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Abstract8

Fitness landscape models play an important role in our understanding of speciation, hybridiza-
tion and admixture. The simplest modeling approaches are best-suited to particular kinds of hy-10

bridization: either crosses between closely-related inbred lines, where hybrids are often fitter than
their parents, or crosses between effectively isolated species, where breakdown involves discrete in-12

compatibilities of large effect. We study a fitness landscape based on Fisher’s geometric model, and
show that it naturally interpolates between these two approaches, while explaining surprising empir-14

ical patterns that have been observed in both regimes. The model also yields new predictions, which
can be tested with genomic data, and without needing to identify individual loci with anomalous ef-16

fects. We test these predictions with data from Mytilus mussels, and published data from plants (Zea,
Populus and Senecio) and animals (Mus, Teleogryllus and Drosophila), and the predictions are generally18

supported. Fisher’s geometric model should be particularly useful for studying hybridization in an
intermediate regime, where hybrid fitness might be influenced by allelic coadaptation and maladap-20

tation in the parental lines, and where epistatic interactions might involve many loci of moderate
effect.22

Keywords

Speciation genetics, heterozygosity, Dobzhansky-Muller incompatibilities, sterility, inbreeding, Hal-24

dane’s Rule.
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1 Introduction26

Hybridization and admixture involve testing alleles in alternative genetic backgrounds. Most classi-
cal studies of hybridization can be placed into one of two classes. The first, involves crosses between28

closely-related inbred lines, where there is no coadaptation between the deleterious alleles that dif-
ferentiate the parental backgrounds, such that most hybrids are fitter than their parents. Wright’s30

single-locus theory of inbreeding was developed to interpret data of this kind (Crow 1952; Hallauer
et al. 2010; Wright 1922, 1977). The second, involves crosses between effectively isolated species, where32

viable and fertile hybrids are very rare. Data of this kind are often analyzed by focusing on a small
number of “speciation genes”, and interpreted using models of genetic incompatibilities (Coyne and34

Orr 1989; Dobzhansky 1937; Gavrilets 2004; Kalirad and Azevedo 2017; Orr 1995; Welch 2004).
The differences between these types of hybridization are clear, but it is equally clear that they are36

extremes of a continuum. Furthermore, the intermediate stages of this continuum are of particular inter-
est, including, as they do, incipient speciation, and occasional introgression between partially-isolated38

populations (Duranton et al. 2017; Fraïsse et al. 2016a; Mendez et al. 2012; Waser 1993). However, it
can be difficult to model natural selection in this intermediate regime, not least because models require40

a large number of parameters when they include epistatic effects between many loci. The empirical
study of hybrid genotypes in this regime is also difficult. The analysis of lab crosses often focuses on42

segregation distortions of large effect, and pairwise incompatibilities (Abbott et al. 2013; Coyne and
Orr 2004). This QTL-mapping framework can miss small effect mutations (Noor et al. 2001; Rockman44

2012), which are difficult to identify individually, but whose cumulative effect can be substantial (Boyle
et al. 2017).46

One promising approach is to use Fisher’s geometric model, which assigns fitness values to geno-
types using a model of optimizing selection on quantitative traits (Fisher 1930; G. Martin and Lenor-48

mand 2006; Orr 1998; Welch and Waxman 2003). The tools of quantitative genetics have often been used
to study hybridization (e.g. Demuth and Wade 2005; Fitzpatrick 2008; Lynch 1991; Melchinger 1987),50

but Fisher’s model is fully additive at the level of phenotype, and the “traits” need not correspond in
any simple way to standard quantitative traits (G. Martin 2014; Schiffman and Ralph 2017). Instead,52

the goal is to generate a rugged fitness landscape, which includes a wide variety of mutational effect
sizes and epistatic interactions, with a minimum of free parameters (Barton 2017; Hwang et al. 2017).54

Here, we build on previous studies (Barton 2001; Chevin et al. 2014; Fraïsse et al. 2016b; Schiffman
and Ralph 2017), and use Fisher’s geometric model to study hybridization. We develop a simple56

random-walk approximation, and show that it can naturally interpolate between previous modeling
approaches, which are appropriate for the two extreme types of hybridization. We then show how the58

model can account for surprising empirical patterns that have been observed in both regimes (Moehring
2011; Moran et al. 2017; Wright 1977). Finally, we show that the model yields several novel predictions,60

and test these predictions with a wide range of new and existing data sets (Table 1).
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2 Models and Results62

2.1 The models

2.1.1 Notation and basics64

We will consider hybrids between two diploid populations, labeled P1 and P2, each of which is geneti-
cally uniform, but which differ from each other by d substitutions. The populations could generate 3d66

distinct hybrid genotypes, and each might have a different level of fitness, but we are most interested
in systematic differences between different types of hybrid (e.g., high versus low heterozygosity, males68

versus females, F1 versus F2 etc.). As such, following Turelli and Orr (2000), we describe hybrids using
a “breakdown score”, S, which is larger for hybrids that are less fit. The relationship between S and70

fitness, w, might take a form such as

ln w ∝ −Sβ/2 (1)

in which case, the parameter β adjusts the overall level of fitness dominance and epistasis, and can vary72

independently of other results (Fraïsse et al. 2016b; Hinze and Lamkey 2003; Tenaillon et al. 2007; see
also Discussion). We now define the key quantity f , as the expected value of S for a particular class of74

hybrid, scaled by the expected value for the worst possible class.

f ≡ E (S)
E (S†)

(2)

Here, E (S†), is the expected breakdown score for the class of hybrid with the lowest expected fitness.76

Therefore, f can vary between zero, for the best possible class of hybrid, and one, for the worst possible
class.78

To define classes of hybrid, we also follow Turelli and Orr (2000). We pay particular attention to
inter-population heterozygosity, and define p12 as the proportion of the divergent sites that carry one80

allele from each of the parental types. We also define p1 and p2 as the proportion of divergent sites
that carry only alleles originating from P1 or P2 respectively. Since p1 + p2 + p12 = 1, it is convenient82

to introduce the hybrid index, h, which we define as the total proportion of alleles that originates from
P2 (e.g. Fitzpatrick 2012).84

h ≡ p2 +
1
2

p12 (3)

Each individual genotype can now be described via its heterozygosity, p12, and its hybrid index, h.
Results below will mainly concern the dependency of f on p12 and h.86

2.1.2 Fisher’s geometric model

Fisher’s model is defined by n quantitative traits under optimizing selection (Fisher 1930). If the se-88

lection function is multivariate normal, including correlated selection, then we can rotate the axes
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and scale the trait values, to specify n new traits which are under independent selection of different90

strengths (G. Martin 2014; G. Martin and Lenormand 2006; Waxman and Welch 2005). An example
with n = 2 is shown in Figure 1. We now define the breakdown score of a phenotype as92

S ≡
n

∑
i=1

λiz2
i (4)

where, for trait i, zi is its deviation from the optimum and λi is the strength of selection. By assumption,
all mutational changes act additively on each trait, but their effects on breakdown can vary with the94

phenotype of the individual in which they appear, and this yields fitness epistasis. To specify the
breakdown for each hybrid genotype, we would need to know the sizes and directions of all of the96

mutations that differentiate P1 and P2. However, a useful approximation is to treat the recombinant
hybrid genotypes as if they lie along random walks in phenotypic space, where each fixed mutation98

contributes an expected vi to the variance of the random walk on trait i. In this case, the worst possible
class of hybrid will lie at the end of an unconstrained random walk away from the optimum, with no100

tendency for coadaptation among the changes. The walk can involve a maximum of d substitutions,
and so we have102

E (S†) ≡ d
n

∑
i=1

λivi (5)

Most hybrid genotypes will have higher fitness than this, because they contain combinations of alleles
that are coadapted, as a result of past natural selection in their original backgrounds. To find the104

value of f (eq. 2) that applies to these genotypes, let us first assume that P1 and P2 are sufficiently well
adapted, compared to the worst class of hybrid, to be treated as optimal. In this case, we fix f at zero for106

both parental types: fP1 = fP2 = 0. This implies that the midparental phenotype will also be optimal,
and given the assumption of additivity, this midparent will be associated with the global heterozygote.108

We can now model the hybrid phenotypes as lying on a tethered random walk, or Brownian bridge,
with these three optimal genotypes as fixed points; f is the variance associated with this Brownian110

bridge. In Appendix 1, we show that the result required is

f = p12(1 − p12) + 4p1 p2 (6)

= 4h(1 − h)− p12 (7)

The fitness surface that is implied by eq. 7 is shown in Figure 2a. It should be noted that this112

prediction does not depend on any of the model parameters. For example, the number of traits, n,
could affect the accuracy of the random-walk approximation (since S will tend to approach normality114

as n increases). But n does not appear in eq. 7, which depends on p12 and h alone.
It is also possible to relax the assumption that the parents are optimally fit. In Appendix 1, we116

show that a simple and useful expression arises when the midparent is optimal, but the parents are
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suboptimal. This implies that both parents are equally maladapted: fP1 = fP2 ≡ f P, and we find that118

f = p12(1 − p12) + 4p1 p2 + (p1 − p2)
2 fP (8)

= fP + (1 − fP) 4h(1 − h)− p12 (9)

