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Abstract: Important traits in agricultural, natural, and human populations are increasingly being shown 
to be under the control of many genes that individually contribute only a small proportion of genetic 
variation. However, the majority of modern tools in quantitative and population genetics, including 
genome wide association studies and selection mapping protocols, are designed to target the 
identification of individual genes with large effects. We have developed an approach to identify traits 
that have been under selection and are controlled by large numbers of loci. In contrast to existing 
methods, our technique utilizes additive effects estimates from all available markers, and relates these 
estimates to allele frequency change over time. Using this information, we generate a composite 
statistic, denoted 𝐺�, which can be used to test for significant evidence of selection on a trait. Our test 
requires genotypic data from multiple time points but only a single time point with phenotypic 
information. Simulations demonstrate that 𝐺� is powerful for identifying selection, particularly in 
situations where the trait being tested is controlled by many genes, which is precisely the scenario 
where classical approaches for selection mapping are least powerful. We apply this test to breeding 
populations of maize and chickens, where we demonstrate the successful identification of selection on 
traits that are documented to have been under selection.   
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Introduction 

Quantitative traits encompass an inexhaustible number of phenotypes that vary in populations, from 

characters such as height (Yang et al. 2010) to weight (Barsh et al. 2000) to disease resistance (Poland et 

al. 2009). These types of traits are so essential for agriculture and human health that the entire field of 

quantitative genetics revolves around their study (Plomin et al. 2009; Wallace et al. 2014). However, the 

nature of quantitative traits makes it difficult to study their genetic basis; for nearly a century, scientists 

have modeled quantitative traits by assuming that their underlying control involves many loci each 

contributing a very small proportion to genetic variance (Fisher 1918), the so-called ‘infinitesimal 

model’. Therefore, conducting studies with enough power to identify a substantial proportion of the loci 

that contribute to a quantitative trait requires a massive sample size, imposing financial and logistical 

barriers. However, this model of quantitative trait variation does an excellent job when predicting 

important characteristics such as response to selection (Visscher et al. 2008). For instance, the recent 

development of genomic prediction methodologies (Meuwissen et al. 2001) allow the breeding value 

and/or phenotype of individuals to be predicted with remarkable precision from genomic information 

alone.  

The models of quantitative genetics have had a less dramatic impact on studies of evolutionary 

adaptation, where genomes are often scanned to identify adaptive loci with large effects (Akey 2009). 

Positive selection on such loci leaves behind pronounced signatures, deemed “selective sweeps”. There 

is an abundance of evidence for such sweeps in humans (Sabeti et al. 2007), natural populations 

(Schweizer et al. 2016), livestock (Qanbari and Simianer 2014), and crops (Hufford et al. 2012; Qanbari 

and Simianer 2014; Schweizer et al. 2016). However, alternative forms of selection, including purifying 

selection against new mutations (Lawrie et al. 2013), selection on standing variation (Garud et al. 2015), 

or selection on many loci of small effect (Turchin et al. 2012), rarely leave these discernible signatures at 

individual loci. Evidence of these forms of selection can be difficult to identify. When they can be found, 

it is often through the pooling of weak evidence at individual loci into a stronger signal across a class of 

loci. For example, Beissinger et al (2016) demonstrated the importance of purifying selection during 

maize evolution by combining evidence from all maize genes. An approach implemented by Berg and 

Coop (2014) tests for evidence of selection on a quantitative trait by evaluating allele frequencies at all 

loci that have previously been implicated by genome-wide association studies (GWAS) as putatively 

associated with that trait. This approach has since been used to test for selection on multiple human 

traits, including height (Mathieson et al. 2015) and telomere length (Hansen et al. 2016). 
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In studies of model organisms or agricultural species, large collections of previously identified 

“GWAS hits” are not as abundant as in humans, on which the Berg and Coop (2014) method depends. 

This is due in part to the more modest sample sizes that tend to be used in experimental settings 

compared to clinical studies, often combined in large-scale meta-analyses (Evangelou and Ioannidis 

2013). In contrast to humans, however, genotypic data across multi-generational time points are often 

available for model and agricultural species. We have developed a test for selection on complex traits 

that leverages such genotype-over-time data. Our test depends on the relationship between the change 

in allele frequency across generations and the estimated additive effect of the same allele, computed for 

every genotyped locus. We use these values to compute an estimate of the direction of genetic gain, 

which can be shown to be additive across all loci considered and lends itself to a straight-forward 

positional dissection of the accumulated genetic gain. Because phenotypic data are incorporated, a 

permutation-based test for significance can be utilized so that significance testing is not limited by many 

of the demographic history and population structure related caveats that complicate determining 

significance when testing for selection (de Villemereuil et al. 2014). Our method utilizes additive effects 

estimates for each locus calculated simultaneously, using shrinkage-based methods that have been 

honed over the past 15 years for the purpose of genomic selection and prediction (Campos et al. 2013). 

