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ABSTRACT  17 

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an example of a complex 18 

disease of unknown etiology. Multiple studies point to disruptions in immune functioning in 19 

ME/CFS patients as well as with specific genetic polymorphisms and alterations of the DNA 20 

methylome in lymphocytes. However, the association between DNA methylation and genetic 21 

background in relation to the ME/CFS is currently unknown. In this study we explored this 22 

association by characterizing the genomic (~4.3 million SNPs) and epigenomic (~480 thousand 23 

CpG loci) variability between populations of ME/CFS patients and healthy controls. We found 24 

significant associations of methylation states in T-lymphocytes at several CpG loci and regions 25 

with ME/CFS phenotype. These methylation anomalies are in close proximity to genes involved 26 

with immune function and cellular metabolism. Finally, we found significant correlations of 27 

genotypes with methylation phenotypes associated with ME/CFS. The findings from this study 28 

highlight the role of epigenetic and genetic interactions in complex diseases, and suggest several 29 

genetic and epigenetic elements potentially involved in the mechanisms of disease in ME/CFS. 30 
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 31 

Introduction 32 

Understanding the biological basis of complex traits and diseases remains one of the 33 

biggest challenges in biology and medicine. Chronic Fatigue Syndrome (also known as Myalgic 34 

Encephalomyelitis, hereafter referred to as ME/CFS) is an example of a complex, multifactorial 35 

disease with symptoms that vary substantially among patients. ME/CFS is a debilitating 36 

multisystem disease affecting between 1 and 2 million people in the United States alone 1, with 37 

an annual economic impact between $17 and $24 billion 2. Yet its biological basis remains 38 

largely unknown. 39 

Multiple studies point to disruptions in the immune and neuroendocrine systems in 40 

ME/CFS patients 3–14. ME/CFS appears to be associated with specific genetic polymorphisms 15–41 
17, as well as with alterations of the DNA methylome in lymphocytes 14,18,19. Understanding the 42 

contribution of the genetic background in ME/CFS patients as a predisposing factor for 43 

epigenetic abnormalities associated with the disease is a fundamental step to elucidate its causes. 44 

This understanding is also key for the development of tools to identify risk factors and potential 45 

treatments. 46 

T-cell lymphocytes appear to be a primary cell type underlying immune and 47 

neuroendocrine abnormalities observed in ME/CFS patients. Functional impairment in T-cell 48 

glucocorticoid receptor and increased dexamethasone sensitivity are characteristic of some 49 

ME/CFS patients 14,20. Furthermore, genetic polymorphisms within non-coding regions of T-cell 50 

receptor loci 15, as well as differential methylation in CD4+ T helper lymphocyte cells (Brenu et 51 

al., 2014), have been associated with the disease. The possible interactions between genomic and 52 

T-cell epigenomic variation in ME/CFS remain unknown.  53 

In this study, we aimed to explore the association between DNA methylation profiles of 54 

T-cells and single nucleotide polymorphisms (SNPs) in ME/CFS patients. We quantified 55 

lymphocyte proportions and isolated CD3+ T-cells (including both CD4+ T helper cells and CD8+ 56 

T killer cells) via fluorescence activated cell sorting. We characterized the variation in genomic 57 

(~4.3 million SNPs) and epigenomic (~480 thousand CpG loci) variability among ME/CFS 58 

patients and healthy controls. Using this approach, we: 1) tested the association of genome-wide 59 
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SNP genotypes with ME/CFS disease status; 2) tested the association of differentially methylated 60 

CpG loci and regions in CD3+ T-cells with ME/CFS disease status; 3) performed a methylation 61 

quantitative trait analysis to investigate the possible interactions between genetic background and 62 

methylation phenotypes of CD3+ T-cells associated with ME/CFS disease status.  63 

 64 

Methods 65 

Ethics approval and consent to participate  66 

 This study adhered to the human experimentation guidelines as outlined by the 67 

Helsinki Declaration of 1975. The collection of and analysis of clinical information and 68 

biological samples by the SolveCFS BioBank was ethically approved by the Genetic Alliance 69 

ethics review board (IRB # IORG0003358) and the University of Toronto (IRB #27391), which 70 

also approved all procedures for obtaining written informed consent from all participants in the 71 

study. Two copies of the consent form were signed, with one copy provided to the participants 72 

and one copy under secure storage at the SolveCFS Biobank. 73 

Study population 74 

In total, 61 ME/CFS diagnosed patients receiving care at the Bateman Horne Center, 75 

Utah (46 females, 15 males) and 48 healthy control (36 females, 12 males) individuals were 76 

recruited for this study. Female to male ratios were nearly identical in both cases and controls 77 

