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Abstract 
Using fMRI and functional connectivity analyses, it is possible to establish a functional 

connectome for an individual. The extent to which functional connectomes from adolescents and 

young adults remain identifiable across many years has not been investigated. Here we show in 

three publically available longitudinal resting-state fMRI datasets that connectome-based 

identification of adolescents and young adults scanned 1-3 years apart is possible at levels well 

above chance using whole-brain functional connectivity data. When we restrict the identification 

process to specific edges, we find that edges in the frontal, parietal, and temporal cortices tend to 

lead to the highest identification rates. We also demonstrate that highly unique edges 

contributing the most to a successful ID tend to connect nodes in these same cortical regions, 

while edges contributing the least tend to connect cross-hemispheric homologs. These results 

suggest that despite developmental changes, adolescent and young adult subjects have unique 

and stable functional connectomes and that the frontal, parietal, and temporal cortices are 

important in defining individual uniqueness in younger subjects. 

 
 
Introduction 
 

Using fMRI and functional connectivity (FC) analyses, it is possible to establish a 

functional connectome for an individual. It has previously been shown that young adults’ 

functional connectomes are unique and stable across multiple days (Finn et al., 2015). This 

uniqueness and stability allows for the identification of an individual from a pool of other 

individuals. The ability to identify individuals via their functional connectome after multiple 

days has been replicated many times in adult subjects (Biazoli et al., 2017; Finn et al., 2017; 

Horien et al., 2017; Noble et al., 2017; Vanderwal et al., 2017; Waller et al., 2017). In addition, it 
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has also been demonstrated that children and young adults have a unique functional connectome 

that allows identification even across different task conditions (Kaufmann et al., 2017).  

However, questions remain as to the stability of the functional connectome over longer 

periods of time and also as to when in the developmental trajectory the connectome becomes 

unique. To date all identification studies have used data in which subjects were scanned only 

days apart - or in some cases, on the same day. Hence, the extent to which the individual 

functional connectome remains unique across longer time intervals, such as years, and in periods 

of large brain changes, such as adolescence, is still unclear.  

Using three publically available resting-state fMRI (rs-fMRI) datasets in which subjects 

were scanned years apart, we investigated if the individual connectome of an adolescent or 

young adult (age range: 10-23) is unique and retains its uniqueness across longer time frames (1-

3 years). We also investigated the relative stability of an individual’s functional connectivity 

patterns over time and identified the portions of the brain that are important for individual 

uniqueness. We hypothesized that individual connectomes will be unique across development 

over several years, despite substantial changes in development and the associated changes in 

connectivity. 

Methods  

Description of datasets 

We utilized three longitudinal rs-fMRI datasets of neurotypical subjects. The University of 

Pittsburgh School of Medicine dataset and the University of Utah dataset (hereafter referred to as 

Pitt and Utah, respectively) were downloaded from the Consortium for Reliability and 

Reproducibility (CoRR; http://fcon_1000.projects.nitrc.org/indi/CoRR/html/samples.html; Zuo 

et al., 2014); the Southwest University Longitudinal Imaging Multimodal dataset (hereafter 
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referred to as SLIM; Liu et al., 2017) was downloaded through the International Data-sharing 

Initiative (INDI; http://fcon_1000.projects.nitrc.org/). Subjects were excluded from the SLIM 

and Pitt datasets due to incomplete brain coverage in the functional scan (mostly in the 

cerebellum), and in the case of the SLIM data subjects had to have data from all three scans. All 

datasets were collected in accordance with the institutional review board or research ethics 

committee at each site. All resting-state scans were acquired on Siemens 3-T Trio scanners. 

Relevant demographic characteristics and imaging parameters are described in Table 1; full 

details of the Pitt and SLIM datasets can be found elsewhere (Hwang, Hallquist, & Luna, 2013; 

Liu et al., 2017). Note that because of numerous differences between the datasets (eyes 

open/closed during rest, resting-state scan collected after other functional runs, number of years 

between scans, etc.) we are not interested in comparing ID rates between datasets; rather, we are 

interested in defining the upper bounds of identifiability in each dataset. 