Fitness surfaces with varying levels of parental maladaptation are illustrated in Supplementary Fig-
ure S1. As expected, eq. 9 reduces to eq. 7 when fP = 0, while in the other extreme case, when fP = 1120

we find,

f = 1 − p12, fP = 1 (10)

In this case, when parental fitness is no higher than the expected fitness of a random assembly of122

their alleles (eq. 2), then the breakdown is proportional to the total homozygosity (eq. 10). This result
agrees with Wright’s (1922) single-locus theory of inbreeding, which was developed to analyze crosses124

between closely-related inbred lines (see also eq. 18 below). This agreement makes intuitive sense:
when fP = 1, all of the divergence between P1 and P2 must comprise deleterious mutations with no126

coadaptation. In its general form (eq. 9), Fisher’s model shows how coadaptation between the parental
alleles affects selection in the hybrids.128

2.1.3 A general model of incompatibilities

The previous section showed that Wright’s theory of inbreeding appears as a special case of Fisher’s130

geometric model, when fP = 1. In this section, we show that the other extreme case, with fP = 0, can
also be derived via an alternative route, using a widely-used model from speciation genetics. We show132

that eq. 7 can be obtained from a model of genetic incompatibilities, each involving alleles at a small
number of loci (Fraïsse et al. 2016b; Gavrilets 2004; Orr 1995; Turelli and Orr 2000; Welch 2004). The134

aim of this section is solely to compare the two modeling approaches. Empirical tests of eq. 9 follow in
subsequent sections.136

Following Orr (1995), let us assume that certain combinations of alleles, at ℓ ≤ d of the divergent loci,
can be intrinsically incompatible, while all other combinations confer high fitness. By assumption, the138

pure species genotypes, and their ancestral states, must be fit, but all other combinations have a fixed
probability εℓ of being incompatible. Under this model, the expected breakdown score for the worst140

class of hybrid is proportional to the expected number of incompatibilities, and this was calculated by
Welch (2004, eqs. 1-2):142

E (S†)I ∝ εℓ

(
d
ℓ

)(
2ℓ − ℓ− 1

)
(11)

Here, and below, we use the subscript I to indicate a model of incompatibilities. To derive f I (eq. 2),
we note that hybrids will have higher fitness when some of the incompatibilities are absent from their144

genomes (Turelli and Orr 2000). The probability that an incompatibility is present depends on how
many of the ℓ loci are heterozygous. For a genotype comprising i loci that are homozygous for the P1146
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allele, j loci homozygous for the P2 allele, and k loci that are heterozygous, the probability required is:

πijk =
2k − 0i − 0j

2ℓ − 2
(12)

which is the proportion of the possible combinations of heterospecific alleles that are present in an “ijk”148

genotype. Incompatibilities may also have reduced effects due to recessivity, when their negative effects
are masked by the presence of alternative, compatible alleles (Turelli and Orr 2000). To model this, we150

introduce the free parameter sijk, which is the expected increase in breakdown when an incompatibility
appears in an ijk genotype. Finally, in a hybrid genome characterized by p1, p2 and p12, the trinomial152

expansion of (p1 + p2 + p12)
ℓ, tells us how many ℓ-locus genotypes of each type it is expected to contain.

Putting these together, we have154

f I = ∑
i+j+k=ℓ

(
ℓ

i, j, k

)
pi

1 pj
2 pk

12πijksijk (13)

Equations 12-13 extend results with ℓ = 2 and ℓ = 3 from Turelli and Orr (2000), and represent a
general model of breakdown caused by incompatibilities. A notable feature of these equations is their156

large number of free parameters. Even with symmetry between P1 and P2 (such that sijk = sjik), we will
still require a total of ⌊ℓ(1 + ℓ/4)⌋ different sijk values to specify the model (i.e., three extra parameters158

for two-locus incompatibilities, five parameters for three-locus incompatibilities etc.). There is good
empirical evidence for, at least, two- three- and four-locus incompatibilities (Fraïsse et al. 2014), and so160

the full model would depend on at least 17 free parameters. By contrast, eq. 6, from Fisher’s geometric
model, has no free parameters. The incompatibility-based model is therefore much more flexible, but162

also much more difficult to explore.
Because of this flexibility, however, it is also possible to find a set of sijk values that yield exactly the164

same dependencies as Fisher’s model. To do this, we set f I = f , using eqs. 6 and 13, and then solve for
the sijk. After some algebra, we find166

sijk =
(i + j)ℓ− (i − j)2

ℓ(ℓ− 1)πijk
(14)

Equation 14 looks unwieldy, and it was derived solely to make the models agree. Nevertheless, in
Appendix 2 and Supplementary Figure S2, we show that it embodies biologically plausible assumptions168

about incompatibilities, namely (i) partial recessivity, and (ii) increased levels of breakdown when
incompatibilities are present with homozygous alleles from both parental lines. We further show that170

these sijk fall within the relatively narrow range of values that are required if the model is to yield a
range of well-established empirical patterns (see also Turelli and Orr 2000). As such, when parental172

lines are well adapted compared to the worst possible class of hybrid ( fP = 0), the key predictions of
Fisher’s geometric model can also be derived from a general model of incompatibilities.174
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2.2 Testing the predictions with biparental inheritance

2.2.1 Fitness differences between crosses176

The simplest predictions from eq. 9 assume standard biparental inheritance at all loci. In this case,
the standard cross types can be easily located on the fitness landscape shown in Figure 2a (Fitzpatrick178

2012). With biparental inheritance, hybrids from the initial F1 cross (P1 × P2) will be heterozygous at
all divergent loci (p12 = 1 and h = 1

2 ); as such, eq. 9 predicts no breakdown for these F1.180

fF1 = 0 (15)

If the parental types are maladapted, then eq. 15 implies that fP > fF1, and so there will be F1 hybrid
vigor. Hybrid vigor can also appear at later crosses, but only when the parents are very maladapted.182

To see this, we can rearrange eq. 9 to provide a general condition for hybrid vigor:

fP > 1 − p12

4h(1 − h)
(16)

This condition will be much harder to satisfy for crosses beyond the F1. For example, in the first184

backcross (F1 × P1), all heterospecific alleles are heterozygous, and the expected heterozygosity is 50%:
h = p12

2 , E (p12) = 1
2 (Fitzpatrick 2012). As such, eq. 16 predicts hybrid vigor only when fP > (1 −186

p12)/(2 − p12) ≈ 1
3 . Conditions for hybrid vigor are even more stringent in the F2 (F1 × F1), when the

expected hybrid index and heterozygosity are both 50%: E (h) = E (p12) = 1
2 . With these values, F2188

hybrid vigor is predicted only when fP > 1
2 . Taken together, these results predict that F1 vigor will

be common, while hybrid breakdown will often appear in later crosses. This pattern has widespread190

empirical support (see references in Table A1 of Fraïsse et al. 2016b).
The model also makes quantitative predictions about the relative fitness of different crosses. Exten-192

sive data to test these predictions are available for Zea mays; these involve crosses of closely related and
highly inbred lines, which do show hybrid vigor in the F2 and later crosses (Hallauer et al. 2010; Hinze194

and Lamkey 2003; Melchinger 1987; Neal 1935; Wright 1977). To analyze these data, a widely-used
proxy for fitness is the excess yield of a cross, scaled by the excess yield of the F1. From eqs. 1-2, the196

relevant quantity is approximately equal to

w − wP

wF1 − wP
≈ 1 − ( f / fP)

β/2 (17)

= p12, fP = 1, β = 2 (18)

where w and f are the fitness and relative breakdown score for the hybrid of interest. For later crosses,198

these values will vary between individuals within a cross, due to segregation and recombination, but
in this section we ignore this variation, and assume that p12 and h take their expected values for a given200

cross type. A fuller treatment is outlined in Appendix 3.
Equation 18 confirms that Fisher’s model reduces to Wright’s (1922) single-locus predictions for202

inbreeding, but only when all divergence is deleterious ( fP = 1), and increases in breakdown score

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2017. ; https://doi.org/10.1101/237925doi: bioRxiv preprint 

https://doi.org/10.1101/237925
http://creativecommons.org/licenses/by/4.0/


act independently on log fitness (β = 2). These single-locus predictions have strong support in Zea204

mays (Hallauer et al. 2010; Hinze and Lamkey 2003; Melchinger 1987; Neal 1935; Wright 1977). For
example, as shown in Figure 3a, the excess yield of the F2 is often around 50%, equal to its expected206

homozygosity (Hallauer et al. 2010; Wright 1977). It is also notable that the two outlying points (from
Shehata and Dhawan 1975), are variety crosses, and not inbred lines in the strict sense.208

Despite this predictive success, Wright (1977) noted a pattern that single-locus theory could not
explain. In Wright’s words: “the most consistent deviation from expectation [...] is the low yield of F2210

in comparison with the first backcrosses” (Wright 1977, p. 39). Because E (p12) =
1
2 for both crosses, this

difference must involve fitness epistasis. In fact, the pattern is predicted by Fisher’s model, when there212

is a small amount of coadaptation between the fixed alleles, such that 0.5 < fP < 1 (see Supplementary
Figure S1 for fitness surfaces of this type). To show this, Figure 3b plots the four relevant data sets214

collated by Wright, and compares the results to predictions from eq. 17 with fP = 0.75. The model
predicts the roughly linear increase in vigor with mean heterozygosity, as with single locus theory, but216

also predicts the consistent difference in vigor between the backcross and F2.