(3:1). The sex ratio in our population of ME/CFS patients (cases) is consistent with previously 78 

reported ratios indicating predominance of this illness in females 21–23. Diagnosis of ME/CFS 79 

was performed according to the 1994 Fukuda 24 and 2003 Canadian 25 criteria. To quantify 80 

functional impairment, individuals completed the standardized health-related quality of life 81 

survey RAND-36 26. All individuals met the following criteria: 1) were HIV and Hepatitis-C 82 

negative; and 2) had no intake history of immunomodulatory or immunosuppressive 83 

medications. The Body Mass Index (BMI) of individuals ranged between 16.4 and 46 (𝑥=27.2, 84 

s=6.4), with no significant differences between case and control groups (t-test p=0.5; Wilcoxon 85 

p=0.74) (Fig. 1a). Similarly, age, which ranged between 18 and 62 years (𝑥=32.2, s=13.6), was 86 

not significantly different between cases and controls (t-test p=0.06; Wilcoxon p=0.07) (Fig. 1b).  87 
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 88 

Figure 1. Frequency distributions of demographic and health-related indexes in the study population. a) 89 

Body mass index; b) Age; c-h) RAND-36 quality of life scales. Colours indicate the healthy control 90 
(blue, n = 48) and ME/CFS (red, n = 61) subpopulations. p-values from T-tests and Wilcoxon rank-sum 91 
tests. 92 
 93 

Sample processing 94 

Whole blood from each individual was collected at the Bateman Horne Center and 95 
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shipped overnight to Precision for Medicine, Maryland for Peripheral Blood Mononuclear Cells 96 

(PBMC) separation following procedures described in 14. PBMCs were separated into two 97 

aliquots of approximately 7 million cells each, and shipped in liquid nitrogen to the Centre for 98 

Environmental Epigenetics and Development at the University of Toronto.  99 

The first PBMC aliquot per patient was used for single nucleotide polymorphism (SNP) 100 

genotyping using the Human Omni 5-4 Array (Illumina Inc.). This array examines Single 101 

Nucleotide Polymorphisms at ~4.3 million loci throughout the human genome. Genomic DNA 102 

purification was performed with the MasterPure™ Complete DNA and RNA Purification Kit 103 

(Epicentre) following the standard protocol for cell samples. DNA quantity and purity was 104 

assessed using a NanoDrop 2000c Spectrophotometer (Thermo Scientific). Genotyping with the 105 

Omni 5-4 array was performed at the Princess Margaret Genomics Centre in Toronto. 106 

The second PBMC aliquot was used for DNA methylation profiling of T-cells (CD3+) 107 

using the Human Methylation 450K Array (Illumina Inc.). This array quantifies methylation at 108 

~480 thousand CpG loci throughout the human methylome. To quantify the relative proportions 109 

of cell type in the PBMC sample (i.e. CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, and CD14+ 110 

monocytes) and isolate CD3+ T-cells, each sample was stained with fluorescently labelled 111 

antibodies and sorted in a FACSAria (BD Biosciences) flow cytometer at the Centre for Flow 112 

Cytometry and Microscopy of the Sunnybrook Research Institute in Toronto. Genomic DNA 113 

from T-cells was purified following the same procedure described above. Bisulfite conversion of 114 

purified DNA and CpG methylation profiling with the 450K Array was performed at the McGill 115 

University and Genome Quebec Innovation Centre in Montreal.  116 

 117 

Genome-wide association analyses 118 

Analyses of SNP data quality and of association with ME/CFS disease phenotypes were 119 

performed with different parameters in the programs GenABEL 27 and PLINK 28, following 120 

standardized protocols 29,30. To minimize the number of false positive and negative associations, 121 

we first identified and excluded data from individuals that met one or more of the following 122 

criteria: 1) Inferred sex, as determined by the heterozygosity of the X chromosome, was 123 

incongruent with the known sex of the individual; 2) Heterozygosity rates or amount of missing 124 

data were outliers with respect to the whole population (Fig. 2a); 3) More than 10% of marker 125 
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data was missing; 4) Relatedness to other samples, as measured by the identity by descent (IBD) 126 

statistic, was greater than that of a second- to third-degree relative (IBD>0.1875); 5) Ancestry, as 127 

determined by a principal components analysis (PCA) (Fig. 2b) performed with EIGENSOFT 128 
31,32, was substantially different than that of the majority population in our cohort (i.e. European 129 

ancestry). Data from 10 individuals were excluded from all analyses: 4 cases (2 females, 2 130 

males) and 6 controls (6 females). In addition to these criteria, we re-analysed the data excluding 131 

individuals with health-related quality of life measurements that overlapped between cases and 132 

controls. This exclusion of intermediate illness phenotypes was aimed at increasing the power to 133 

detect possible associations between disease status and (epi)genotypes by decreasing the 134 

heterogeneity in phenotype symptomatology within each group. We utilized the scores of 135 