Preprocessing 

The preprocessing strategy used has been described in detail elsewhere (Noble et al., 2017). All 

analyses were performed using BioImage Suite (Joshi et al., 2011) unless otherwise indicated.  

We note that we only preprocessed the Pitt and Utah subjects, as the SLIM data was 

preprocessed beforehand; for SLIM, we downloaded 

(http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html) pre-calculated 

connectivity matrices that were generated using an approach similar to what we detail below. For 

preprocessing, briefly, we skull-stripped the magnetization prepared rapid gradient echo 

(MPRAGE) images using optiBET (Lutkenhoff et al., 2014) and performed linear and non-linear 

transformations to warp a 268 node functional atlas from MNI space to single subject space 

using BioImage Suite as in Noble et al. (2017). Functional images were slice-time and motion 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2017. ; https://doi.org/10.1101/238113doi: bioRxiv preprint 

https://doi.org/10.1101/238113
http://creativecommons.org/licenses/by-nc-nd/4.0/


corrected using SPM5  (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/). Covariates of no 

interest were regressed from the data, including linear, quadratic, and cubic drift, 24 motion 

parameters, mean cerebral-spinal fluid (CSF) signal, mean white matter signal, and the overall 

global signal. Data were temporally smoothed with a zero-mean unit-variance Gaussian filter 

(approximate cutoff frequency of 0.12 Hz).  

Node and network definition 

We used a 268 node functional atlas described previously (Finn et al., 2015). For each subject 

the average timecourse of each region of interest (node in graph theoretic terminology) was 

calculated, and the Pearson correlation coefficient was calculated between every other node to 

achieve a symmetric 268 x 268 matrix of correlation values representing edges (connections 

between nodes) in graph theoretic terminology. We subsequently normalized the matrix to z-

scores via a Fisher transformation and only considered the upper triangle of the matrix, giving 

35,778 unique edges for whole-brain analyses. These nodes were then grouped into 10 functional 

networks as in Finn et al. (2015). Network names are listed in Figure 2a. 

 We note that in the SLIM and Pitt datasets, even after excluding subjects missing 

significant amounts of data in the functional scan, many subjects were still missing edges in the 

whole-brain connectivity matrix due to incomplete coverage. To ensure standardization within a 

dataset, if a remaining subject was missing an edge, we removed that edge from all subjects. Of 

the 35,778 edges in the whole-brain functional connectome, 31,626 edges/subject remained in 

the SLIM dataset; 29,646 edges/subject remained in the Pitt dataset. All 35,778 edges were 

covered for all subjects in the Utah dataset. See Supplemental Figure 1 for the proportion of 

edges remaining in network pairs for SLIM and Pitt. 

Identification procedure 
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The identification procedure has been described in detail previously (Finn et al., 2015). 

Briefly, a database is first created consisting of all the subjects’ connectivity matrices from a 

particular session for a specific dataset (for example, session 2 Pitt). In an iterative process, a 

connectivity matrix from a particular subject is then selected from a different session and 

denoted as the target (for example, subject 1 in session 1 Pitt). Pearson correlation coefficients 

are then calculated between the target connectivity matrix and all the matrices (across all 

subjects) in the database from session 2. If the highest Pearson correlation coefficient is between 

subject 1 in one session and subject 1 in the second session, this would be recorded as a correct 

identification. Subject 2 from session 1 would then be denoted as the target, and the algorithm 

would continue with the same database of subjects. This continues until identifications have been 

performed for all subjects, sessions, and database-target combinations. Statistical significance 

was assessed via permutation testing, in which a null distribution is generated by randomly 

shuffling subject identities and performing the identification procedure with the incorrect labels. 