2.2.2 Selection on heterozygosity within crosses218

In the previous section, we ignored between-individual variation in heterozygosity within a given cross
type. In this section, we show how natural selection is predicted to act on this heterozygosity.220

First, let us consider the F2. In this case, we have 4h(1 − h) ≈ 1 with relatively little variation
between individuals (see Appendix 3 for details). Therefore, eq. 9 is well approximated by222

fF2 ≈ 1 − p12 (19)

and so Wright’s result (eq. 10), applies in the F2, regardless of parental adaptedness. The prediction is
that p12 will be under directional selection in the F2, favoring individuals with higher heterozygosity.224

Now let us consider a backcross: F1 × P1. In this case, we have p2 = 0, and so eq. 8 becomes

fBC = (1 − fP) p12 (1 − p12) + fP (1 − p12) (20)

= p12(1 − p12), fP = 0 (21)

So selection in backcrosses varies with parental maladaptation. When f P > 0.5 there is directional226

selection for higher heterozygosity, as in the F2. But when f P is smaller, intermediate values of p12 yield
the lowest expected fitness; when f P = 0, heterozygosity is under symmetrical disruptive selection,228

favoring heterozygosities that are either higher or lower than p12 = 0.5 (eq. 21). These contrasting
predictions are illustrated in Figure 2b (see also Supplementary Figure S1).230

To test these predictions, we used a new data set of genetic data from hybrids of the mussel species:
Mytilus edulis and Mytilus galloprovincialis (Bierne et al. 2006, 2002). These species fall at the high end of232

the continuum of divergence during which introgression persists among incipient species (Roux et al.
2016). We used experimentally bred F2 and first backcrosses, with selection imposed implicitly, by234
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the method of fertilization, and by our genotyping only individuals who survived to reproductive age
(Bierne et al. 2006, 2002; see Methods and Supplementary Figure S3 for full details).236

To estimate heterozygosity in each hybrid individual, we used the 43 markers that were heterozy-
gous in all of the F1 hybrids used to make the subsequent crosses (see Supplementary Figure S3).238

We then asked whether the distribution of p12 values in recombinant hybrids was symmetrically dis-
tributed around its Mendelian expectation of p12 = 0.5, or whether it was upwardly biased, as would240

be expected if directional selection were acting on heterozygosity. As shown in the first column of
Table 2, Wilcoxon tests found that heterozygosities in surviving hybrids were significantly higher than242

expected, in both the F2 and backcross. These results may have been biased by the inclusion of indi-
viduals with missing data, because they showed higher heterozygosity (see Supplementary Table S1).244

We therefore repeated the test with these individuals excluded. As shown in the second column of
Table 2, results were little changed, although the bias towards high heterozygosities was now weaker246

in the backcross.
Interpreting these results is complicated by the ongoing gene flow between M. edulis and M. gal-248

loprovincialis in nature (Bierne et al. 2002; Fraïsse et al. 2016a). To test for this, we genotyped 129
pure-species individuals, and repeated our analyses with a subset of 33 markers that were strongly250

differentiated between the pure species (see Methods, Supplementary Figure S3 and Supplementary
Table S4 for details). With these markers, there was evidence of elevated heterozygosity in the F2, but252

not the backcross (Table 2 third column). We also noticed that many of our backcross hybrids, though
backcrossed to M. galloprovincialis, carried homozygous alleles that were typical of M. edulis. We there-254

fore repeated our analysis after excluding these “F2-like” backcrosses. Results, shown in the fourth
column of Table 2, showed that the reduced BC data set showed no tendency for elevated heterozygos-256

ity. However, the bias towards higher heterozygosities remained in the F2, even when we subsampled
to equalize the sample sizes.258

Despite the problems of interpretation due to introgression and shared variants, the results support
the prediction of eqs. 19-21: that directional selection on heterozygosity should act in the F2, but weakly260

or not at all in the backcross.

2.3 Predictions of Fisher’s geometric model with sex-specific inheritance262

2.3.1 Additional notation and basics

Results above assumed exclusively biparental inheritance. But the predictions of Fisher’s model are264

easily extended to include heteromorphic sex chromosomes, or loci with strictly uniparental inheri-
tance, such as organelles or imprinted loci (Coyne and Orr 1989; Fraïsse et al. 2016b; Turelli and Moyle266

2007; Turelli and Orr 2000). In these cases, p12, p1 and p2 are weighted sums of contributions from
different types of locus. For example, with an X chromosome and autosomes, we have268

p12 = gX p12,X+ gA p12,A

p1 = gX p1,X+ gA p1,A

p2 = gX p2,X+ gA p2,A

(22)
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Here, the subscripts denote the chromosome type, so that p12,X is the proportion of divergent sites on
the X that are heterozygous, and gX and gA are weightings, which should sum to one (Turelli and Orr270

2000). Results for specific cases can then be derived from eq. 8.
In the following sections, we apply this approach to three patterns involving sex-specific hybrid272

breakdown, in species with heteromorphic sex chromosomes. The first pattern, in the F1, is well
known (Haldane 1922; Turelli and Orr 2000). The other patterns were observed in backcross data,274

which were generated to uncover the genetic basis of F1 breakdown, and test reasonable hypotheses
about its causes (Moehring 2011; Moran et al. 2017). Both of these patterns have been called surprising,276

because neither agreed with the hypotheses (Moehring 2011; Moran et al. 2017). We show that all three
patterns are consistent with predictions from Fisher’s geometric model.278

2.3.2 Haldane’s Rule

Haldane’s Rule states that sex-specific F1 breakdown usually appears in the heterogametic sex (Haldane280

1922; Turelli and Orr 2000). To show how Fisher’s model predicts this pattern, we will assume an XO
system for concreteness, such that females are homogametic, and males heterogametic. We will also282

assume that selection is identical in both sexes, and that pure-species males and females have the
same fitness. These assumptions imply a form of dosage compensation, such that X-linked alleles have284

identical effects in homozygous or hemizygous state (Fraïsse et al. 2016b; Mank et al. 2011).
With these assumptions, the sole difference between male and female F1 is their heterozygosity. In286

XX females, all divergent sites are heterozygous, while in males, X-linked loci are hemizygous, such
that p12 = 1 − gX. From eq. 8 we therefore find288

fF1♀ = 0 (23)

fF1♂ = gX − (1 − fP) g2
X (24)

So fF1♂ > fF1♀ and Fisher’s model yields Haldane’s Rule (Barton 2001; Fraïsse et al. 2016b; Schiffman
and Ralph 2017).290

These results imply that female F1 will always have optimal fitness, regardless of the genetic distance
between their parents (Barton 2001; Fraïsse et al. 2016b). However, if we extend the model, and allow292

for a proportion g♀ (g♂) of the divergence that is strictly maternally (paternally) inherited, then we
find294

fF1♀ = g♀ + g♂ − (1 − fP)
(

g♀ − g♂)2 (25)

fF1♂ = g♀ + g♂ − (1 − fP)
(

g♀ − g♂)2
+ gX − (1 − fP) gX

(
gX + 2g♀ − 2g♂)

(26)

This still yields Haldane’s Rule for realistic parameter values (it always holds when g♀ < gA for
example), but breakdown can now appear in both sexes. This has two important consequences. First,296
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exceptions to Haldane’s Rule can appear, but only in rare circumstances: when uniparentally-inherited
loci act on traits that are subject to selection only in the homogametic sex (Fraïsse et al. 2016b). Second,298

from eqs. 2 and 5, as divergence increases, the fitness of all F1 hybrids will tend to decline; this yields
an “F1 speciation clock” (Edmands 2002; Fraïsse et al. 2016b).300

2.3.3 Male backcrosses of female F1

A surprising pattern in backcross data was observed by Moehring (2011). Moehring reanalyzed three302

data sets of reciprocal backcrosses from Drosophila species, namely D. simulans/sechellia (Macdonald
and Goldstein 1999); D. santomea/yakuba (Moehring et al. 2006a,b); and D. pseudoobscura/persimilis (Noor304

et al. 2001). In all three cases, F1♂ had low fertility, consistent with Haldane’s Rule, and so male
hybrids were derived from the backcross F1♀ × P1♂. These backcross males vary in two measures306

of heterospecificity: their autosomal heterozygosity, p12,A, and their heterospecificity on the X, p2,X.
Supplementary Figure S4 plots the data as a function of these two quantities.308

Moehring (2011) predicted that sterility would correlate positively with p2,X and negatively with
p12,A. These predictions follow from reasonable assumptions about Haldane’s Rule: that male sterility310

arises from partially recessive X-autosome interactions (Coyne and Orr 1989; Moehring 2011). Sur-
prisingly, only one of these predictions was supported. Backcross sterility in all six crosses correlates312

positively with p2,X, but correlations with p12,A are weak and inconsistent (see Supplementary Fig-
ure S4, and Table 3 of Moehring 2011).314