RAND-36 scales (physical functioning, energy/fatigue, emotional well-being, social functioning, 136 

pain, and general health) as quantitative measurements of ME/CFS phenotypes because these 137 

were significantly different (α = 0.05) between case and control groups, prior to excluding 138 

individuals with intermediate phenotypes (Figs. 1c-h). RAND-36 scale scores were summarized 139 

into principal components (PC) using the stats package in R. We excluded data from case and 140 

control individuals with overlapping values along PC1 (Fig. 3), which explained ~80% of 141 

variance in the RAND-36 data. In total, data from 30 individuals were excluded using this 142 

approach: 18 cases (12 females, 6 males) and 12 controls (9 females, 3 males). These data were 143 

re-analysed in PLINK. 144 

 145 
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 146 
Figure 2. Quality control plots for SNP and CpG methylation data. a) Scatterplot of the proportion of 147 

missing genotypes vs. heterozygosity rate, per individual. Dot colour intensity indicates individual sample 148 
density. Horizontal red dotted lines indicate quality thresholds of ±2 standard deviations. Vertical red 149 
dotted line indicates a 2% missing data threshold; b) Inferred ancestry of individuals according to a 150 
principal components analysis of genotypes. The first two principal components are plotted. Genotyope 151 
data from individuals from reference populations (African, Asian and European) were obtained from the 152 
HapMap Phase III (HapMap3) database. Black crosses indicate individuals from this study. Horizontal 153 
red dotted line indicates European ancestry threshold; c) Frequency distribution of the fraction of missing 154 
data per SNP locus. Red dotted line indicates the 3% quality threshold; d) Scatterplot of median 155 
methylated and unmethylated fluorescence signals per individual. Dotted red line indicates quality 156 
threshold suggested in minfi; e) Methylation percentage (beta-values x 100) density distribution per 157 
individual; f) Scatterplot of the two principal components summarizing the variability in the methylation 158 
data per individual. For e-f colours indicate ME/CFS case (red, n = 61) or control (blue, n = 48) status of 159 
each individual.  160 

 161 
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 162 
Figure 3. Scatterplots of the two principal components summarizing the variability in the standardized 163 

health-related quality of life surveys (RAND-36) per individual. a) Before exclusion of data from 164 
individuals with intermediate (overlapping) phenotypes along PC1. Dotted lines indicate the thresholds 165 
used to define intermediate phenotypes; b) After exclusion of data from individuals with intermediate 166 
phenotypes. Colours indicate the healthy control (blue, a) n = 48; b) n = 36) and ME/CFS (red, a) n = 61; 167 
b) n = 43) subpopulations. 168 
 169 

After excluding individuals with sub-optimal data, we identified and excluded data from 170 

SNP loci that met one or more of the following criteria following 29,30: 1) Rate of missing 171 

genotypes was greater than 3% in PLINK (5% in GenABEL) (Fig. 2c); 2) Rate of missing data 172 

was significantly different (p < 0.00001) between cases and controls; 3) Allelic frequencies 173 

significantly deviated from Hardy-Weinberg equilibrium (χ² p < 0.00001 in PLINK, FDR <0.2 in 174 

GenABEL); and 4) Minimum allele frequency was smaller than 1% in PLINK (2% in 175 

GenABEL). Out of 4,284,426 genotyped SNP loci, 1,779,031 SNP loci were excluded from 176 

PLINK analyses, and 2,142,548 from GenABEL analyses.  177 

We examined possible associations between SNP genotypes and ME/CFS disease 178 

phenotypes (case or control) using χ2 testing as well as logistic regression tests that included 179 

covariates of age, sex and BMI in both PLINK and GenABEL. To account for the uncertainty in 180 

the potential genetic model of inheritance of ME/CFS, we performed multiple tests with different 181 

underlying models: Genotypic, dominant, recessive, Cochram-Armitage trend, and allelic for the 182 
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simple χ2 tests; and genotypic, dominant, recessive and multiplicative for logistic regressions. 183 

No inflation of test statistics was observed in any test (λ ranged between 1 and 1.01). To assess 184 

the significance of associations we: 1) Adjusted raw p-values for multiple testing following the 185 

Bonferroni 33, Holm 34, and Benjamini and Hochberg false discovery rate (FDR) corrections 35; 186 

and 2) Calculated corrected (empirical) p-values (family wise) after 10,000 permutations. We 187 

generated spatial visualizations of raw p-values for all associations across chromosomes using 188 

the program Haploview 36. Due to the higher prevalence of ME/CFS in females than males 21–23, 189 

association tests were also performed in data from females only.  190 

 191 

SNP characterisation 192 

SNPs with significant associations were examined using the following reference tools: 193 

the NHGRI-EBI catalogue of genome-wide association studies 194 

(http://www.ebi.ac.uk/gwas/home; 37, the Ensembl genome browser 195 

(http://www.ensembl.org/Homo_sapiens/Info/Index; 38, the Single Nucleotide Polymorphisms 196 

Annotator SNiPA (http://snipa.helmholtz-muenchen.de/snipa3/; 39, the Genotype-Tissue-197 

