ment tools in disease research (see Supplementary Appendix 1 for details). For the purposes412

of the review, we did not include agent-based modeling studies without empirical basis, though413

we noted they followed similar biases. This literature review revealed a notable bias across414

study organisms (Figure 6). Most studies focused on pathogens that can spillover to human415

and domestic animal populations, including bovine tuberculosis (Mycobacterium tuberculosis),416

anthrax (Bacillus anthracis), brucellosis (Brucella abortus), foot and mouth disease (FMD; Aph-417

thae epizooticae), and chronic wasting disease (CWD). Hosts with relatively large bodies (e.g.,418

ungulates, carnivores, and mesocarnivores) were substantially more common than those with419

small bodies (e.g., birds, reptiles, amphibians, and small mammals). These biases might re-420

flect the high data requirements for many of the methods in movement ecology, meaning that421
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only extensively monitored systems are regularly considered at the level of individual hosts.422

Alternatively, the taxonomic bias in hosts could be indicative of technological limitations that,423

until recently, prohibited the tracking of animals with smaller bodies with advanced instru-424

ments; alternatively, taxonomic bias patterns closely track phylogenetic hotspots of zoonotic425

and agriculturally-relevant pathogens.426

For the 70 studies that met the criteria for inclusion, all methods of analyses used by the427

researchers were sorted into four broad groups: spatial overlap, habitat selection, network anal-428

yses, and behavioral analyses. In several cases, more than one of these methods were used in a429

single study, resulting in a total of 91 analyses. Spatial overlap was the most frequently used430

analysis, with 41 cases applying some form of overlap method. These ranged from examinations431

of home range dynamics (e.g., Yockney et al. 2013) to studies that attempted to measure the432

number of contacts between animals (e.g., Woodroffe & Donnelly 2011), often using proximity433

sensors to do so (e.g., Marsh et al. 2011). Habitat selection analyses were also quite common,434

with 24 cases using selection functions (e.g., Morris et al. 2016) or performing basic comparisons435

between habitat types (e.g., Parsons et al. 2014). Similarly, studies that drew upon the wide436

array of network analysis tools were fairly common, with 19 constructing some form of network,437

often with the use of proximity sensors (e.g., Hamede et al. 2009). The least common form of438

analyses encountered during the literature review were behavioral analyses, where researchers439

explicitly measured the probability of a particular behavior (e.g., dispersal; Caron et al. 2016)440

or compared individuals of two different behavioral classes (e.g., migratory vs. resident; Pruvot441

et al. 2016). Only 6 cases of behavioral analysis appeared in the resulting literature. Since the442

role of behavior in influencing disease dynamics is well established, this represents an under-443

explored avenue for investigation of disease systems.444

There was a demonstrable correlation between the mode of transmission (Figure 6) exhibited445

by a pathogen and the methods ultimately selected to study it. Although some studies (13) did446

not identify a transmission mode, many emphasized that whether the pathogen studied had a447

direct (20) or indirect (11) transmission route. Many studies (26), mostly on bovine tuberculosis,448

mention that both transmission modes are possible, but researchers often selected their methods449

based on one or the other (4 of the 26 emphasize direct transmission, while 7 focus on indirect).450

Of those studies focused on the indirect mode of transmission, spatial overlap methods were451

used in approximately 56%, habitat selection in about 44%, network analyses in nearly 17%,452

and behavioral analyses in only 6%. By contrast, studies of direct transmission used network-453
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based analyses (46%) and behavioral analyses (17%), but spatial overlap methods were nearly as454

common as in studies of indirect transmission (50%), and habitat selection methods were far less455

common (13%). These differences are to be expected: pathogens with particular transmission456

modes require the use of tools and methods relevant to the movement processes that underlie457

them.458

Discussion and Future Directions459

Complex patterns in ecology frequently emerge from simple rules at fine scales. As we high-460

light, basic rules of animal behavior drive the complex interplay of animal movement and disease461

dynamics; the implications for wildlife and human health are major. Incorporating movement462