Exactly this pattern is predicted by Fisher’s geometric model. To see this, Figure 4a depicts the
fitness surface for hybrid males, as a function of p2,X and p12,A. Individuals from a given cross might316

occupy a rectangular region, whose bounds are determined by gX. From annotated Drosophila genomes,
we estimated that gX = 0.17 might characterize the simulans/sechellia and yakuba/santomea pairs, and that318

gX = 0.37 might characterize the pseudoobscura/persimilis pair (Table 1; see Methods for details). Figure 4
panels b-e show slices through the fitness surface for these values. In both cases, breakdown increases320

steadily with p2,X, except in the improbable case that the recombinant autosomes were completely
heterozygous (Fig. 3b-c). This is consistent with the positive correlations observed. By contrast, the322

dependencies on p12,A (Fig. 4d-e) vary in sign. This is consistent with the lack of consistent correlations
with p12,A (Supplementary Figure S4).324

Figure 4e also suggests a new testable prediction, which applies when gX is large, as we have
estimated for D. persimilis/pseudoobscura (Noor et al. 2001). When X-linked heterospecificity is low, then326

sterility is predicted to increase with p12,A, but when X-linked heterospecificity is high, then sterility is
predicted to decrease with p12,A. With its two X-linked markers, the data of Noor et al. (2001) divide328

naturally into subsets with low, medium and high heterospecificity on the X (see the three rows of data
points in Supplementary Figure S4e-f). Since we have no simple prediction when p2,X is intermediate,330

we excluded these individuals, and then fit a GLM to the remaining data. We treated p12,A as a linear
predictor, and p2,X = 1 versus p2,X = 0 as a binary factor. In effect, we fit two linear regressions332

of sterility on p12,A, with different intercepts and slopes for the high-p2,X and low-p2,X individuals.
As shown in Table 3, the predictions of Fisher’s model were supported for both backcross directions.334

Model selection favored a model with two slopes, and sterility correlated positively with p12,A when
p2,X = 0, and negatively with p12,A when p2,X = 1.336
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2.3.4 Female backcrosses of male F1

A second surprising pattern in backcross data was observed by Moran et al. (2017). These authors338

studied the field crickets Teleogryllus oceanicus and T. commodus, which have XO sex determination, and
a large X chromosome (gX ≈ 0.3; Moran et al. 2017). They are also a rare exception to Haldane’s Rule,340

with F1 sterility appearing solely in XX females (Hogan and Fontana 1973). Moran et al. (2017) hy-
pothesized that female sterility might be caused by negative interactions between heterospecific alleles342

on the X, which appear together in F1♀, but not in F1♂. To test this hypothesis, they compared two
types of backcrosses, each with similar recombinant autosomes, and non-recombinant X chromosomes,344

in their pure species form. However, one backcross type carried two identical copies of the X, both
from the same species; while the other type carried one copy of the X from each species (see Moran346

et al. 2017, or Appendix 4 for full details). If dominant X-X incompatibilities were present, these two
backcross types should have differed markedly in fertility, but this was not observed: both backcrosses348

were less fertile than the F1, and there were no strong differences between them (see Figure 2 of Moran
et al. 2017).350

Again, this surprising result is consistent with predictions from Fisher’s geometrical model. Full
details are given in Appendix 4 and Supplementary Figure S5, but the key to the explanation lies in352

eq. 21. With well-adapted parents, heterozygosity in backcrosses is under symmetrical diversifying
selection, and the two backcrosses of Moran et al. (2017) would have yielded heterozygosities with354

equal but opposite deviations from p12 = 1
2 . As such, they are predicted to show the same level of

breakdown.356

The explanation above is incomplete, because it neglects loci with uniparental inheritance, and
without such loci, Fisher’s model cannot explain the sterility observed in the F1♀ (compare eqs. 23358

and 25 above). However, including uniparental inheritance does not qualitatively alter predictions for
backcrosses. To see this, let us assume that a fraction g♀ of the divergence is maternally inherited. In360

this case, we find

fF1♀ = g♀(1 − g♀) (27)

fBC♀ =
1 − g2

X − g2♀
4

±
gXg♀

2
(28)

where the sign of the correction term in eq. 28 depends on whether the X chromosomes come from the362

same species, or different species (see Appendix 4 for a full derivation). The implications of eqs. 27-28
are clearest from a numerical example. Let us assume that a fraction of the paternal X is silenced in364

females, such that gX = 0.2 and g♀ = 0.1; we would then have fF1♀ = 0.09, and fBC♀ = 0.2375± 0.01. As
such, eqs. 27-28 allow for substantial breakdown in the female F1, with stronger and similar breakdown366

in the two sets of backcrosses. This all agrees with the data from Teleogryllus (Moran et al. 2017).
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2.4 Estimating the fitness surface368

Across a diverse collection of hybrids, equation 9 predicts that the hybrid index will be under symmet-
rical disruptive selection, and heterozygosity under directional selection. This prediction can be tested370

with data sets containing estimates of fitness, h and p12 for many hybrid individuals. Exactly such
an analysis was presented by Christe et al. (2016), for families of wild hybrids from the forest trees,372

Populus alba and P. tremula (Christe et al. 2016; Lindtke et al. 2012, 2014). These authors scored survival
over four years in a common-garden environment, and fit a GLM to these binary data (binary logistic374

regression, with “family” as a random effect), and predictors including linear and quadratic terms in
p12 and h. Model selection favored a four-term model, with terms in p12, h, h2 (see Supplementary376

Table S3, and Supplementary information of Christe et al. 2016 for full details). For comparison with
our theoretical predictions, we can write their best fit model in the following form:378

y = const + β0 (β1h (1 − β2h)− p12) (29)

where y is the fitted value for hybrid breakdown. From eq. 9, Fisher’s model predicts that β0 > 0,
0 ≥ β1 ≥ 4, and β2 = 1, should hold. The best-fit model of Christe et al. (2016) corresponds to380

β̂0 = 2.963, β̂1 = 2.59 and β̂2 = 0.93, which supports the predictions of directional selection toward
higher heterozygosity, and near-symmetrical diversifying selection on the hybrid index.382

To obtain confidence intervals on these parameters, we fit the model of eq. 29 to the raw data of
Christe et al. (2016). We also searched for other data sets, from which we could estimate the hybrid384

fitness surface. After applying some quality controls (see Methods, and Supplementary Table S1),
we identified one other data set of wild hybrids, from the mouse subspecies Mus musculus muscu-386

lus/domesticus, where male testes size was the proxy for fertility (Turner and Harr 2014). We also found
four data sets of controlled crosses: F2 from the same mouse subspecies (White et al. 2011), and the rag-388

worts Senecio aethnensis and S. chrysanthemifolius (Chapman et al. 2016); and the Drosophila backcrosses
discussed above (Macdonald and Goldstein 1999; Moehring et al. 2006a,b). Unlike the data from wild390

hybrids, these single-cross data sets leave large regions of the fitness surface unsampled; nevertheless,
they each contain enough variation in h and p12 for a meaningful estimation. Details of all six data sets392

are shown in Table 1, and they are plotted in Supplementary Figures S6-S8.
Figure 5 shows a summary of the estimated parameters, and full results are reported in Supplemen-394

tary Tables S2 and S3, and Supplementary Figures S6-S8. Taken together, the results show good support
for the predictions of eq. 9. For all six data sets there was evidence of significant positive selection on396

heterozygosity (β̂0 > 0 was preferred in all cases). Furthermore, for all six data sets, we inferred di-
versifying selection acting on the hybrid index. Estimates of β2, shown in the upper panel of Figure 5,398

show that this selection was near-symmetrical in all cases, such that β̂2 ≈ 1. The poorest fit to the
predictions was found for the Drosophila backcrosses, where estimates of β1 were significantly greater400

than the predicted upper bound of β1 = 4 (Fig. 5 lower panel). But these data sets were least suited to
our purpose, because estimates of h and p12 depend strongly on our rough estimate of gX = 0.17, and402

because they lack F2-like genotypes, from the center of the fitness surface (Figure 2a; Supplementary
Figure S8). By contrast, results for the Mus musculus F2 (White et al. 2011), are remarkably close to the404

predictions of eq. 7 (Fig. 5; Supplementary Figure S7).
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Two other features of the results deserve comment. First, for the two F2 data sets, it was not406

possible to provide meaningful confidence intervals for β1 and β2. This is because, for these two data
sets, the terms in h and h2 did not make a significant contribution to model fit, and so the preferred408

model contained only selection on p12 (see Supplementary Table S3). This is consistent with our earlier
prediction of eq. 19, and stems from the low variation in 4h(1 − h) among F2 hybrids (see Appendix 3410

and Supplementary S6 and S7).
Second, for two of the data sets, Populus and Senecio, the estimates of β1 are substantially lower412

than 4 (Figure 5; Supplementary Figure S6). This is suggestive of parental maladaptation, creating true
heterosis in the hybrids (see eq. 9). Consistent with this inference, there is independent evidence of F1414

hybrid vigor in both species pairs (Populus: Caseys et al. 2015; Senecio: Abbott and Brennan 2014).