Expression database GTEx  (https://www.gtexportal.org/home/; 40, the genome-wide association 198 

study of blood plasma proteome database pGWAS (http://metabolomics.helmholtz-199 

muenchen.de/pgwas/; 41, and the developing brain methylation quantitative trait loci database 200 

(http://epigenetics.essex.ac.uk/mQTL/; 42. 201 

 202 

Re-analysis of published GWAS data 203 

Data from the ME/CFS genome-wide association study (GWAS) by Schlauch et al. 204 

(2016), were acquired from dbGAP (phs001015.v1.p1), and re-analysed following the pipeline 205 

described above to identify commonalities. The crlmm R Bioconductor package 43,44 was used 206 

for genotyping, and analysed in GenABEL, using the same thresholds as above. 704,464 SNP 207 

markers from 66 subjects passed our quality controls (44 females and 22 males, 36 cases and 30 208 

controls). Because of the different arrays used (Illumina Human Omni 5-4 Array in this study vs. 209 

Affymetrix Genome-Wide Human SNP Array 6.0 used by Schlauch et al.) we constructed 210 
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linkage disequilibrium (LD) proxies using LDlink 45, with R2 ≥0.8, to make the results 211 

comparable. 212 

 213 

Gene-set analysis 214 

The program MAGMA 46 was used to complete a generalized gene-set analysis of the 215 

SNP data. This analyses focuses on genetic associations with phenotype at the level of genes and 216 

gene-sets rather than individual SNPs. This strategy augments the power to detect associations 217 

with complex traits and diseases, such as ME/CFS. Gene sets were taken from Molecular 218 

Signatures Database (MSigDB) 47, including hallmark gene sets (hallmark gene sets summarize 219 

and represent specific well-defined biological states or processes and display coherent 220 

expression; 48), canonical pathways (gene-sets from KEGG, BioCarta and Reactome) and GO 221 

gene sets (gene-sets that contain genes annotated by the same gene ontology term).  222 

 223 

Epigenome-wide association analyses 224 

Analyses of CpG methylation data quality and of association with ME/CFS disease 225 

phenotypes were performed in the R package minfi 49, following the pipeline suggested by 50. All 226 

individuals identified for exclusion during the genome-wide association analyses were also 227 

excluded from this dataset to increase the power of detection of possible associations. In 228 

addition, we attempted to identify data from individuals that could represent potential outliers by 229 

the following graphical approaches (as suggested by 49): 1) Comparing inferred sex versus 230 

known sex; 2) Examining intensity distributions of control CpG probes; 2) Plotting median 231 

methylated and unmethylated fluorescence signals; 3) Plotting methylation percentage density 232 

distributions; and 4) Summarizing the variability in the methylation data through a principal 233 

component analysis. No individuals were identified as outliers (Figs. 2d-f). We discarded data 234 

from CpG loci that: 1) Contained known SNPs at the methylation dinucleotide; or 2) Contained 235 

missing data. Raw probe florescence intensities were normalized by Subset-Quantile Within 236 

Array Normalization 51, which takes into account the differences between Infinium type I and II 237 

probes. The level of methylation in each CpG locus was measured as beta-values, ranging from 0 238 

to 1, which represent the proportion of methylation. In total, 467,971 CpG loci (out of 485,512) 239 
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were retained for further analyses.  240 

We examined possible associations between methylation levels at CpG loci and ME/CFS 241 

disease phenotypes (case or control) through F-tests of logit-transformed beta-values 52 as 242 

implemented in the dmpFinder function. To correct for potential confounding effects of multiple 243 

methylation array batches (two in this study), as well as covariates of age, sex and BMI, we 244 

utilized the empirical Bayes procedure implemented in the R package ComBat 53. To assess 245 

significance of associations (α = 0.05) we: 1) adjusted raw p-values for multiple testing by 246 

performing Benjamini and Hochberg false discovery rate (FDR) corrections; and 2) calculated 247 

empirical p-values after 10,000 permutations as described in 14. In addition to testing for 248 

associations at individual CpG loci, we performed tests of association at differentially 249 

methylated genomic regions using the R package bumphunter as described in 54. Genomics 250 

regions were defined as clusters of CpG loci within a 500bp region. We assessed the significance 251 

of associations (α = 0.05) by calculating empirical p-values from null distributions of test 252 

statistics after 1,000 bootstrap pseudoreplicates. 253 

 254 

Genome-epigenome association analyses 255 

To identify associations between SNP genotypes and methylation levels at significantly 256 

differentially methylated CpG loci, we performed a methylation quantitative trait loci (mQTLs) 257 

analysis using linear additive regression models (including covariates) in the R package Matrix 258 

eQTL 55. Only local cis-mQTL were considered, i.e. CpG-SNP pairs that are within 1Mbp of 259 

each other. Both CpG loci and SNPs were mapped to the UCSC human genome assembly 260 