We obtained whole-brain based identification results for all subjects with no motion exclusion 

criteria; we also performed identification with subjects grouped according to gender and motion 

(a mean frame-frame displacement (FFD) threshold of 0.1 mm; if either scan session had a value 

above 0.1 mm, this subject was denoted as a high motion subject). We also investigated how 

specific within- and between-network edges, as well as a combination of networks, affected the 

identification analyses. In this approach, only the edges comprising the network(s) of interest 

were used for identification. To compare ID rates between networks in a dataset we performed 

1000 bootstraps with ~80% of the subjects to generate 95% confidence intervals and determine 

significance. 
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To ensure that identification was not due to idiosyncratic head movements specific to an 

individual across sessions, we conducted identification analyses using estimates of head 

movement parameters which has been described in detail elsewhere (Finn et al., 2015). Briefly, 

we calculated discrete motion distribution vectors for each subject based on FFD over an entire 

scan. We then computed the mean and standard deviations of the FFD across all subjects for 

each dataset. We then specified 15 bins for the Utah and SLIM subjects and 10 bins for the Pitt 

subjects to span the grand mean +/- 3 standard deviations, and motion distribution vectors were 

subsequently calculated. These vectors were then submitted to the identification procedure. 

Edge-based and linear regression analyses 

To determine the role of specific edges in the identification process, we performed 

calculations to quantify highly unique and highly consistent edges via the differential power 

(DP) measure and the group consistency measure described in detail elsewhere (Finn et al., 

2015); we provide a brief overview here. DP estimates for each given edge the likelihood that 

within subject similarity is higher than similarity measured across different subjects. The product 

of edge values from time 1 and time 2 from the same subject is compared to product of time 1 

and time 2 from unmatched subjects. Edges with high DP values are considered helpful in 

identification. To calculate the group consistency measure, we multiply an edge value from time 

1 and time 2 across all edges for all subjects and calculate the mean for each edge. Edges with 

high values in this measure are therefore high across all individuals in the group and are not 

helpful in identification. In the course of these analyses, we also determined the network pair the 

edges belong to (within- and between-networks); to account for differences in network sizes in 

both of these analyses, we divided the number of significant edges in a network pair by the 

number of total edges in the network. 
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 To investigate the relationship between within-subject correlation scores (self-

correlation), age, and time between scans, we performed linear regression analyses between self-

correlation and the number of days between scans; we also correlated self-correlation scores with 

age. We further performed partial correlation analyses in which we assessed the relationship 

between self-correlation scores and age while controlling for time between scans and vice-versa. 

Results 

Whole-brain identification results   

 Using the whole-brain connectivity matrix, we were able to identify subjects at rates 

highly above chance in all three datasets (Figure 1a). For example, the lowest identification rate 

we achieved was 43.3 percent, which is still well above chance (P < 0.0001). Success rates 

ranged from 43.3%, in the Pitt session 1-session 3 identification, to 84.6%, in the Utah session 1-

session 2B identification. The high accuracy rates do not appear to be driven by subject-specific 

in-scanner motion, as the highest ID rates we obtained based on each subject’s motion 

distribution vector were 1.92%, 2.9%, and 4.3% for Utah, SLIM, and Pitt, respectively. 

Identification was also performed after grouping subjects according to gender and a 0.1 

mm mean frame-frame displacement (FFD) threshold used to split subjects into high and low 

motion groups. We observed no sex effect in identification rates among males versus females, 

though we noted consistently higher rates among the low motion group compared to the high 

motion group (Supplemental Figure 2). Of note, all the rates we obtained from all whole-brain 

based analyses were highly above chance (P < 0.0001).  

Within-subject correlation scores, age, and time between scan results 

 We next investigated the relationship between self-correlation scores (the correlation of a 

subject from time 1 to time 2), age, and years in between scans by performing linear regression 
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analyses. In general, when all subjects were included in the analysis (i.e. when we do not apply 

the motion threshold used above) there appears to be a negative correlation between self-

correlation and years between scans, though none of these results were statistically significant 

(all P > 0.05; Figure 1b). Similarly, investigating self-correlation versus age (Figure 1c) again 

indicated no clear relationship, with the only significant result coming from Pitt session1-

session2 subjects (r = 0.2323, P = 0.025). 