3 Discussion416

In this article, we have used Fisher’s geometric model to develop predictions for the relative fitness of
any class of hybrid. The modeling approach is simple, with few free parameters, and it generates a418

wide range of testable predictions. We have tested some of these predictions with new and published
data sets (Table 1), and the major predictions of the model are well supported.420

We emphasize that our approach is designed for coarse-grained patterns in the data, and typical
outcomes of the evolutionary process, without considering the particular set of substitutions that differ-422

entiate the parental lines. The limitations of such an approach are seen in the low r2 values associated
with our model fitting (Supplementary Table S2); and in empirical patterns that eq. 9 could not hope to424

explain. For example, there are often strong fitness differences between the reciprocal F1 (Turelli and
Moyle 2007), and Fisher’s model can generate such asymmetries with uniparental inheritance (Fraïsse426

et al. 2016b), but if P1 and P2 are equally fit, then the expected breakdown must be the same for both
cross directions, and only the expected breakdown has been considered in the present work. These lim-428

itations notwithstanding, our approach should enable novel and complementary uses of genomic data
sets, which do not depend on identifying individual loci with anomalous effects. Such a genome-wide430

interpretation of hybrid fitness is essentially lacking in the “speciation genes” framework.
A second goal of the present work was to show how Fisher’s model can interpolate between pre-432

vious modeling approaches, namely the classical theory of inbreeding (Crow 1952; Wright 1922), and
models of genetic incompatibilities, involving a small number of loci (Dobzhansky 1937; Gavrilets 2004;434

Orr 1995; Welch 2004). We have also shown that Fisher’s model can account for empirical patterns that
each approach has struggled to explain, although there are caveats to note in each case.436

With inbred lines of Zea mays, we showed how observed differences in hybrid vigor between the BC
and F2 are expected, if we allow for a limited degree of coadaptation between the alleles that differen-438

tiate the lines (Figure 3; Wright 1977). The major caveat in this case is our simplifying assumption that
the midparent is optimal (eq. 9; Appendix 1). This assumption is consistent with the Zea data, which440

show an enormous increase in F1 yield, but it is not clear how often the assumption would be met
under an explicit model of mutation accumulation.442

With the backcross data from Drosophila and Teleogryllus, the situation is more complicated. Moehring
(2011) and Moran et al. (2017) showed that their data were not consistent with predictions from simple444
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models of incompatibilities. But while these models were based on very reasonable assumptions, they
only included incompatibilities of a single type (partially recessive X-A incompatibilities to explain446

Haldane’s Rule in Drosophila, or dominant X-X incompatibilities to explain the exception to Haldane’s
Rule in Teleogryllus). We have shown that Fisher’s geometric model gives identical predictions to a448

general model of incompatibilities (eqs. 11-14), and that this general model can account for the pat-
terns observed. It is also clear that the predictions were much more easily generated with eq. 6 than450

with eq. 13. In this case, there are two major caveats. First, the two models give identical predictions
only when the dominance relations of incompatibilities are assigned in a particular way (eq. 14). But452

we have argued that these parameter values are biologically realistic, and strongly implied by other
well-established empirical patterns (Appendix 2; Turelli and Orr 2000). Second, even when predictions454

are identical for the quantity f (eq. 2), the two approaches still make different predictions for other
kinds of data, and these were not considered in the present work. The most important difference is the456

dependency of log fitness on d, the genomic divergence between the species. Under Fisher’s geometric
model, the log fitness of hybrids declines with −dβ/2 (eqs. 1-2 and 5). By contrast, with the simplest458

models of incompatibilities, there is a snowball effect (Orr 1995), where the number of incompatibilities
grows with dℓ (eq. 11), and so log fitness declines with −dℓβ/2. This is a genuine difference between460

the modeling approaches, although truly discriminatory tests may be difficult (Fraïsse et al. 2016b). For
example, it may not always be possible to distinguish between an incompatibility-based model with462

a low value of β (equivalent to strong positive epistasis between incompatibilities), or a model where
β is higher, but where the number of “incompatibilities” does not snowball, because they appear and464

disappear as the genetic background changes (Fraïsse et al. 2016b; Guerrero et al. 2017; Kalirad and
Azevedo 2017; Welch 2004).466

Given the simplicity and flexibility of the modeling approach explored here, and its predictive
successes with a range of data, it should be readily extendable to address other outstanding questions468

in the study of hybridization. These include the putative role of hybridization in adaptive evolution (e.g.
Duranton et al. 2017; Fraïsse et al. 2016a,b; Mendez et al. 2012), the effects of recombination in shaping470

patterns of divergence (Schumer et al. 2017), and the roles of intrinsic versus extrinsic isolation (Chevin
et al. 2014). Given its ability to interpolate between models of different and extreme kinds, it should472

also be particularly useful for understanding hybridization in intermediate regimes, where parental
genomes are characterized by both maladaptation and allelic coadaptation, or where the architecture of474

isolation involves many genes of small or moderate effect (Baird 2017; Boyle et al. 2017; Buerkle 2017;
Davis and Wu 1996; Maside and Naveira 1996; Morán and Fontdevila 2014).476

4 Methods

4.1 Mytilus data478

Conserved tissues from the mussel species, Mytilus edulis and Mytilus galloprovincialis, and their hybrids,
were retained from the work of Bierne et al. (2006, 2002). As reported in those studies, M. edulis from the480

North of France were crossed with M. galloprovincialis from the French Mediterranean coast to produce
F1 hybrids (five males and one female; Bierne et al. 2002). The F1 were then used to produce an F2,482

and sex-reciprocal backcrosses to M. galloprovincialis (which we denote here as BC12 and BC21; Bierne
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et al. 2006). In particular, oocytes from the F1 female were fertilized by the pooled sperm of the five484

F1 males producing F2 individuals, from which 132 individuals were sampled; oocytes from the F1
female were fertilized by pooled sperm of five M. galloprovincialis males to produce BC12, from which486

72 individuals were sampled; and five M. galloprovincialis females were fertilized by pooled sperm from
the five F1 males, producing BC21, from which 72 individuals were sampled. In addition to these488

hybrids, we also genotyped 129 individuals from “reference” populations of the two species, found in
regions with relatively little contemporary introgression. In particular, we sampled M. galloprovincialis490

from Thau in the Mediterranean Sea; and sampled M. edulis from four locations in the North Sea and
English Channel (The Netherlands, Saint-Jouin, Villerville and Réville). Full details of these reference492

populations are found in Supplementary Table S4.
In each case, gill tissues were conserved in ethanol at -20° C. DNA was extracted using a NucleaMag494

96 Tissue kit (Macherey-Nagel) and a KingFisher™ Flex (ThermoFisher Scientific). We then genotyped
all samples for 98 Mytilus markers that were designed from the data of Fraïsse et al. (2016a). The496

flanking sequences of the 98 SNPs are provided in Supplementary Table S5. Genotyping was sub-
contracted to LGC-genomics and performed with the KASP™ chemistry (Kompetitive Allele Specific498

PCR, Semagn et al. 2014). Results are shown in Supplementary Figure S3. Many of the 98 markers are
not diagnostic for M. edulis and M. galloprovincialis, and so we retained only the 43 that were scored as500

heterozygous in all 6 of the F1 hybrids. To obtain a reduced set of strongly diagnostic markers, we mea-
sured sample allele frequencies in our pure species M. edulis and M. galloprovincialis samples (pooling502

M. edulis individuals across the four sampling locations; Supplementary Table S4), and retained only
markers for which the absolute difference in allele frequencies between species was >90%. This yielded504

the set of 33 markers used for the right-hand columns in Table 2. The “subsampled” data shown in the
fourth column of Table 2, excluded any BC hybrid who carried the major allele typical of M. edulis in506

homozygous form. This yielded 56 BC hybrids. We then retained the first 56 F2 to be sequenced, to
equalize the sample sizes.508

4.2 Collation of published data

We searched the literature for published data sets combining measures of individual hybrid fitness,510

with genomic data that could be used to estimate p1, p2 and p12. In addition to those shown in Table 1,
we also examined data sets that proved unsuitable for the sort of reanalysis presented here. These512

included data sets where the measure of fecundity or fertility took an extreme low value for one of the
pure species, suggesting that it is not a good proxy for fitness (e.g. Orgogozo et al. 2006), data where the514

fitness proxy correlated strongly with a measure of genetic abnormality such as aneuploidy (Xu and He
2011), or data where the states of many markers could not be unambiguously assigned, for example,516

due to shared variation. Before estimating the fitness surface, we also excluded any data set where
there was a highly significant rank correlation between the proportion of missing data in an individual,518

and either their heterozygosity, or fitness. For this reason, we did not proceed with reanalyses of the
excellent data sets of Li et al. (2011), or Routtu et al. (2014) (see Supplementary Table S1 for full details).520

For our reanalysis of the Mus musculus F2 (White et al. 2011), we used a conservative subset of these
data; we excluded any individual where any X-linked marker was scored as heterozygous (indicative522

of sequencing errors in heterogametic males; White et al. 2011), and controlled for variation in the
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uniparentally inherited markers, by retaining only individuals carrying M. m. domesticus mitochrondria,524

and the M. m. musculus Y. However, results were little changed when we used all 304 individuals with
sterility data (Supplementary Table S3). Results were also unaffected when we used alternative proxies526

for fitness (Supplementary Table S3).