version hg19 (Genome Reference Consortium GRCh37) 56. mQTLs were considered significant 261 

when FDR corrected p-values were smaller than α = 0.05. 262 

 263 

Enrichment analysis 264 

We carried out gene-set enrichment analyses for genes of interest. The R package 265 

clusterProfiler 3.4.4 57 was used for Gene Ontology Biological Process (GO BP) 58,59 and KEGG 266 

pathway 60,61 enrichment analysis, with p and q value cut-offs of ≤ 0.05. Reactome pathway 267 

analyses were carried out using the ReactomePA 1.20.2 R package 62, with a p-value cut-off of ≤ 268 
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0.05. All three packages reference the latest versions of their respective databases. These 269 

significantly enriched annotations were visualized with the ‘enrichMap’ function of DOSE 3.2.0 270 

R package 63, with specific parameters to aid legibility using different numbers of enriched 271 

annotations.   272 

 273 

Results & Discussion 274 

Lymphocyte proportions 275 

In contrast to the significant differentiation in health-related quality of life RAND-36 276 

scales between ME/CFS cases and healthy controls (Fig. 1c-h), there were no differences in the 277 

relative proportions of cell types in the PBMC lymphocyte samples (Fig. 4). Previous studies 278 

investigating potential differences in the relative proportions of general lymphocyte types in 279 

ME/CFS patients have produced incongruent results which have ranged from an increased 280 

proportion of CD8+ T cells (Klimas et al., 1990) to no significant differences 7,64. These 281 

observations suggest that alterations of general lymphocyte type proportions may not be a 282 

characteristic feature of ME/CFS. Rather, abnormalities in immune system functioning 283 

associated with ME/CFS appear to involve alterations in the activity and abundance of specific 284 

sub-populations 5,6,65. 285 
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 286 
Figure 4. Results from florescence-activated cell sorting (FACS) of PBMCs. a-d Representative 287 

example of sorting parameters from one individual. a) Total particle composition of sample before gating; 288 
b) Gated cells showing live cells in rectangle; c) Frequency of gated T-cells (CD3+); d) CD4/CD8 289 
expression on CD3+ gated cells. d-i Frequency distributions of relative proportions of cell types per 290 
individual. Colors indicate the healthy control (blue, n = 48) and ME/CFS (red, n = 61) subpopulations. p-291 
values from T-tests and Wilcoxon rank-sum tests. e) CD19+ B-cells; f) CD14+ monocytes; g) CD3+ T-292 
cells; h) CD4+/CD8- T-cells; i) CD4-/CD8+ T-cells. 293 
 294 
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Genetic associations with ME/CFS 295 

None of the more than 2 million variable SNP loci targeted in this study had a significant 296 

association (α = 0.05) with ME/CFS after p-value corrections with Bonferroni, Holm, Benjamini 297 

and Hochberg, or permutation methods when data from both sexes were analysed together. This 298 

result was consistent across all the χ2 and logistic regression tests (Figs. 5a-b summarize the 299 

results of the simple χ2 genotypic test as a representative example). Because of the known 300 

increased prevalence of ME/CFS in females 21–23, we performed independent analyses of data 301 

from females only. These analyses revealed a significant association (χ2 genotypic test, 302 

permutation-corrected p-value = 0.0374, OR = 0.1845, 1/OR = 5.42) of one SNP (rs11712777, 303 

chr3:42347678) with the ME/CFS disease phenotype.  304 

305 
Figure 5. Plots summarizing the strength of associations between SNP genotypes and DNA methylation 306 

levels to disease phenotypes (healthy controls, n = 36; vs. ME/CFS cases, n = 43) in data from males and 307 
females subpopulations. a) Manhattan plot of p-values calculated from the simple χ2 genotypic test of 308 
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association for 2,505,395 SNPs (PLINK analysis). Currently accepted genome-wide significance 309 
threshold is 5x10-8 (7.3 in –log10 units). Bonferroni’s adjustment significance threshold for this study is 310 
2x10-8 (7.7 in –log10); b) Quantile-quantile plots of expected vs. observed χ2 test statistics from the 311 
simple χ2 genotypic test of association. Red solid line indicates the middle of the first and third quartile of 312 
the expected distribution of the χ2 test statistics. Red dashed lines indicate the 95% confidence intervals 313 
of the expected distribution of the χ2 test statistics; c) Volcano plot of effect size (mean percentage DNA 314 
methylation difference between ME/CFS and controls) vs. association empirical p-values calculated after 315 
10,000 random permutations. Vertical red lines indicate biological significance threshold of 5% absolute 316 
difference in methylation at each locus. Horizontal green line indicates statistical significance threshold of 317 
p <0.05. 318 

These results are contrasting to previous genotype association analyses in ME/CFS 319 

populations, which have found statistically significant associations in multiple loci. The earliest 320 

study by Smith et al. (2011) evaluated 116,204 SNPs (n=40 CFS, n=40 non-ME/CFS) using the 321 