behavior into epidemiological models could improve predictions of disease dynamics, provided463

the additional level of complexity is handled correctly (Getz et al. 2017). While we have high-464

lighted specific well-developed pairs of pathogen transmission mode and analysis methods (like465

networks and direct contact pathogens, or landscape models and vector-borne disease), we also466

note that many pathogens exploit several transmission strategies, and researchers will corre-467

spondingly need several methods in these cases. Developing protocols that include movement468

data in basic disease research, and vice versa, will be an important first step towards making469

these advances more feasible—and towards making broad advances in ecological theory, as some470

disease ecologists have begun to do with network methods (Sah et al. 2017a).471

Movement tools will likely increase in value with ongoing improvements in biologging tech-472

nologies (Kays et al. 2015). For example, advancements in radar and radio-frequency technolo-473

gies allow tracking of a broader range of insect movements (Kissling et al. 2014), offering the474

potential to include these movements when considering vector-borne disease dynamics. Fur-475

ther, accelerometer-based data and very-high resolution GPS tracking (e.g., 1 Hz fix rates) will476

help researchers parse movement tracks at an even finer scale than current path segmentation477

methods allow (McClintock et al. 2017). In doing so, proximity-based social networks could be478

further informed with the behavioral states of individuals, potentially clarifying the epidemiolog-479

ical relevance of such points of contact (Spiegel et al. 2016; Sih et al. 2017; Spiegel et al. 2017b).480

The decreasing costs of these technologies could soon offer opportunities to monitor entire pop-481

ulations, thereby shifting researchers from extrapolating risk across a population to measuring482

contact rates directly. More comprehensive surveillance may also enable the development of483
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models that more accurately infer dose exposure, based on duration of contact between animals484

and infected hosts or environmental reservoirs, vastly improving models of the heterogeneity in485

transmission efficiency.486

Though the host-environment and host-pathogen interactions reflected in movement data487

can offer significant insight into disease dynamics, important processes might also occur at488

the pathogen-environment (or vector-environment) interface. In benthic marine systems, for489

example, suspension-feeders that filter large volumes of water while feeding can be particularly490

vulnerable to infection by microparasitic pathogens floating in the water (Lafferty 2017). This491

accumulation process has been modeled through the incorporation of particle diffusion (Bidegain492

et al. 2016), but the nature of these pathogens and their deposition makes the precise tracking493

of their movements in such dynamic environments very difficult. Thus, the validity of forecasts494

based on host movement alone is in question when pathogen-environment interactions (e.g.,495

pathogen movement, rates of growth or decay, or the length of vector life history stages) occur496

at time scales comparable with the host-pathogen interactions themselves (e.g., lengths of latent497

and infectious periods). When response time scales are comparable, coupled host-pathogen-498

environment models are required. Though this has not been the emphasis of much of the499

recent work in movement ecology, the expansion of methods and technologies to accurately500

track minute particles through three-dimensional space is a frontier worthy of exploration. The501

resulting models could replace assumptions regarding the diffusion of such particles and further502

aid in our understanding of contact processes in highly dynamic environments.503

Although we have focused on host populations, these tools also apply to multi-species trans-504

mission, such as in the spillover of wildlife diseases into livestock, or spillback of diseases from505

domesticated animals into wildlife (Barasona et al. 2014). Furthermore, these methods could506

just as easily be used to assess the risk of zoonotic spillover into human populations. Cur-507

rently, ecological niche modeling is a popular proxy for zoonotic disease risk, but this only508

summarizes high-level landscape patterns (often treating host-pathogen systems as one coupled509

phenomenon); replacing these, or combining them, with movement models like RSFs can more510

accurately characterize average or seasonal patterns of host movement, and therefore risk to hu-511

man health. In particular, in the case of pathogens that affect free-ranging and often migratory512

hosts such as bats (i.e., Ebola, Marburg, or Nipah viruses), overlap analyses could illuminate513

potential risk zones for future spillover events. With additional data collection using advanced514