4.3 Estimation of gX from annotated genomes528

For taxa with XY sex determination (Table 1), the weightings gX and gA, which determine the contri-
bution of the X and autosomes to the overall constitution of the genome (eqs. 22), were estimated from530

the total length of coding sequences associated with each chromosome type, ignoring the small contri-
butions from the Y and mitochondria. In each case, we obtained the longest protein product for each532

unique gene, and then summed their lengths, using a custom R script. The gX values, shown in Table 1,
were calculated as the total length of X-linked CDS divided by the total CDS length. For Mus musculus,534

we used the reference genome assembly “GRCm38.p5”. For Drosophila simulans, we used the assem-
bly “GCA_000754195.3 ASM75419v2”, and for Drosophila yakuba “GCA_000005975.1 dyak_caf1”. For536

Drosophila pseudoobscura, the current annotation was downloaded from FlyBase release 3.04 (Gramates
et al. 2017). The .gtf file was then sorted and merged (combining overlapping coding sequences on each538

chromosome) using BEDTools (Quinlan and Hall 2010). Coding sequence lengths were calculated and
summed over each chromosome, using custom awk commands.540

4.4 GLM methods

The linear model results shown in Table 3, Figure 5, Supplementary Tables S2 and S3, and Supple-542

mentary Figures S6-S8, were all fit in R v. 3.3.2 (R Core Team 2016). For data sets with quantitative
fitness measures (Turner and Harr 2014; White et al. 2011; Supplementary Figure S7) we used the544

standard general linear models, with Gaussian errors, and chose data transformations to reduce het-
eroscedasticity. For binary fitness data (Chapman et al. 2016; Christe et al. 2016; Noor et al. 2001;546

Table 3; Supplementary Figure S6), we used binomial regression with a logit link implemented in the
glm function; and with ordinal fitness data (Macdonald and Goldstein 1999; Moehring et al. 2006b;548

Supplementary Figure S8) we used proportional odds logistic regression (Agresti 2003), implemented
in the polr function. In these cases, the p-values shown in Supplementary Table S3 were calculated by550

comparing the t-value to the upper tail of normal distribution, as in a Wald test. For the non-Gaussian
models, we also report McFadden’s pseudo-r2, defined as one minus the ratio of log likelihoods for the552

fitted and null models (McFadden 1974).
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Appendix 1: the random walk approximation with suboptimal parental
types562

In this Appendix, we derive the random walk approximation for the breakdown score of a given hybrid
genotype, under Fisher’s geometric model. Let us begin by describing the two parental phenotypes as564

n-dimensional vectors, denoted zP1 and zP2, which are equal but opposite deviations from the mid-
parental phenotype, denoted as zmp. So if we define566

zmp ≡ zP1 + zP2

2
(30)

r ≡ zP1 − zP2

2
(31)

then

zP1 = zmp + r (32)

zP2 = zmp − r (33)

Below, we will use the notation zmp,i and ri to refer to the components of these vectors for trait i.568

We can now consider the d mutations that differentiate P1 and P2 as describing equal but opposite
paths from one of the parental phenotypes, to the midparent. Our approximation is to treat this path,570

on each of the n traits, as a Brownian bridge.
To derive this approximation, let B(t) denote a Brownian bridge, taking place over a single unit of572

time, such that 0 ≤ t ≤ 1, and with a rate σB. B(t) is normally distributed, with the following mean:

E (B(t)) = B(0) + t (B(1)− B(0)) (34)

and covariance at two time points given by:574

Cov (B(t1), B(t2)) = σ2
B (1 − t2) t1, 0 ≤ t1 ≤ t2 ≤ 1 (35)

To model hybrid genotypes, we will need to count some sections of the random walk twice, to
account for any homozygous alleles, and some sections only once, to account for any heterozygous576

alleles. Therefore, we are interested in the quantity:
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Bhyb ≡ B (t1 + t2) + B (t1)− B (0) (36)

From eqs. 34-35, Bhyb will also be normal, with the following mean and variance578

E
(

Bhyb
)
= B(0) + (2t1 + t2) (B(1)− B(0)) (37)

Var
(

Bhyb
)
= σ2

B {t1(1 − t1) + (t1 + t2)(1 − t1 − t2) + 2(1 − t1 − t2)t1} (38)

We can now apply these results to zi, the deviation from the optimum of trait i (see eq. 4 in the main
text). In this case, the random walk begins from the trait value of parent P1: B(0) = zmp,i + ri, ends at580

the midparent: B(1) = zmp,i, and has a total rate equal to the total number of mutations, multiplied by
their typical effect size: σ2

B = d vi. We then take the intermediate timepoints to be t1 = p2 (this section582

of the walk is counted twice, to account for homozygous alleles), and t2 = p12 (this section is counted
once, to account for heterozygous alleles).584

Putting these results together, we find that zi is a normally distributed random variable, with the
following properties:

zi ∼ N(µi, σ2
i ) (39)

(40)

σ2
i = d vi (p12(1 − p12) + 4p1 p2) (41)

µi = zmp,i + (p1 − p2) ri (42)

From eq. 4, the breakdown score, S, depends on the squared trait values, and from normal theory,
we have586

E
(
z2

i
)
= σ2

i + µ2
i (43)

Var
(
z2

i
)
= 2σ2

i
(
σ2

i + 2µ2
i
)

(44)

As such, S will be approximately gamma distributed, with a mean and variance given by the
weighted sum of these quantities.588

Let us now consider the special cases discussed in the main text. First, and simplest, is the case
where both parents, and therefore the midparent, are phenotypically optimal. This implies that all590

zmp,i = 0 and all ri = 0, such that all µi = 0. We then find

f ≡ E (S)
E (S†)

=
∑i λi σ2

i

∑j λj d vj
(45)
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And this yields eqs. 6-7 of the main text. Next, let us consider the case where the midparent is
optimal (all zmp,i = 0), but both parents are equally maladapted (some ri > 0). In this case, µ2

i =

(p1 − p2)
2 r2

i and SP = ∑ λir2
i , and so we find:

f = p12(1 − p12) + 4p1 p2 + (p1 − p2)
2 fP

= 4h(1 − h)− p12 + (1 − 2h)2 fP (46)

which yields eqs. 8-9 of the main text.592

Let us finally consider another simple case, in which one of the parental species (P2) is maladapted,
while the other (P1) is optimal. In this case, we can set zP1,i = 0 and zP2,i = ri, such that zmp,i = ri/2.594

We now have µi = (1 + p2 − p1)
ri
2 , and so

E (S)
E (S†)

= p12(1 − p12) + 4p1 p2 + (1 + p2 − p1)
2 fP1

4

= 4h(1 − h)− p12 + h2 fP1

= 4h
(

1 −
(

1 − fP1

4

)
h
)
− p12 (47)

Comparing eq. 47 to eq. 7 shows that maladaptation in one of the parental species introduces an596

asymmetry in the selection on the hybrid index, h, but leaves the form and strength of selection on
heterozygosity p12 unchanged. This situation is illustrated in Supplementary Figure S1d.598

Appendix 2: The dominance relations of incompatibilities

In this Appendix, we consider incompatibility-based models of hybrid fitness (eqs. 11-13). We examine600

different ways of assigning the parameters, sijk, which appear in f I (eq. 13), and represent the expected
contribution to hybrid breakdown of individual incompatibilities, and especially, their dominance or602

recessivity (Turelli and Orr 2000). To understand this, let us begin by assigning the following functional
form:604

sijk ∝
(

1
2

)δk

(48)

where below, we will use the constant of proportionality 2
(
2ℓ − 2

)
, to simplify the algebra. In eq. 48,

the parameter δ allows us to tune the dominance of incompatibilities, measured in terms of breakdown606

score, rather than fitness. When δ = 1, then each heterozygous locus halves the effects of incompatibil-
ity. This is equivalent to assuming that incompatibilities act multiplicatively, since each heterozygous608

locus halves the number of times that the incompatible combination of alleles is present in the genome.
The sijk under multiplicative selection (δ = 1) are illustrated by the green points in Supplementary610
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Figure S2.
To determine the predictions of this model, let us substitute eq. 48 into eq. 13, and set δ = 1. After612

some algebra, we find:

f I = 2
[
1 −

(
p2 +

1
2 p12

)ℓ − (
p1 +

1
2 p12

)ℓ]
, δ = 1 (49)

≡ 2
[
1 − hℓ − (1 − h)ℓ

]
(50)

where h is the hybrid index, as defined in eq. 3. As such, when incompatibilities act multiplicatively,614

breakdown will depend solely on the total heterospecificity, and not at all on how the heterospecific
alleles are arranged into genotypes (i.e. whether they appear as homozygotes or heterozygotes). It616

follows that breakdown is not predicted to change between the F1 and F2 crosses, and that homogametic
F1, with h = 1

2 , will have the highest possible breakdown score. As such, this multiplicative model618

cannot predict hybrid breakdown between the F1 and F2, or Haldane’s Rule.
Now let us consider another extreme assumption. We assume that incompatibilities are fully re-620

cessive, such that no breakdown appears unless all incompatible alleles appear in homozygous or
hemizygous form. We model this by making δ very large, such that sijk = 0 unless k = 0. These622

values are illustrated by the red points in Supplementary Figure S2. With the assumption of complete
recessivity, we find:624

f I = 2
[
(p1 + p2)

ℓ − pℓ1 − pℓ2
]

, δ → ∞ (51)