Affymetrix GeneChip Mapping 100K array, and found 65 SNPs associated with ME/CFS 322 

(p<0.001). Rajeevan (2015) used the Affymetrix Immune and Inflammation Chip to focus on 323 

~11,000 SNPs located in genes involved in immune and inflammation pathways (n=121 324 

ME/CFS, n=50 non-ME/CFS). Of these, 32 were associated with ME/CFS (p<0.05). Most 325 

recently, Schlauch et al. (2016) evaluated 906,600 SNPs with the Affymetrix Genome-Wide 326 

SNP Array 6.0 (n=42 ME/CFS, n=38 non-ME/CFS) and found 442 SNPs that were associated 327 

with ME/CFS (P<3.3×10−5). The SNP that we found in significant association with ME/CFS in 328 

females, rs11712777, was not included in any of these datasets. One SNP in the Schlauch et al. 329 

(2016) data, rs1468604, is in linkage disequilibrium (LD) with rs11712777 (r2 = 0.8716; 330 

European population). The apparent discrepancy could be explained by the imperfect linkage 331 

between the two SNPs, and therefore we recommend rs11712777 as a candidate for direct 332 

genotyping in future studies.  333 

There are no other overlaps in the SNPs or genes associated with ME/CFS between this 334 

study and previous genetic association studies. This observation may be confounded by a 335 

combination of multiple factors, including: 1) Differences in the types of arrays utilized in each 336 

study (our study, with the largest genetic coverage to date, evaluated two-orders of magnitude 337 

more SNPs than the Rajeevan (2015) study); 2) Differences among cohorts due to the wide 338 

heterogeneity of ME/CFS; 3) Reduced statistical power to discriminate the effects of multiple 339 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2017. ; https://doi.org/10.1101/237958doi: bioRxiv preprint 

https://doi.org/10.1101/237958
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

small-effect variants due to relatively small sample sizes; and 4) Interactions with environmental 340 

and epigenetic factors. Additional larger-scale genome-wide association studies with overlapping 341 

SNP probes and larger sample sizes will further our understanding of the interaction between 342 

genetic factors and ME/CFS.  343 

Generalized gene-set analysis of the SNP data in MAGMA did not identify any gene-set 344 

significantly enriched in either our data, or the data from Schlauch et al. (2016).  345 

 346 

Characterisation of SNP rs11712777 347 

We used a variety of online reference resources to characterize the current knowledge of 348 

rs11712777, and how it may influence ME/CFS phenotype (see Methods section). We also 349 

examined SNPs in high LD with SNP rs11712777 (R2 ≥0.8; Table 1). The Genotype-Tissue-350 

Expression database (GTEx) indicates that rs11712777, and the genes in LD with it, form an 351 

expression quantitative trail loci (eQTL) altering the expression of the CCK (cholecystokinin 352 

peptide hormone) gene. CCK has a number of active forms, expressed in a variety of tissues, 353 

including the blood, intestine and blood 66, and plays a role in appetite, body weight and the 354 

immune system 66,67. A rat knockout (KO) of the cholecystokinin B receptor (CCKBR) shows 355 

attenuated sickness behaviour 68. This sickness behaviour in rats has remarkable similarity to 356 

some of the symptoms of ME/CFS 69, including fatigue, malaise, hyperalgesia, sleepiness, 357 

anhedonia, weight loss and diminished activity 69. CCK is also co-localized with sleep-promoting 358 

preoptic neurons in the hypothalamus 70, which may relate to fatigue and unrefreshing sleep 359 

symptoms in ME/CFS. Finally, recent evidence suggests that CCK has a role regulating the 360 

differentiation of CD4+ T-cells 71, and that CCK-expressing neurons are a critical cellular 361 

component of the hypothalamic–pituitary–adrenal  axis 72. These roles of CCK in components of 362 

the immune system are consistent with suggested immune dysregulation in ME/CFS 3–8,14. While 363 

CCK-associated variant rs11712777 may be a biologically relevant candidate influencing 364 

susceptibility to ME/CFS, our findings suggest that it only accounts for a small fraction of the 365 

risk (OR = 0.1845). However, it constitutes a relevant target for future research.  366 

In addition to rs11712777, SNP rs17223780 (R2 = 0.8799) binds DNase in CD14+ 367 

monocytes (http://www.regulomedb.org/snp/chr3/42363368), indicating a possible regulatory 368 

role in the immune system. Another SNP in the vicinity of rs11712777 (D’ = 0.7211, R2 = 369 
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0.0126), rs33449 (chr3:42400801), is associated with increased daytime resting duration 370 

(http://www.ebi.ac.uk/gwas/search?query=3:42347678-42372207; 73). This is a phenotype that 371 

may be related to the fatigue aspect of ME/CFS.  372 

 373 

Table 1. SNPs in high LD (R2 ≥0.8) with candidate SNP rs11712777. MAF = Minor allele frequency. 374 