monitoring devices, researchers can move beyond treating overlap (spatial or spatiotemporal515
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depending on the pathogen or parasite in question) as a proxy for contact; in fact, we note the516

clear but unexplored potential for animal movement studies to act as part of a realtime early517

warning system for difficult-to-surveil zoonoses.518

With a common language and mutual appreciation for their respective disciplines, disease519

ecologists and movement ecologists can collaborate to help solve pressing problems. Like Ebola520

or Nipah, most emerging diseases spill over from wildlife (Jones et al. 2008). Controlling such521

diseases is difficult, and interventions can be controversial (e.g. wildlife cullings), infeasible (e.g.522

mass wildlife or livestock vaccination), or ineffective; for example, culling badgers can spread523

bovine tuberculosis because badgers will move into treated areas (Woodroffe et al. 2006). Study-524

ing animal movement might help predict disease spread (and help explain why some interventions525

fail), and identify new interventions, such as wildlife relocations or vaccination. Furthermore,526

movement ecologists can benefit from considering how parasites alter animal movement, thereby527

accounting for otherwise unexplained variation in movement among individuals. Advances in528

disease diagnosis, combined with new technologies that and remotely monitor an animal’s phys-529

iology and motion make this an opportune time for studies to embrace both disease ecology and530

movement ecology.531
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Figures823