Equation 51 does not predict Haldane’s Rule, unless there is substantial uniparental inheritance
from both the male and female parents. This is because f I = 0 if p1 p2 = 0, and so both male and626

female F1 will have identical and optimal fitness. For similar reasons, eq. 51 predicts that the fitness of
heterogametic backcrosses will decrease with p12,A: a prediction that is not supported by the relevant628

data (Moehring 2011).
We have shown that both extreme regimes (no recessivity, and complete recessivity) yield unsup-630

ported predictions. But what values of δ are biologically plausible? To answer this question, let us
consider Haldane’s Rule under an incompatibility-based model, and ignoring uniparental inheritance.632

Assuming that males are heterogametic, Haldane’s Rule will hold when

f I,F1♂ > f I,F1♀ (52)

and using eqs. 13 and 48, after some algebra, eq. 52 is found to be equivalent to:634

(1 − gX)
ℓ +

(
1 − gX + 2δgX

)ℓ
−

(
2(1 − gX) + 2δgX

)ℓ
> 2ℓ − 2 (53)

This condition is most difficult to satisfy when incompatibilities involve two loci (ℓ = 2), and in this
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case, we find the solution:636

δ > ln
(

2 − gX

1 − gX

)/
ln (2) (54)

The value of δ that is required to yield Haldane’s Rule will therefore increase with gX. Towards the
limit of the biologically plausible range, when two-thirds of the between-species divergence is X-linked638

(gX = 2/3) Haldane’s Rule will hold only if δ > 2. As such, setting δ = 2, such that each heterozygous
locus reduces the breakdown score by a factor of four, will yield Haldane’s Rule in most cases. The640

sijk values from eq. 48 with δ = 2 are shown as yellow points in Supplementary Figure S2. Another
feature of the model with δ = 2 is that it produces parameter dependencies that are very close to those642

predicted by Fisher’s geometrical model (see also Manna et al. 2011). The similarity is clearest with
two-locus incompatibilities, where we find644

f I =
( 1

2

)δ−2 p12

(
1 − p12

[
1 −

( 1
2

)δ
])

+ 4p1 p2, ℓ = 2

= p12
(
1 − 3

4 p12
)
+ 4p1 p2, ℓ = 2, δ = 2 (55)

Comparing eq. 55 to eq. 6, shows that f I ≈ f when we use eq. 48 with δ = 2.
This is made even clearer when we compare the yellow points in Supplementary Figure S2, to the646

sijk values derived from eq. 14 of the main text, which were chosen to exactly match the predictions as
Fisher’s geometric model (i.e. the values which yield f I = f ). These sijk are shown as blue points in648

Supplementary Figure S2. The plot therefore clarifies the biologically-realistic assumptions embodied in
eq. 14. First, these values reproduce the intermediate levels of recessivity that are required to generate650

Haldane’s Rule. Second, eq. 14 states that incompatibilities will have stronger effects when alleles
from both parental species appear in homozygous state. For example, if the three alleles ABc form an652

incompatibility (with upper and lower case letters distinguishing alleles from P1 and P2), then eq. 14
predicts that the genotype Aa/BB/cc (with ijk = 111) will tend to have lower fitness than the genotype654

AA/BB/Cc (with ijk = 201) even though both genotypes contain the incompatibility, and both comprise
two homozygous loci and one heterozygous locus.656

Appendix 3: Segregation and recombination

For a recombinant cross, such as the F2, the heterozygosity and hybrid index will vary between indi-658

viduals. As such, to derive the expected breakdown score for a recombinant cross, we need to treat f
(eq. 2) as a random variable. Because h and p12 may correlate strongly, it is convenient to define q as660

the “homozygous hybrid index”: the proportion of homozygous divergent sites that originate with P2.

q ≡ p2

p1 + p2
=

p2

1 − p12
(56)
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If we assume that P1 and P2 are optimally fit, then using eqs. 6 and 56, we can write f as662

f = p12 (1 − p12) + 4q (1 − p12) (1 − p12 − q (1 − p12)) (57)

such that

E ( f ) = (1 − p̄12)
(

p̄12 (1 − 2q̄)2 + 4(1 − q̄)q̄
)
− Vp (1 − 2q̄)2 − 4Vq

(
(1 − p̄12)

2 + Vp
)

(58)

where664

p̄12 ≡ E (p12)

q̄ ≡ E (q)

Vp ≡ Var (p12)

Vq ≡ Var (q)

and we have used the fact that q and p12 will not generally covary. This expression simplifies for special
cases. For example, consider the standard crosses, with strictly biparental inheritance. For backcrosses,666

all homozygous sites must come from a single species, such that q̄ = Vq = 0, and for the first backcross,
we have p̄12 = 1

2 , and so668

E ( fBC) = p̄12(1 − p̄12)− Vp

=
1
4
− Vp (59)

For the F2, we have p̄12 = q̄ = 1
2 , and so

E ( fF2) =
1
2
− Vq − 4VqVp (60)

Vp and Vq will depend on the distribution of the divergence across the genome, and on patterns of670

segregation and recombination. However, we can derive simple and useful predictions if we assume
that the divergence is equally distributed among m freely recombining regions. These variances will672

also apply to estimators of p12 and q from m independently segregating markers. In this case, p12, p1

and p2 follow a multinomial distribution, such that674

Vp =
p̄12(1 − p̄12)

m
(61)

Vq ≈
q̄(1 − q̄)

m(1 − p̄12)
, m ≫ 1 (62)

where the last expression is approximate, because Vq is undefined if any individual is completely
heterozygous, with p12 = 1. From these expressions, it follows that676
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E ( fBC1) =
1
4

(
1 − 1

m

)
(63)

E ( fF2) ≈ 2E ( fBC1) + O(m−2) (64)

and so the predicted breakdown in the F2 is roughly double that of the first backcross. Similar consid-
erations were used to derive the approximation of eq. 19, since in the F2, Var (4h(1 − h)) ≈ 1/(2m2),678

and so most of the variance in f will come from Var (p12) ≡ Vp = 1/(4m).

Appendix 4: Predictions for the Teleogryllus backcrosses680

In this Appendix we provide a full derivation of the results for homogametic female backcrosses, which
are relevant to the study of Moran et al. (2017) on Teleogryllus field crickets. Given the female-specific F1682

sterility observed in Teleogryllus, Moran et al. (2017) generated backcrosses from males of the reciprocal
F1. These hybrids are denoted F112♂ (P1♀ × P2♂) and F121♂ (P2♀ × P1♂). They differ solely in their684

X chromosomes, with F112♂ carrying the X from P1, and F121♂ carrying the X from P2. When these
F1 are crossed with the parental lines, the female offspring form the reciprocal backcrosses: BC12♀686

(F112♂ × P1♀) and BC21♀ (F121♂ × P1♀). These two backcross directions will both carry recombinant
autosomes, for which E (p12,A) = 1

2 and p2,A = 0. However, BC12♀ will carry two identical copies688

of the X, while BC21♀ will carry one X from each species. As such they are maximally different in
their X-linked heterozygosity: p12,X = 0 for BC12♀ and p12,X = 1 for BC21♀. If we begin by ignoring690

uniparental inheritance, then the heterozygosities for the two backcross directions are p12 = gA p12,A

and p12 = gA p12,A + 1− gA. If we further assume that the parental types are well adapted, compared to692

the worst possible class of hybrid, then heterozygosity in both backcrosses will be under symmetrical
diversifying selection, f = p12(1 − p12) (eq. 21). The two breakdown scores are therefore:694

fBC12♀ = gA p12,A (1 − gA p12,A)

(65)

fBC21♀ = gA {1 − p12,A} (1 − gA {1 − p12,A})

These two values will be equal at the Mendelian expectation of p12,A = 1
2 , and deviations from these

expectations, due to stochasticity in segregation and recombination, will have equal but opposite effects696

for the two backcross directions, leading to identical predicted fitnesses overall. This is illustrated in
Supplementary Figure S5, which shows the predicted fitness surfaces for homogametic backcrosses.698

The dashed lines in both panels represent the “mirror-image” fitness curves that apply to BC12♀ and
BC21♀.700

If we now assume that a fraction, g♀, of divergent sites are subject to exclusively maternal in-
heritance, then the heterozygosity for BC12♀ remains as p12 = gA p12,A, while for BC21♀ it becomes702

p12 = gA p12,A + 1 − gA − g♀. These values yield eq. 28 of the main text, and the new fitness curve
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for BC21♀ is illustrated by the solid line in the lower panel of Supplementary Figure S5. We also note704

that the rough similarity in the breakdown scores for the two backcross directions applies only to the
first backcross, and not to later backcrosses, for which E (p12,A) <

1
2 . It is therefore notable that Moran706

et al. (2017) did find significant differences between backcross directions for their BC2 data (see their
Table 3), again, consistent with predictions from Fisher’s geometric model.708
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Tables and Figures

F1

P2P1

Figure 1: A schematic representation of Fisher’s geometric model, with n = 2 “traits”, each under
optimizing selection of differing strengths. We consider hybrids between two diploid parental lines, P1
and P2, both of which have an optimal phenotype, but realized by different alleles. If we assume strict
biparental inheritance, and additivity at the level of phenotype, then the initial F1 hybrid will have the
midparental phenotype, which is also optimal. The expected fitness of other hybrids can be predicted
by assuming that their component alleles form tethered random walks (Brownian bridges), between
the three well-fit genotypes (see Appendix 1 for details).
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Figure 2: Panel (a) shows a heatplot of the fitness surface predicted by Fisher’s geometric model, for
hybrid genotypes, when the parental types are well adapted (eq. 7 with fP = 0). The colors represent
the relative expected breakdown score, f , with higher values corresponding to lower fitness (eqs. 1-2).
Predictions are shown as a function of the interspecies heterozygosity, p12 and the hybrid index, h
(eq. 3). The parental P1 and P2, are found at the lower corners, with p12 = 0 and h = 0 or h = 1.
With purely biparental inheritance, an initial F1 cross would be at the upper corner, with p12 = 1,
backcrosses would lie along the upright edges, with h = p12/2 or h = 1 − p12/2, and the F2 would
cluster in the center with E (h) = E (p12) = 1