Therefore, this text can be considered analogous to reverse genomic selection; rather than using 

predictions of breeding value to drive selection and hence future changes in allele frequency, we use the 

same data coupled with knowledge of past changes in allele frequency to make inferences regarding 

which traits were effectively under selection in the past. Interestingly, we find by simulation that this 

approach is most powerful for identifying selection on traits controlled by many loci of small effect, 

which is exactly the situation where other tests for selection and/or association are least powerful. 

Herein, we first describe our test for selection on complex traits. Then, we perform simulations 

demonstrating the validity of the method and explore the situations where it is most and least powerful. 

Finally, we apply the method to breeding populations of maize and chicken. In both of these 

experimental situations, we successfully identify the traits that are known to have been selected. 

Collectively, our results demonstrate that this approach may be leveraged to identify novel traits or 

component-traits that may be used to inform future breeding decisions and/or for enhanced historical, 

ecological, and basic scientific understanding. 
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Results 

Theoretical Motivation: 

 Assume that a trait is fully controlled by additive di-allelic loci 𝑗 = 1, …𝑚. Then the genotypic 

value, aj, of an allele at locus j, is equal to its gene substitution effect, αj. Based on this equivalency, the 

mean phenotypic effect, Mj, attributable to the locus is given by Mj = αj(2pj-1), where pj is the frequency 

of the reference allele at this locus. It follows that the change in the population mean resulting from 

selection on this locus, what we may consider the locus-specific response to selection, is given by  

Rj = Mj1 - Mj0 = αj(2pj1-1) - αj(2pj0-1) = 2αj(pj1-pj0),  

where pj0 is the allele frequency before selection and pj1 is the allele frequency after selection. Define Δj 

= (pj1-pj0), leading to Rj = 2 Δjαj. Based on our earlier assumption of complete additivity, summing over all 

m loci provides a genome-wide estimate of the response to selection (Falconer and Mackay 1996): 

 𝑅� = 2�∆𝑗𝛼𝑗

𝑚

𝑗=1

 (1) 

This estimate of selection response also naturally arises from the logic of random regression BLUP 

(RRBLUP) (Meuwissen et al. 2001). Here, a model is used 

𝑦 = 𝑋𝑋 + 𝑍𝑍 + 𝑒  ,                       (2) 

where 𝒚 is a vector of length 𝑛 containing phenotypes for a specific trait, 𝑋 are fixed effects, 

𝑍~𝑁(0, 𝐼𝜎𝑠2) is the vector of length 𝑚 containing additive SNP effects at 𝑚  loci; 𝑒~𝑁(0, 𝐼𝜎𝑒2) is the 

vector of random residual terms, and 𝜎𝑠2 and 𝜎𝑒2 are the corresponding variance components. 𝑋 and 𝑍 

are incidence matrices linking observations in 𝑦 to the respective levels of fixed effects in 𝑋 and random 

SNP effects in 𝑍. In more detail, 𝑍 is an 𝑛 × 𝑚 matrix where element 𝑧𝑖𝑗 contains the genotype of 

individual 𝑖 at SNP locus 𝑗. Since such models are invariant with respect to linear transformations of the 

allele coding (Strandén et al. 2011), we may use the notation 𝑧𝑖𝑗 = 0, 1
2

, 𝑜𝑜 1, standing for zero, one, or 

two copies of the reference allele. Note that with this coding, 𝑍𝑗  is equivalent to 2𝛼𝑗 in the coding above, 

since it reflects the contrast between the two homozygous genotypes at locus 𝑗.  Due to the equivalence 

of genomic BLUP (GBLUP; VanRaden 2008) and RRBLUP (Endelman 2011), it is possible to calculate 

genomic breeding values of the genotyped individual as 𝑢� = 𝑍�̂�, where �̂� are the solutions for the SNP 

effects obtained using RRBLUP with model (2). 
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Assume now further that individuals in the vector 𝑦 can be assigned to 𝑔 discrete generations and that 

the individuals of the oldest generation come first and the individuals of the last generation come latest. 

We then can define a 𝑔 × 𝑛 matrix 

𝐿 = �
𝑙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑙𝑔

�, 

where 𝑙𝑖 is a row vector of length 𝑛𝑖, which is the number of individuals in generation i, of which all 

elements are 1/𝑛𝑖.  With this, a vector 𝑢�  of length 𝑔 reflecting average breeding values per generation 

can be calculated as 𝑢� = 𝐿𝑢� , and estimated selection response results as 𝑅� = 𝑢�𝑔 − 𝑢�1. 

Now, 𝑢� = 𝐿𝑢� = 𝐿𝑍�̂�, where 𝐿𝑍 is a 𝑔 × 𝑚 matrix in which element 𝑖, 𝑗 reflects the average allele 

frequency of the reference allele at SNP 𝑗 in generation 𝑖. The allele frequency change between 

generation 1 and generation g can be obtained as a linear contrast between the first and the last row of 

this matrix as   ∆ = 𝑘′𝐿𝑍 where 𝑘 is a vector of length g with 𝑘1 = −1 ,𝑘𝑔 = 1 , and all other elements 

are zero. Finally, the selection response can be written as 𝑅� = ∆�̂�, which is identical to equation (1), 

given that 𝑍 is equivalent to 2𝛼.  