Figure 1: A Movement-Focused Modeling Space in Epidemiology. Incorporation of
movement at different temporal scales can be used to address pathogen transmission-related
questions at three levels (vertical colored planes). Transmission can be treated either as a single
process (as commonly done in SIR models, where S are susceptible, I infectious and R removed
individuals—see Box 1; purple plane), a concatenation of a contact process C and probability
P of pathogen transmission during contact averaged over individuals (orange plane), or imple-
mented at an individual level (green plane). In addition, transmission can be considered to
occur within a homogeneous population, a network of homogeneous groups or subpopulations
(metapopulation), or a spatially continuous heterogeneous population. Each labeled dot indi-
cates a unique level of complexity that can be incorporated into the transmission process, while
the spanning arrows imply that additional complexity can be incorporated at several different
temporal scales (horizontal arrows) and population-structures (vertical arrows).
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Figure 2: The Transmission Continuum. Transmission mechanisms vary across a continu-
ous spectrum. The classification of a particular pathogen or parasite in a given system depends
on the movement potential of pathogens relative to their hosts and the ability of pathogens to
remain infectious outside hosts. Those pathogens that require two agents to interact directly
for successful transmission, often via a specific behavior, such as sexually transmitted infections
(STIs), are an unambiguous example of a directly transmitted disease and represented by a
point. Pathogens that transmit successfully over a broader set of conditions, such as influenza
or arboviruses, are represented conceptually across the gradient as a line and might vary across
one or or both of the axes. Along this spectrum, we have determined a somewhat subjective
threshold between what we describe as Direct transmission and Indirect transmission, visualized
by the white dashed lines. Even within the same pathogen taxon (and thus, the same charac-
teristic duration of infectiousness), this threshold could shift along this gradient depending on
the relative speed of host movement.
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Figure 3: Networks for Disease Research.
Network analyses can serve to identify partic-
ular contact network structures that might be
conducive to disease spread through a popula-
tion and identify individuals within networks
that make disproportionate contributions to
the transmission of a disease (Ryan et al. 2013).
A network with relatively low edge density
and high path lengths might prevent a di-
rectly transmitted parasite (or pathogen) from
spreading through a population (networks a
and b). Contrastingly, a network with high
edge density and low path length could facili-
tate parasite spread through a population (net-
works c and d). In addition, the position of
the first infected individual (shaded in black)
in a network might facilitate or inhibit a par-
asite from spreading. Individuals with rela-
tively high degree or node betweenness could
be super-spreaders (networks a and c), whereas
individuals positioned at the periphery of a net-
work, with lower degree and node betweenness,
might cause transmission to fade out (networks
b and d). At both the population and indi-
vidual levels, these network characteristics de-
pend on resource distribution, social relation-
ships, and ultimately, the movement behaviors
that arise from both. It should also be noted
that the same general principles would apply if
this schematic were imagined as a spatial net-
work instead of a contact network, with nodes
representing locations rather than individuals.
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Figure 4: Calculating Spatial Risk from Movement Data. For vectors with known associ-
ations to abiotic covariates, resource selection functions can be a powerful tool to identify areas
of overlap with host movement and map areas of increased exposure risk. In this hypothetical
example of an arbovirus, maps of resource selection or association (the top layer of each stack)
are derived for a terrestrial host and a water-dependent vector from associated environmental
layers (e.g., land cover or soil type) and movement or presence data. Combined, these maps
of resource selection can produce a map of overall transmission risk. Alternatively, a similar
approach could be used with a pathogen, such as anthrax, that relies on mappable soil charac-
teristics, such as calcium levels and pH (Mullins et al. 2013). The other layer would correspond
with host habitat preferences, including indicators of watering hole locations (i.e., Mean Normal-
ized Difference Water Index; MNDWI) and graze or browse quality (i.e., Normalized Difference
Vegetation Index; NDVI).
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Figure 5: Canonical Activity Modes
(CAMs) from Movement Data. Several
alternative methods enable a researcher to in-
fer different canonical activity modes (CAMs;
thematic mixes of behavioral states). In this
schematic, a hypothetical trajectory of a ze-
bra can be easily divided into a foraging CAM
(boxes labeled a), defined by relatively small
step lengths and an almost uniform distribu-
tion of turning angles, and a dispersing CAM
(boxes labeled b), defined by relatively larger
step lengths and a distribution of turning an-
gles with a low variance. For disease research,
if a pathogen is known to have environmental
reservoirs with predictable locations (e.g., due
to its dependence on certain soil types or pH),
the CAM during which the animal is suscepti-
ble (in this case, foraging, when the zebra eats
plants or soil harboring the bacterium) can be
isolated to identify the areas or times of great-
est risk. One can also identify individuals or
classes (e.g., sex or age groups) who could be
at greater risk than others due to the higher
proportion of time they spend foraging in their
activity budgets. In this specific example, the
host is at low risk of transmission from the
LIZ in box b and at high risk from the LIZ
in a due to the different behavioral states. The
gray lines between GPS relocation points repre-
sent estimated paths between known locations
rather than an exact trajectory.
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Figure 6: Study Bias in Movement & Disease Ecology Literature. We preformed a
systematic review of scientific literature, identifying 70 studies currently using movement data
and methods within disease research since 2000. In the above chord diagram, the host taxonomic
order (left) is linked with the associated pathogen or parasite taxon (right), with the width of
the bar indicating the proportion of studies investigating that particular pairing. Expectedly,
pathogens with possible spillover threats to humans or livestock receive most of the attention. For
example, studies of bovine tuberculosis (Mycobacterium tuberculosis) systems were particularly
prevalent in the literature, likely because of the risk faced by cattle in proximity to possums,
raccoons, badgers, and other mammals. Other well studied pairings included bighorn sheep
with bacterial pneumonia (Mycoplasma ovipneumoniae); raccoons and canines with rabies; and
deer with various livestock spillover diseases, such as anthrax (Bacillus anthracis), brucellosis
(Brucella abortus), foot and mouth disease (FMD; Aphthae epizooticae), and chronic wasting
disease (CWD).
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Box 1. A Disease Ecology Primer