To investigate if there were systematic differences in self-correlation between subjects 

due to motion or gender that might go undetected in the identification algorithm, we performed 

the same linear regression analyses as above except grouped subjects either by sex or the 0.1 mm 

mean FFD threshold. No obvious differences due to either emerged (Supplemental Figures 3 and 

4). In addition, we performed partial correlation analyses to explore the relationship between 

self-correlation and years between scans while controlling for age (and vice-versa). With the 

exception of Pitt session 1-session 2 (self-correlation versus age while controlling for years 

between scans; rho = 0.2298; P = 0.0276), all analyses yielded non-significant results 

(Supplemental Table 1), As a final check, we also correlated subject age with time between 

scans. We did find significant negative correlations in time between scans and age in SLIM 

session 1-session 2 and session 1-session 3 (r = -0.3424, P = 3.503e-04; r = -0.3921, P = 

3.5159e-05); all other correlations were not significant. Taken together, the results of these 

analyses reinforce that self-correlation scores we analyzed here tend to be stable between scans, 

there is no clear relationship between self-correlation and age, and our results do not seem to be 

driven by factors like gender, motion, or other confounding variables. Therefore, to increase the 

difficulty of the identification process, we performed the remainder of the analyses on all 

subjects in a given dataset (i.e. we did not group subjects by gender or motion). We also restrict 
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our analyses to session 1 – session 2, given that these session pairs had the largest sample sizes 

(note we used Utah 2A as the second session in this dataset). 

Network-based identification results 

Having determined whole-brain connectivity data is stable across years, we next tested 

the contributions to this stability of specific within- and between-network pairs. We grouped the 

connectivity data for each subject into 10 functional networks (Figure 2a), and subsequently 

performed identification analyses using only the edges from a given network pair. In general, we 

observed edges within or between the medial frontal and frontoparietal networks (networks 1 and 

2, respectively), tended to lead to the highest identification rates for all three datasets, with 

network 3 (default mode network) edges also leading to high ID rates (Figure 2b) consistent with 

the original fingerprinting work of Finn et al. (2015). In addition, when we only considered the 

within-network edges and combined networks 1 and 2, we tended to achieve even higher ID rates 

than when using only the network pairs in isolation. For example, considering the 45 between-

network and 10 within-network identifications for each dataset, the combined network 1 and 2 

ID rate was higher than 51/55 network pairs for Utah (P < 0.05); for 52/55 network pairs for Pitt 

(P < 0.05); and for 53/55 network pairs for SLIM (P < 0.05), again echoing the results of Finn et 

al. (2015) and emphasizing the importance of medial frontal and frontoparietal networks (see 

Supplemental Table 2 for actual rates obtained and non-significant network pairs). Despite the 

different ID rates achieved, however, we note that identification was still highly significant 

across all network pairs (i.e. ID rates were well above chance even for the worst performing 

networks): of the 165 network-based identifications we performed for session 1-session 2 (45 

between-network and 10 within-network identifications for each dataset; 55 x 3 datasets = 165 

identifications), 162 had P <0.001, 2 had P = 0.006, and 1 had P = 0.002. 
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Edge-based analyses results 

 Lastly, we assessed the importance of specific edges to subject uniqueness. Using the DP 

measure, which calculates how characteristic an edge tends to be, we were able to determine 

which edges were important in the identification process. A representative example from SLIM 

showing the anatomic location of the edges from this analysis is provided (Figure 3a). The 

results were consistent across all three datasets and a range of thresholds (data not shown). In 

general, highly discriminative edges tend to cluster in the prefrontal, parietal, and temporal 

cortices. To determine relative network representation, we calculated the number of significant 

edges present in a network pair. DP edges tended to be located within or between networks 1 and 

2 and to a lesser extent network 3; representation was also found in other regions, though at 

somewhat lower levels (Figure 3b). As an example of the relative over-representation of 

significant edges in the medial frontal and frontoparietal regions, after averaging the three 

matrices calculated from session 1-session 2 (shown as the average matrix in Figure 3b), we 

found approximately 60% of the edges were located within networks 1 and 2 or connecting these 

networks to other regions. 