2 . Panel (b) shows slices through this fitness surface,
demonstrating that the selection on heterozygosity, p12, will differ according to cross type. For the F2
(F1×F1), heterozygosity is under directional selection, towards higher values. For backcrosses (such
as BC1: F1×P1), then if the parental types are well adapted, heterozygosity is under symmetrical
diversifying selection, away from the Mendelian expectation for the first backcross, and towards higher
or lower values.
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Figure 3: Data on hybrid vigor, from crosses of inbred Zea mays. The original data were collated
by Wright (1977; see his Table 2.3.2), and Hallauer et al. (2010; see their Table 9.13), including only
data from single crosses, where there was hybrid vigor in the F2, and yield was measured in quintals
per hectare. Panel (a) plots the excess yield of the F2 (eq. 17). Results are shown for variety crosses
(black triangles), as well as crosses of inbred lines in the strict sense (all other points). The dashed
line shows the prediction of 0.5 from single-locus theory (eq. 18). Panel (b) shows the four data sets
collated by Wright (1977), which allow us to compare the F2 and various backcrosses. These crosses,
chosen to yield different levels of heterozygosity, are the parental type (P1), the second backcross
(BC2 = (F1 × P1)× P1); the first backcross (BC1 = F1 × P1), the F2 (F1 × F1), second backcross to the
other parent (BC2∗ = (F1 × P1)× P2), and the F1 (P1 × P2) (The data of Stringfield 1950 replace BC2*
with an F2 between two distinct F1, involving 3 distinct strains, but the predictions are unchanged). The
grey symbols for the four data sets correspond to those used in panel (a). The dotted line in panel (b)
shows predictions from Fisher’s model, assuming that the between-strain divergence contains limited
coadaptation. The prediction uses eqs. 19-20 and 17, with fP = 0.75, and β = 2.5, which was chosen to
fit the data of Richey and G. F. Sprague (1931). The model predicts both the roughly linear increase in
vigor with heterozygosity, and the systematic difference between BC1 and F2.

29

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2017. ; https://doi.org/10.1101/237925doi: bioRxiv preprint 

https://doi.org/10.1101/237925
http://creativecommons.org/licenses/by/4.0/


p2,X p12,A

f  
 (

g
X

 =
 0

.1
7)

f  
 (

g X
 =

 0
.3

7)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

  (b) 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)  

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

  (c) 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e)  high p2,X

low p2,X

(a)Backcross XO males

F121

F112P10.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

autosomal heterozygosity, gAp12,A

X
 h

et
er

os
pe

ci
fic

ity
, g

X
p

2,
X

0.00

0.25

0.50

0.75

1.00
 f

Figure 4: Predictions of Fisher’s geometric model for heterogametic male hybrids. For simplicity, the
predictions neglect any contributions from uniparentally-inherited loci, and assume that the parental
types are well adapted. For concreteness, we assume XO sex determination, so that hybrids differ
in their autosomal heterozygosity, p12,A and the proportion of alleles on the X that are heterospecific,
p2,X. Panel (a) shows the fitness surface as a function of these two quantities. The dotted lines delimit
the region that would apply to a species pair with gX = 0.17 (as we have estimated for Drosophila
simulans/sechellia and D. santomea/yakuba), and the dashed lines delimit the region that would apply to a
species pair with gX = 0.37 (as we have estimated for Drosophila persimilis/pseudoobscura). Panels (b)-(e)
show slices through this fitness surface, with vertical dotted lines showing the Mendelian expectations
for a first backcross. Panels (b) and (c) show the dependency on X-linked heterospecificity. Results
are shown when the autosomal heterozygosity is equal to its Mendelian expectation of E (p12,A) = 1

2
(black line), and over a range of values from p12,A = 0 (thickest gray line) to p12,A = 1 (thinnest gray
line). Similarly, panels (d) and (e) show the dependency on autosomal heterozygosity, when the X-
linked heterospecificity is at its expected value of E (p2,X) = 1

2 (black line), or over a range of values
from p2,X = 0 (thickest gray line) to p2,X = 1 (thinnest gray line). Together, the plots show that
Fisher’s geometric model can account for the surprising results of Moehring (2011), and generate a
new supported prediction (Table 3).
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Figure 5: Best fit parameter estimates for the GLM of eq. 29, fit to fitness and genomic data from
six data sets of hybrids (see Table 1 for details). The upper panel shows estimates of the coefficient
β2 which determines the form of selection acting on the hybrid index, h. Estimates of β2 = 1 are
consistent with symmetrical diversifying selection. The lower panel show estimates of the coefficient β1
which determine the relative strength of selection acting on the hybrid index. Estimates of β1 = 4 are
predicted when the parental types are well adapted (eq. 7), while estimates 0 < β1 < 4 are predicted
when the parental types are maladapted (eq. 9). Confidence intervals are defined as values that reduce
the AIC by 2 units. These measures of uncertainty were not obtained for the F2 data, where variation
in the hybrid index contributed little to the model fit, as predicted by eq. 19. Full details of the model
fitting are found in the Methods and Supplementary Tables S2 and S3.
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Table 1: Data sets

Hybridization N Sex #Markers Cross gX Fitness measure Reference
Zea mays inbred lines - } - Various - Excess yield See Fig. 3
Mytilus edulis/galloprovincialis 132 ♂/♀ 43 F2 - - This study

144 ♂/♀ 43 BC1 - -
Drosophila sechellia/simulans 200/200 ♂ 8 X; 31 A BC1 0.17 Sperm quantity: 3-pt. scale Macdonald and Goldstein 1999
Drosophila santomea/yakuba 550/549 ♂ 10 X; 22 A BC1 0.17 Motile sperm: 9-pt. scale Moehring et al. 2006a,b
Drosophila pseudoobscura/persimilis 1141/1036 ♂ 2 X; 11 A BC1 0.37 Motile sperm: present/absent Noor et al. 2001
Teleogryllus oceanicus/commodus 79 ♀ - BC1 0.30 Egg and offspring number Moran et al. 2017

108 ♀ - BC2 0.30 Egg and offspring number
Populus alba/tremula 137 ♂/♀ ~12,000 WH - Survival after 4 years Christe et al. 2016
Senecio aethnensis/chrysanthemifolius 64 } 966 F2 - Necrotic/Healthy Chapman et al. 2016
Mus musculus musculus/domesticus 185 ♂ 14,220 WH 0.039 Testes weight Turner and Harr 2014

305 ♂ 202 (16 X; 182 A) F2 0.039 Prop. abnormal sperm White et al. 2011
N: The number of individual hybrids, divided by backcross direction where appropriate; #Markers: The number of genetic markers used to estimate p12 and h,
sometimes divided into X-linked and Autosomal. BC1: First backcross; BC2: Second backcross; WH: Wild hybrids. gX: weight given to X-linked markers in the
calculation of overall genome composition, calculated from the length of total annotated coding sequence.
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Table 2: Tests for selection on heterozygosity in F2 and Backcrosses of Mytilus mussels.

Markers: 43 43 33 33
Data set: All No missing data No missing data Subsampled

Cross p̂12 (N) p-value p̂12 (N) p-value p̂12 (N) p-value p̂12 (N) p-value

F2 0.57 (132) 1.5 × 10−6*** 0.56 (88) 6.4 × 10−4*** 0.55 (91) 0.0033** 0.56 (56) 0.0020**
BC 0.57 (144) 1.3 × 10−4*** 0.53 (94) 0.0282* 0.53 (105) 0.0569 0.52 (56) 0.5815

p̂12: the estimated median heterozyosity; N: the number of hybrid individuals sampled; p-value: result of a Wilcoxon test of the null hypothesis median p12 = 0.5.
F2: random mating of F1 between M. galloprovincialis and M. edulis; BC: Backcross of the F1 to M. galloprovincialis. No missing data: all individuals with missing
data for any of the markers were excluded; Subsampled: for the BC, any individual carrying a marker that was homozygous for the major allele carried by wild
M. edulis populations was excluded; for the F2, we downsampled by sequencing order to equalize sample sizes.

Table 3: Regressions of male sterility on autosomal heterospecificity in Drosophila backcrosses

Backcross to N Model Best-fit coefficients for p12,A AIC

D. pseudoobscura 582 two intercepts - 601.31
two intercepts + single slope 2.147 580.41
two intercepts + two slopes 3.746 (low p2,X); -1.973 (high p2,X) 558.91

D. persimilis 610 two intercepts - 603.53
two intercepts + single slope 3.620 558.18
two intercepts + two slopes 4.505 (low p2,X); -1.876 (high p2,X) 545.87

AIC: Akaike Information Criterion; preferred model shown in bold.
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