Disease ecology as a discipline is conventionally focused on understanding the ecological drivers of
epidemiological dynamics, referring to the study of the occurrence, distribution, and control of disease.
Whereas epidemiology conventionally focuses on human disease (including non-infectious causes of
morbidity and mortality), wildlife epidemiology, and more broadly disease ecology, take a systems
perspective on drivers of infectious diseases, those which are contagious within a population. Infectious
diseases are spread by a pathogen, perhaps the most generic term for a bacterium, virus, or other
infectious agent (microorganism or prion) that can cause disease. Pathogens also include parasites,
a term defined ecologically that includes organisms that live in (endoparasites) or on (ectoparasites)
another organism—its host—and benefit by deriving nutrients at the host’s expense. Not all parasites
are immediately pathogenic (i.e., disease-causing). Some, such as ticks, could instead be the vectors that
spread infectious agents, such as the bacterium that causes Lyme disease. Pathogens and parasites are
spread by some process of shedding, the release of pathogenic material from a host either through passive
emission (e.g., HIV in semen) or actively-induced emission when the life cycle of a parasite requires its
own ejection from the host (e.g., aerosolization through coughing and sneezing or the fecal release of
tapeworm eggs from a host). Some hosts, termed super-spreaders, can be particularly active shedders
and infect disproportionately more susceptible individuals than other hosts do. In cases where shedding
reaches a new host and this exposure event leads to infection, this produces an effective contact ; what
is considered an effective contact will vary with the mode of transmission of the pathogen in question.

In both humans and wildlife, outbreak dynamics are most readily modeled using a mathematical compart-
mental systems framework: after dividing the population into epidemiologically-relevant compartments
(viz., susceptible: S, infected: I, and recovered: R), difference or ordinary differential equations are used
to describe the transitions of individuals between the disease classes over time. Typically these models
make an assumption of spatial homogeneity, random contact among individuals, and rapid mixing of indi-
viduals within compartments. The course of infection is typically summarized for populations either via
an incidence (the rate at which new cases arise), or prevalence (the proportion of the population infected)
curve. If at least a low level of prevalence is maintained at all times, a disease is considered endemic. In
contrast, an epidemic starts from a handful of introduced or new index cases and spreads throughout a
susceptible population as an outbreak, before burning itself out. The latter occurs because the proportion
of susceptible individuals in the population has either dropped below a threshold density or individuals
have altered their behavior to avoid contact with infected individuals. When an epidemic is truly global
(defined by infection across multiple continents), it is referred to as a pandemic. In wildlife, epizootic
and enzootic serve as parallel terms to epidemic and endemic. Diseases that originate in wildlife and
spread to humans are termed zoonoses, and are conventionally of special interest in disease ecology. The
process of spillover of zoonotic disease into human populations is complex, and often poorly understood
due to the complexities of human-wildlife contact. Conversely, spillback refers to the process by which a
zoonotic disease is introduced by humans into novel animal host populations (whether domesticated or
wild).
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Box 2. A Movement Ecology Primer

Movement ecology has developed as a field that draws on telemetry data to explore the causes,
mechanisms, and patterns of animal movement, as well as understand its consequences on the ecology
and evolution of individuals, populations, and communities. Telemetry refers to the process of
transmitting and recording the positions of an animal, and represents the primary means of detecting
animal movements. Early telemetry research relied upon Very High Frequency (VHF) radio signals
to triangulate the positions of collared or radiotagged individuals. The individual positional fixes
obtained can be referred to as relocations, and when treated consecutively, they are often called a
trajectory or path. The relatively coarse temporal resolution of most relocation data from classical
radiotagging methods limits the ability of movement ecologists to observe and differentiate among
fundamental movement elements (FMEs; e.g., a walking versus trotting step) that make up the
movement path of an individual. However, the relatively infrequent or irregular fixes emerging from
such devices can still be used to evaluate patterns of space use and habitat selection. For example,
even coarse movement data can aid in characterizing the manner in which an animal utilizes its home
range, which represents the area it traverses in its daily activities of foraging, mating, and caring for
young. These areas have been delimited in a number of ways, including: minimum convex polygon
(MCP) methods, which simply construct a boundary around the outermost points of a trajectory; and
utilization distribution (UD) methods, which offer more information regarding the frequency of space
use within the home range. Recently, alternative methods that more explicitly account for the temporal
component of movement data have been proposed, including the time-local convex hull (T-LoCoH)
method and Brownian bridges, among several others. Even with sparse datasets, these methods are
expected to create meaningful generalizations of space use and can form the basis of spatial overlap
analyses that aim to determine the level of shared space use among monitored individuals. Several
methods for understanding individual and population level habitat selection, such as resource-selection
functions (RSFs), can also be used with relatively coarse movement data. These methods aim to
identify the habitat types that an animal prefers, indicated by disproportionately greater use of a
habitat than expected based on its availability on the landscape, and create predictive maps of space use.