 To quantify the extent to which individual edges do not contribute to subject uniqueness, 

we calculated the group consistency measure, which quantifies edges that are highly consistent 

within a single subject and across all subjects in a dataset. Because they are highly consistent for 

all subjects in a dataset, they do not discriminate between individuals. A representative example 

showing the anatomic location of the edges from this analysis is shown (Figure 3c). Results, 

consistent across all three datasets and a range of thresholds (data not shown), revealed that 

edges contributing the least to identification tended to link cross-hemispheric homologs (Figure 

3d). By averaging the matrices from session 1-session 2 for all datasets (shown in Figure 3d), we 
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found approximately 67% of the edges were within visual 1 and visual 2 networks (networks 5 

and 6, respectively).   

Discussion 

An unexpected finding from the HCP project was that the functional connectome is 

unique for each individual, and it has been an open question as to what extent the connectome 

remains identifiable over weeks, months or years, including through periods of significant brain 

development (Finn et al., 2015; Finn & Constable, 2016). Here we demonstrate in adolescents 

and young adults that an individual’s functional connectome remains unique and relatively stable 

for at least three years. To the best of our knowledge, this is the first time successful 

connectome-based identification has been demonstrated in datasets in which participants were 

scanned years apart. While the high identifiability we achieved is consistent with earlier studies 

performed in adult subjects (although age ranges vary for these studies, most participants tend to 

be in the 20–35 year old range; (Finn et al., 2017; Finn et al., 2015; Horien et al., 2017 Noble et 

al., 2017; Vanderwal et al., 2017; Waller et al., 2017), and also in line with the observations of 

Kauffman et al. (2017) in younger subjects (8–22 year olds), all of these studies have been cross-

sectional in nature. Because of the longitudinal aspect of the datasets analyzed here, we extend 

the earlier observations by showing that unique FC patterns are stable at longer time scales. 

By performing our analyses in adolescents and young adults who are experiencing both 

structural and functional changes in brain development (Brenhouse & Andersen, 2011; Burnett, 

Sebastian, Cohen Kadosh, & Blakemore, 2011; Casey, Giedd, & Thomas, 2000; Casey & Jones, 

2010; Casey, Jones, & Hare, 2008; Casey et al., 2010; Giedd et al., 2009; Giedd & Rapoport, 

2010; Gogtay et al., 2004; Johnson, Blum, & Giedd, 2009; Tamnes et al., 2013; Tau & Peterson, 

2010), in principle a successful identification should be more difficult. Nevertheless, we were 
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still able to successfully predict the identities of individuals at levels highly above chance using 

the functional connectome. Our results suggest that there is an inherent stability in the 

connectome and that unique patterns of FC endure even during adolescent development. While 

the idea of stability in the developing brain might seem counterintuitive, the multivariate nature 

of the identification procedure helps explain our results. For example, it has been reported that 

univariate measures of FC (i.e. individual edges) change in strength across longitudinal scans 

(Noble et al., 2017; Pannunzi et al., 2017) and are expected to change across development, but 

these changes are evidently not enough to overcome the large-scale, subject-specific patterns in 

FC that allow high within-subject correlations and a successful identification. Our results are 

thus consistent with the presence of an FC organizational structure that is stable through 

development, an idea that has been suggested based on the similarity of neonatal connectomes to 

mature adult connectomes (van den Heuvel et al., 2015). 

 We also demonstrate through network-based identification and edge-based analyses that 

the medial frontal, frontoparietal, and default mode networks were most discriminative of 

adolescent and young adult subjects across longer time scales. Given that these networks 

undergo developmental changes (de Bie et al., 2012; Fair et al., 2008; Gu et al., 2015; Sato et al., 

2014; Sherman et al., 2014; Supekar et al., 2010), our results again might seem counterintuitive. 

However, recent studies have shown that connectomes from children are generally similar to 

adults in terms of overall network structure (Fair et al., 2012; Marek, Hwang, Foran, Hallquist, & 

Luna, 2015; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), providing evidence that 

despite changes in FC, large-scale patterns in brain networks are still similar across development. 