Adapted from https://analysistools.nci.nih.gov/LDlink/. 375 
RS number Coordinate Alleles MAF Distance D’ R2 Correlated alleles 

rs11712777 chr3:42347678 (C/T) 0.3877 0 1 1 C=C,T=T 

rs17223780 chr3:42363369 (C/T) 0.3598 15691 0.9955 0.8799 C=C,T=T 

rs11715412 chr3:42368008 (A/G) 0.3608 20330 0.991 0.8757 C=A,T=G 

rs1966393 chr3:42368673 (G/A) 0.3608 20995 0.991 0.8757 C=G,T=A 

rs17224501 chr3:42369441 (G/A) 0.3608 21763 0.991 0.8757 C=G,T=A 

rs1468604 chr3:42368882 (T/C) 0.3618 21204 0.9865 0.8716 C=T,T=C 

rs35392307 chr3:42372207 (G/A) 0.3579 24529 0.9909 0.8643 C=G,T=A 

 376 

Epigenetic associations with ME/CFS 377 

  Of the 467,971 CpG loci analysed, 141 had significant associations with the ME/CFS 378 

phenotype (raw p-value < 0.05) and a mean percentage methylation difference between cases and 379 

controls greater than 5% when data from both sexes were analysed together (Fig. 5c). None of 380 

these differentially methylated loci were significant after FDR corrections, however 133 had 381 

significant empirical p-values < 0.05 calculated through permutation analyses (these are referred 382 

to as differentially methylated probes - DMPs; Supplementary Table S1). Analyses of 383 

methylation data from females alone indicated that 108 CpG loci had significant associations 384 

with the ME/CFS phenotype (raw p-value ≤ 0.05) and a mean percentage methylation difference 385 

between cases and controls greater than 5%. None of these differentially methylated loci were 386 

significant after FDR corrections, however 94 DMPs had significant empirical p-values ≤ 0.05 387 

after permutation analyses (Supplementary Table S2). Out of these 94 DMPs, 29 were common 388 

to the DMPs found when analysing the data from both sexes combined. 389 

Approximately half of the DMP were clustered in differentially methylated regions 390 

(DMRs). We found 17 DMRs with significant association with the ME/CFS phenotype (p-value 391 
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< 0.05) when data from both sexes were analysed together (Supplementary Table S3). There 392 

were 22 DMRs when only females were considered (Supplementary Table S4). All of these 393 

regions were located nearby genes. 5 DMRs were found upstream of genes, 3 in promoters, 3 394 

overlapping the 5’ end and 1 the 3’ end of genes, 10 inside introns, and 3 downstream of genes. 395 

DMR length, in terms of number of CpG loci ranged between 2 and 10 (average 2.72). 7 DMRs 396 

containing CpG loci identified as DMPs were detected in common between analyses of 397 

methylation data from both sexes and from females only (Figure 6). 398 

 These results are in contrast with previous findings by our group, which revealed 399 

thousands to tens of thousands of differentially methylated CpG loci associated with ME/CFS in 400 

PBMCs, using the same 450K array 14,18. It is possible that differences between the targeted cell 401 

populations (i.e. PBMCs vs. isolated T-cells) may have contributed to the differences in the 402 

number of differentially methylated CpGs. The number of cell types within PBMCs may broaden 403 

the spectrum of epigenetic marks and thus increase the number of possible associations with the 404 

ME/CFS disease phenotype. Consistent with this idea, Brenu et al (2014) found 120 405 

differentially methylated CpGs associated with ME/CFS in CD4+ T-cells (p<0.001) using the 406 

450K array (n=25 ME/CFS, n=18 non-ME/CFS). This number of differentially methylated CpGs 407 

is similar to the 133 DMPs we found in this study, which targeted a broader T-cell population 408 

(including CD4+ and CD4- T-cells). However, the only overlap between our study and the study 409 

from Brenu et al (2014) corresponded to the HLA-DQB1 (major histocompatibility complex, 410 

class II, DQ beta 1) gene. HLA-DQB1 encodes a protein that is part of the DQ heterodimer, a 411 

cell surface receptor that is essential in immune signalling. We found two contiguous 412 

differentially methylated regions within an intron of this gene (Supplementary Tables S1 and S3, 413 

Figure 6). One region was hypermethylated whereas the other was hypomethylated in the 414 

ME/CFS group. Interestingly, the gene HLA-DQB1 contained cis-mQTLs significantly 415 

associated with these two DMRs (see next section, as well as Supplementary Table S5, and 416 