Today, the majority of movement ecology research depends upon more advanced satellite technology,
referred to broadly as Global Positioning Systems (GPS), to record animal locations at finer spatial and
temporal resolutions. Even with this technology, consecutive relocations typically span a mix of FMEs.
Nonetheless, a variety of summary metrics can be used to describe the path, the most basic of which are
the step length (the Euclidean distance between consecutive relocations) and turning angle (the angle
of one step relative to the step immediately prior). The higher resolution relocations can also enable
behavioral analyses, which often rely on path segmentation methods to split a movement trajectory into
segments that look quantitatively similar (often based on those simple summary metrics). Such analyses
can help determine the behavioral state of an individual at specific points in time. These states occur at
coarser time scales than FMEs, but represent short-lived phenomena that can be inferred from GPS data.
Similar analyses can allow for the clustering of longer sequences of behavioral states that are considered
collectively as canonical activity modes (CAMs; e.g., resting or foraging), which are also readily observable
in modern telemetry data. For example, foraging is a CAM that often consists of a variety of behaviors,
including searching, eating, and perhaps vigilance, among others. A full movement path, however,
often consists of a series of CAMs, and movement syndromes are used to describe movement patterns
at the scale of an entire trajectory, enabling discrimination among types of individuals (e.g., territorial
versus nomadic individuals). With recent technological advances to the telemetry units worn by animals,
supplementary data sets, such as those obtained using accelerometers that measure changes in velocity
in three-dimensions, have enabled the evaluation of movement behaviors at even finer spatiotemporal
scales, getting researchers closer to observing FMEs. Similarly, the advent of proximity sensors, which
record when two collared animals are within a specified distance of one another, has allowed researchers
additional insight into the spatial proximity of monitored individuals. These data can be used to inform
contact networks, which map the associations among individuals in a population.
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Box 3. Balancing Scales: Simultaneous Modeling of Movement and
Epidemiological Processes

Deciding on a spatiotemporal scale for epidemiological models is usually a function of the timescales of
host and pathogen processes, including temporal aspects of transmission like latency, persistence in the
environment, or replication rates during early infection. The rates of biological processes might not map
directly onto the models we build, if the temporal scale of data is necessarily coarser due to the resolution
of available movement data. However, some of the greatest successes of movement ecology have involved
explicit model formulation with attention to spatiotemporal resolution of processes (Lyons et al. 2013),
potentially offering a template for integrated work. We outline some brief guidelines:

Space pixel. The corresponding spatial resolution S is related to time through the diffusion relation-
ship:

∆S = δ(∆t)1/2

This is where movement comes in: δ is a movement diffusion constant estimated from empirical
data and will vary among organism types. An alternative approach is to use a velocity relationship:

∆S = v∆t

for organisms that mainly execute directed movement at average velocity v at fine time scales.
Since empirical tracking data has repeatedly shown that movements of animals (and humans) are
often super diffuse, we suggest that former approach as generally more favorable (Raichlen et al.
2014; Spiegel et al. 2015a).

Coarse graining. Going from the scale of individual transmission upwards to emergent processes like
landscape structure, epidemic wavefronts, or even range shifts requires proportionally aggregating
data and model structure, a process typically termed coarse graining. There are various levels of
coarse graining, each representing close to a one magnitude of size step up. Coarse graining requires
aggregating over a union of pixels, using an appropriate integral kernel. Integral kernels can take
several forms including the bounded uniform, truncated Gaussian, or other more idiosyncratic
choices. Optimal kernel choice can be guided by wavelet analysis of movement data.