Together with the high identifiability we observed, this suggests that subject-specific patterns in 

these highly distinctive networks are present even in younger individuals. 
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Our results are also consistent with a number of factors emerging as important in the 

connectome-based identification and reliability literature. We obtained consistently higher ID 

rates when restricting analyses to only low-motion subjects. While the inherent decrease in 

sample size when using a within-dataset motion-threshold makes direct comparison of ID rates 

difficult (i.e. samples in this study were essentially cut in half when we used a motion cutoff), the 

effect of motion on ID rates we observed is consistent with other work (Horien et al., 2017). 

Further, the importance of scan time on within-subject reliability scores (like connectivity-based 

identification) is increasingly being recognized (Airan et al., 2016; Birn et al., 2013; Finn et al., 

2017; Finn et al., 2015; Laumann et al., 2015; Mueller et al., 2015; Noble et al., 2017; Shah, 

Cramer, Ferguson, Birn, & Anderson, 2016), and we observed that the Pitt dataset, with only 5 

minutes of data per subject, tended to have lower rates of identification relative to the other 

datasets (8 minutes of data each). Numerous differences among the datasets (i.e. differences in 

developmental stage of subjects, number of years between scans, eyes open versus closed during 

rest, etc.) could also explain these findings, however, so further work is needed. 

 A number of other questions remain open for study. The youngest subjects we studied 

were approximately 10 years old. Establishing when an individual’s unique functional 

connectome profile emerges should be examined, as well as when connectome uniqueness 

breaks down. Studies in adults have shown identification rates are highest when subjects are 

completing a task in the scanner (possibly by increasing subject-specific signal-to-noise and 

augmenting unique patterns of FC; Finn et al., 2017; Vanderwal et al., 2017), so identifiability 

should be investigated when younger subjects are completing task-based scans to see if a similar 

pattern holds. Since reliability of functional neuroimaging data is a topic of increasing interest, 

the extent to which other measures of reliability map onto the developing brain should be 
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examined. Finally, future work should determine if the stability of fMRI connectivity data allows 

predictions to be made regarding behavior at longer time frames, similar to how previous 

investigators have used FC measures to predict a behavioral or psychiatric score in cross-

sectional studies (Drysdale et al., 2017; Finn et al., 2015; Hearne, Mattingley, & Cocchi, 2016; 

Kaufmann et al., 2017; Rosenberg et al., 2016; Shen et al., 2017). 

 In sum, we have shown adolescent and young adult subjects have unique and stable 

functional connectomes and that the frontal, parietal, and temporal cortices are important in 

defining individual uniqueness in younger subjects. Leveraging the stability of FC data in 

younger subjects to generate meaningful models related to behavior and cognition remains an 

important next step of study. 
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Figure legends: 
 
Figure 1.  Connectome-based identification. Panel A: Results using whole brain data. Each 
dataset is indicated below the graph, along with the sessions that were involved in identification. 
Black shading indicates the early session served as the database session while the later session 
served as the target; gray shading indicates the later session served as the database with the early 
session serving as the target. “Average” refers to the average of all three datasets for each 
respective session identification pair. Panels B and C: Plotting self-correlation against years in 
between scans and age at scan time 1. Each dataset is indicated by the appropriate color and 
symbol. Results of linear regression analyses are shown on the appropriate graph. 
 
 
Figure 2. Network-based identification. Panel A: Node and network labels. We utilized a 268-
node functional atlas. Nodes were further grouped into the 10 functional networks indicated here. 
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Network names are to the left; anatomic locations are shown on the brains to the right. Panel B: 
We performed identification using only within- or between-network edges for session 1 and 
session 2 for all three datasets; shown are the average results for each database and target pair 
(i.e. a single element in the matrix represents the average identification rate of using session 1 as 
a database and session 2 as a target and vice-versa). “Average” above the right-most matrix 
refers to the average identification rate of all three datasets for session 1 and session 2 shown 
here. Note that because there were two scans in Utah session 2, we used session 2A in this 
analysis. 
 