Figure 6). Brenu et al. (2014) found CpG hypermethylation associated with the HLA-DQB1 417 

gene, however the specific location of this association was not reported. Recent studies focusing 418 

on CD4+ T-cells of patients affected by immune disorders such as rheumatoid arthritis 74 and 419 

multiple sclerosis 75 have found differential methylation in HLA-DQB1. This result is consistent 420 

with a potential immune dysregulation in ME/CFS. 421 

 We found 31 genes associated with DMPs in T-cells that were common to this study and 422 
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a previous study by our group 14. These genes, which include PAX8 (paired box 8), and ATP4B 423 

(ATPase H+/K+ transporting beta subunit) (Supplementary Table S1), are involved in the 424 

regulation of cellular processes and cell signaling. This is in line with recent ME/CFS work that 425 

observed differences in cellular metabolism in ME/CFS 76–78.  426 

Our results suggest that DNA methylation modifications in T-cells in ME/CFS are 427 

associated with the cellular metabolism differences that are observed in the disease and may play 428 

a role in the development of these phenotypic differences, however future work is required to 429 

understand this relationship. 430 

 431 

Genetic and epigenetic interactions associated with ME/CFS 432 

All the DMPs identified according to empirical p-values had significant associations 433 

(FDR corrected p-values < 0.05) with SNP genotypes (independent of disease phenotype). In 434 

total there were 13,060 significant cis-mQTLs (Supplementary Table S5). Figure 6 shows the 435 

strongest SNP-DMPs cis-mQTLs associations (according to correlation coefficient R2) in each of 436 

the 7 DMP-containing DMRs that were common in analyses of methylation data from both sexes 437 

and from females only. 438 

 SPATC1L (spermatogenesis and centriole associated 1 like) and DUSP22 (dual 439 

specificity phosphatase 22) were the two genes containing cis-mQTLs with the largest 440 

differentially methylated regions: 11 DMPs (7 hypermethylated probes in 5’ UTR and 4 441 

hypomethylated probes in 3’ UTR region) in SPATC1L and 10 hypermethylated probes in the 5’ 442 

UTR of DUSP22 (Supplementary Table S3 and Figure 6). While the exact function of SPATC1L 443 

is not well understood, it has been previously associated with xenobiotic response and 444 

differential methylation in the promoter of this gene is characteristic of certain ethnic groups in 445 

human populations 79. DUSP22 hypermethylation has also been observed in the 5’ UTR region 446 

in T-cells of rheumatoid arthritis patients 80. In T-cells, DUSP22 is known to inhibit proliferation 447 

and autoimmunity through inactivating Lck and preventing the activation of the T-cell receptor 448 
81. However, it remains to be confirmed how hypermethylation in the 5’ UTR region affects the 449 

overall activity of DUSP22 in T-cells of ME/CFS patients.  450 
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  451 
Figure 6. Genes associated with differentially methylated regions (DMR) in ME/CFS. Figure shows 452 

DMP-containing DMRs identified from the analysis of methylation data from both sexes (healthy 453 
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controls, n = 36; vs. ME/CFS cases, n = 43) that were also identified from analysis of data females alone 454 
(healthy controls, n = 27; vs. ME/CFS cases, n = 34). Each panel shows (in descending order): 1) The 455 
chromosomal location of the gene/DMR; 2) The position of the DMPs (green bars) and DMR (purple 456 
bars) with respect to the gene (blue bars); 3) The mean percentage methylation difference between 457 
ME/CFS cases (red) and controls (blue) at each DMP; 4) The most significant meQTL association (as 458 
indicated by the R2 and p-values) between SNP genotype and the individual percentage methylation at the 459 
most significant DMP (as indicated by the p-value) within each DMR.  460 
 461 

These results suggest that ME/CFS patients have differential methylation patterns in T-462 

cells that are strongly correlated with the underlying genotype. Understanding the mechanisms of 463 

these interactions is a promising direction of research in ME/CFS. 464 

 465 

Conclusions 466 

We identified over one hundred differentially methylated CpG loci associated with 467 

ME/CFS in T lymphocytes. Approximately half of these were clustered in differentially 468 

methylated regions of 500bp in size or less.  Our data and analyses suggest that there is an 469 

indirect role of genotype influencing DNA methylation patterns associated with ME/CFS. We 470 

found no substantial large-effect direct associations of specific genotypes with ME/CFS disease 471 

phenotype. Larger scale genome wide association studies are necessary to test for potential 472 

small-effect associations between genotype and ME/CFS phenotype.   473 

 474 

 All of the methylation values at differentially methylated loci in T lymphocytes had 475 

significant correlations with specific genotypes at neighboring SNPs (within a window of 1 476 

Mbp), indicating that particular genetic backgrounds may influence methylation levels 477 

differently in ME/CFS patients than in controls. The genomic elements associated with genetic 478 

and epigenetic variants characteristic of ME/CFS patients in this study constitute targets for 479 

future research. Understanding the molecular mechanisms of genetic-epigenetic interactions of 480 

these targets will be key to develop new treatments for ME/CFS, and can serve as a model to 481 

understand the molecular basis of related complex diseases. 482 

 483 
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