Time pixel. The minimum time resolution should be based on some fraction of the most fundamental
cycle pertaining to the problem; for example, movement data might be recorded at a resolution
∆t of every 15 minutes, though this is much shorter than the typical interval in epidemiological
models.

Temporal scaling. Increasing scales of temporal aggregation can provide different results and absorb
more noise in data by matching biologically-relevant timescales. For example, if ∆t is 15 min-
utes then 100∆t is approximately one diurnal cycle, 3,000∆t is approximately a lunar cycle, and
10,000∆t is approximately the length of one season in a four season year. Models can also be
downscaled, which might be appropriate under highly data intensive conditions. However, as fine-
scale processes emerge at finer scales, models might lose predictive accuracy without incorporating
finer data or processes.

Appropriate complexity. At various spatiotemporal levels of resolution different epidemic models
might apply and the question arises as to the appropriate level of complexity in the model
(Larsen et al. 2016). For example, models should include a within-host component at the level of
∆t =15min, while epidemiological models might include daily rates of detection and isolation of
individuals at diurnal levels of resolution, or could include transmission rates that exhibit seasonal
variation if epidemics last several months or more. Additionally, incorporation of movement into
models might require individual-based approaches for the finest scales of analysis (Getz 2013).

Multiscale modeling. As data and models are aggregated, models can be run to reflect the multiple
timescales on which movement and epidemiological processes operate. Wavelet decomposition of
movement data can inform the most important concurrent scales of movement processes; similar
analyses can be performed with time-series epidemiological data, when available.
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Table 1: Connecting Movement Methods to Disease Outcomes

Method Description Input data Methodology Benefits and insights Reference

Spatial
overlap

Estimate spatial overlap
among hosts from their
shared space use (a.k.a.
passive interactions)

Coarse-grained spatial lo-
cations from multiple indi-
viduals

Various home range in-
dices: minimum convex
polygon, kernel density es-
timators, and local convex
hulls

Identifying zones (or spa-
tial scales) of potential in-
fluence and evaluating the
likelihood of transmission
for (primarily) indirectly
transmitted pathogens

Yockney et al. 2013;
Farnsworth et al.
2006

Habitat
selection

Environmental covariates
can be used to predict ar-
eas of increased exposure
risk based on the corre-
spondence of host move-
ments with models of vec-
tor/pathogen habitat pref-
erence

Host resource selection
data; environmental pre-
dictors (e.g., landcover,
temperature, water avail-
ability); vector/pathogen
habitat suitability data

Resource selection func-
tions are used determine
habitat preference of host
and parasite

A spatially explicit map of
risk of exposure and trans-
mission

Ragg & Moller 2000;
Morris et al. 2016

Behavioral
analysis

Movement data can be
used to identify specific be-
havioral states or canoni-
cal activity modes that af-
fect the risk of exposure or
transmission. Overlaying
these behaviors on maps
of environmental hetero-
geneity in pathogen preva-
lence can provide behavior-
dependent risk maps

High resolution movement
data or complementary
behavioral data (e.g.,
accelerometer); maps of
pathogen prevalence

Various methods to iden-
tify behavioral states from
movement (and associated)
data

A spatially-explicit predic-
tion of the effects of behav-
ior on infection risk (i.e.,
behavior- or individual-
specific risk maps)

Gurarie et al. 2016;
Nathan et al. 2012

Network
analysis

Calculate co-occurrence of
individuals, dyads (a.k.a.
dynamic interactions), and
members of fission-fusion
groups as a proxy for trans-
mission

Spatial proximity or simul-
taneous spatial tracking of
multiple sympatric individ-
uals

Proximity sensors or fine-
scale movement data to
build networks from which
various metrics can be de-
rived

Identify direct contacts in
the population as a proxy
for transmission; isolate
variation among individu-
als

Cross et al. 2005;
Hamede et al. 2009;
Silk et al. 2017a
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