 
Figure 3. Results of edge-based analyses. Panel A: Anatomic location of highly unique (DP) 
edges from SLIM session 1-session 2. The edges shown here were in the top 99.9 percentile of 
highly unique edges. In the left two images of the brain, the red lines indicate edges connecting 
the red spheres, representing nodes. Nodes are sized according to degree, the number of edges 
connected to that node. On the right, the same nodes and edges are visualized on a circle plot, in 
which nodes are grouped according to anatomic location. The top of the circle represents 
anterior; the bottom, posterior. The left half of the circle plot corresponds to the left hemisphere 
of the brain. Panel B: Network representation of highly unique edges. Shown here are the data 
from the top 99.9 percentile of unique edges from session 1-session 2, as well as the average of 
all three datasets for session 1-session 2 shown here. Hotter colors indicate more edges are in the 
network pair. Note for both (B) and (D), the Utah session 2A scan was used. Panel C: Anatomic 
location of highly consistent (group consistency) edges from SLIM session 1-session 2. The 
edges shown here were in the top 99.9 percentile of highly consistent edges. Edges and nodes are 
represented as in (A). Panel D: Network representation of highly consistent edges. Shown here 
are the data from the top 99.9 percentile of highly consistent edges from session 1-session 2, as 
well as the average of all three datasets for session 1-session 2 shown here. The color scheme is 
as in (B). Note in (B) and (D) the scales of the color bars are not necessarily the same. 
 
Table 1 legend: Demographic and imaging characteristics of datasets used in this study. 
 

a. The subjects in Utah session 2 contain two runs, hereafter referred to as 2A and 2B. 
b. Scan session 2 and 3 occurred on the same day in one female subject in this session; we removed it when 

conducting analyses that required us to incorporate the number of days between scans 2 and 3. 
c. All datasets provided age in years at scan session 1. For SLIM and Utah, the ages were reported as integers 

in years only, while the time between scan sessions was reported in days. To standardize the reporting of 
age among all three datasets, we only report age at session 1 here.  

 
 
 
Supplemental Figure 1. The number of edges remaining in network pairs in the SLIM and Pitt 
datasets. Each element in the matrix represents the number of edges remaining in that network 
pair divided by the number of edges present in the original network pair (i.e. if none are 
missing). All edges were present in Utah subjects. 
 
Supplemental Figure 2. Identification results using whole brain data, grouping subjects according 
to gender or a 0.1 mm mean frame-frame displacement motion threshold. Shown here is the 
average identification for a database-target pair. Each dataset is indicated below the graph. Note 
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that all the Utah subjects in the original sample were male; we therefore did not replot the 
original data shown in Figure 1A here in panel(A).  
 
Supplemental Figure 3. Self-correlation versus days between scans and age at scan 1 while 
separating subjects according to gender. In (A), the x-axis is days between scans; in (B), the x-
axis is age at scan time 1. The y-axis is self-correlation (correlation of a subject from time 1 to 
time 2). Results of linear regression analyses are indicated in the appropriate graph. 
 
Supplemental Figure 4. Self-correlation versus days between scans and age at scan 1 while 
separating subjects according to a 0.1 mm mean frame-frame displacement threshold. In (A), the 
x-axis is days between scans; in (B), the x-axis is age at scan time 1. The y-axis is self-
correlation (correlation of a subject from time 1 to time 2). Results of linear regression analyses 
are indicated in the appropriate graph. 
 
Supplemental Table 1. Results of partial correlation analyses. Dataset and scan pair are indicated 
in the leftmost column. The columns with headings X and Y indicate the variables included in 
the calculation of the sample linear partial correlation coefficient; Z indicates the variable being 
controlled for. Columns titled rho and p-val indicate the correlation coefficient and p-value, 
respectively. 
 
Supplemental Table 2. Combined network 1 and 2 ID rates. Dataset is indicated in the leftmost 
column; note that session 1-session 2 data was used in this analyses. ID rate obtained, lower, and 
upper bounds of 95% confidence intervals are shown in the middle columns. Non-significant 
network pairs (P > 0.05) are indicated in the rightmost column. 
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 SLIM Pitt Utah 
Subjects in session 1 
and 2 (females) 

105 (49) 93 (45) 26a (0) 

Subjects in session 3 
(females) 

105 (49) 30 (16)b - 

Age at scan 1 (mean+ 
SD)c 

19.67 + 0.96 years 15.23 + 2.83 years 20.23 + 8.28 years 

Years between scan 1 
and 2 (mean+ SD) 

0.84 + 0.29 years 1.76 + 0.41 years 2.54 + 0.29 years 

Years between scan 2 
and 3 (mean+ SD) 

1.532+ 0.18 years 1.53 + 0.30 years - 

Years between scan 1 
and 3 (mean+ SD) 

2.37 + 0.28 years 3.16 + 0.26 years - 

Scan duration in 
minutes (volumes) 

8 (242) 5 (200) 8 (240) 

TR in seconds 2 1.5 2 

Table 1. Demographic and imaging characteristics of datasets used in this study. 
 

a. The subjects in Utah session 2 contain two runs, hereafter referred to as 2A and 2B. 
b. Scan session 2 and 3 occurred on the same day in one female subject in this session; we removed it when 

conducting analyses that required us to incorporate the number of days between scans 2 and 3. 
c. All datasets provided age in years at scan session 1. For SLIM and Utah, the ages were reported as integers 

in years only, while the time between scan sessions was reported in days. To standardize the reporting of 
age among all three datasets, we only report age at session 1 here.  
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Figure 1.  Connectome-based identification. Panel A: Results using whole brain data. Each 

dataset is indicated below the graph, along with the sessions that were involved in identification. 

Black shading indicates the early session served as the database session while the later session 

served as the target; gray shading indicates the later session served as the database with the early 

session serving as the target. “Average” refers to the average of all three datasets for each 

respective session identification pair. Panels B and C: Plotting self-correlation against years in 

between scans and age at scan time 1. Each dataset is indicated by the appropriate color and 

symbol. Results of linear regression analyses are shown on the appropriate graph. 
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Figure 2. Network-based identification. Panel A: Node and network labels. We utilized a 268-
node functional atlas. Nodes were further grouped into the 10 functional networks indicated here. 
Network names are to the left; anatomic locations are shown on the brains to the right. Panel B: 
We performed identification using only within- or between-network edges for session 1 and 
session 2 for all three datasets; shown are the average results for each database and target pair 
(i.e. a single element in the matrix represents the average identification rate of using session 1 as 
a database and session 2 as a target and vice-versa). “Average” above the right-most matrix 
refers to the average identification rate of all three datasets for session 1 and session 2 shown 
here. Note that because there were two scans in Utah session 2, we used session 2A in this 
analysis. 
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Figure 3. Results of edge-based analyses. Panel A: Anatomic location of highly unique (DP) 
edges from SLIM session 1-session 2. The edges shown here were in the top 99.9 percentile of 
highly unique edges. In the left two images of the brain, the red lines indicate edges connecting 
the red spheres, representing nodes. Nodes are sized according to degree, the number of edges 
connected to that node. On the right, the same nodes and edges are visualized on a circle plot, in 
which nodes are grouped according to anatomic location. The top of the circle represents 
anterior; the bottom, posterior. The left half of the circle plot corresponds to the left hemisphere 
of the brain. Panel B: Network representation of highly unique edges. Shown here are the data 
from the top 99.9 percentile of unique edges from session 1-session 2, as well as the average of 
all three datasets for session 1-session 2 shown here. Hotter colors indicate more edges are in the 
network pair. Note for both (B) and (D), the Utah session 2A scan was used. Panel C: Anatomic 
location of highly consistent (group consistency) edges from SLIM session 1-session 2. The 
edges shown here were in the top 99.9 percentile of highly consistent edges. Edges and nodes are 
represented as in (A). Panel D: Network representation of highly consistent edges. Shown here 
are the data from the top 99.9 percentile of highly consistent edges from session 1-session 2, as 
well as the average of all three datasets for session 1-session 2 shown here. The color scheme is 
as in (B). Note in (B) and (D) the scales of the color bars are not necessarily the same. 
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