Furthermore, theory suggests that under the assumption that selection intensity is equal for all genes 

across the genome, the change of allele frequency ∆𝑖 should be approximately proportional to the allele 

effect 𝛼𝑖, such that for a trait under selection a non-zero correlation between allele frequency change 

and the additive effect of alleles on that trait is expected (Wright 1937). Alternatively stated, (1) 

emphasizes the temporal component of the Breeder’s Equation, R = h2S, where h2 is the narrow-sense 

heritability of a trait and S is the selection differential. Given a population of individuals with more than 

one time-point of genotypic data, it is simple to compute ∆𝑖  for every genotyped locus. Furthermore, 

the shrinkage methods of genomic prediction (Campos et al. 2013), including Ridge Regression 

(Endelman 2011) and GBLUP (VanRaden 2008) allow additive effects, αi, to be approximated for every 

genotyped position. For this, a set of individuals genotyped and phenotyped in at least one generation is 

needed.  

A notable benefit of the estimator in (1) is that by leveraging temporal data from genotypes 

rather than from phenotypes, it only requires one generation of phenotyping. Additionally, this suggests 

that if we consider 𝑅 a random variable, then given the distribution of R in a scenario without selection, 

a test of whether or not 𝑅�  is different from zero may be performed. Since 𝑅�  is the genomic response to 
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selection, this is equivalent to testing whether or not a trait has been under selection during the 

timeframe under study. 

Significance Testing: 

We implemented a permutation-based strategy to test whether or not 𝑅�  is significantly different 

from zero. Genetic drift and selection jointly determine changes in allele frequency, ∆𝑖, but without 

selection these changes in frequency should not be related to effect size. The reverse is also true; effect 

sizes, 𝛼𝑖, are estimated based on a genomic prediction model applied to phenotypes measured in a 

single panel of individuals, and therefore they are not related to changes in allele frequency. This 

suggests that a null distribution for 𝑅�  in a no-selection scenario may be generated via a permutation 

approach. Assuming no linkage disequilibrium (LD) between markers, a simple shuffling of ∆𝑖 and 𝛼𝑖 can 

be implemented to generate the desired null distribution.  However, LD between markers compromises 

the applicability of this simplified approach for most populations—such an approach overestimates the 

sample size of the permutation test by treating each marker as an independent observation, while in 

reality any level of LD between markers leads to fewer independent observations than markers. 

Therefore, we have employed a semi-parametric approach that scales the variance of the permutation 

test statistic according to the realized extent of LD to alleviate this discrepancy.  

Let 𝐺� = ∑ ∆𝑗𝛼𝑗𝑚
𝑗=1 , which is proportional to 𝑅�  as defined in (1). Define p to be a vector of length 

m that is a permutation of the vector J = [1,..,m]. A permuted value of 𝐺� may be obtained via   

𝐺�𝑝𝑒𝑝𝑚 = ∑ ∆𝑗𝛼𝑝𝑗
𝑚
𝑗 . Because ∆𝑗  and  𝛼𝑝𝑗 are no longer indexed to the same locus, 𝐺�𝑝𝑒𝑝𝑚  does not reflect 

selection, but instead captures genetic drift over time (∆𝑗  terms) as well as the genetic architecture of 

the underlying trait (𝛼𝑗 terms). Generating repeated values of 𝐺�𝑝𝑒𝑝𝑚  through repeated permutations of 

J therefore generates a null distribution for 𝐺� which assumes no selection and complete linkage 

equilibrium.  

The Central Limit Theorem dictates that realizations of 𝐺�𝑝𝑒𝑝𝑚  are normally distributed with 

approximate mean 𝐺�𝑝𝑒𝑝𝑚�������� and standard deviation 𝑆𝑆(𝐺�𝑝𝑒𝑝𝑚). Therefore, σ, the underlying standard 

error of a single-locus estimate for 𝐺�𝑝𝑒𝑝𝑚  is given by 𝜎 = 𝑆𝑆(𝐺�𝑝𝑒𝑝𝑚)√𝑚, where 𝑆𝑆(𝐺�𝑝𝑒𝑝𝑚) is the 

observed standard error of 𝐺�𝑝𝑒𝑝𝑚 . Consider the quantity mind, representing the effective number of 

independent loci. If the standard deviation of 𝐺�𝑝𝑒𝑝𝑚  were calculated using mind independent markers, its 

expectation would be 𝑆𝑆𝑖𝑖𝑖�𝐺�𝑝𝑒𝑝𝑚� =  𝜎
�𝑚𝑖𝑖𝑖
� . Plugging in the estimate for 𝜎 obtained above, 
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𝑆𝑆𝑖𝑖𝑖�𝐺�𝑝𝑒𝑝𝑚� becomes 𝑆𝑆𝑖𝑖𝑖�𝐺�𝑝𝑒𝑝𝑚� =  𝑆𝑆�𝐺�𝑝𝑒𝑝𝑚��𝑚 𝑚𝑖𝑖𝑖� . In summary, to test for selection, 𝐺� 

may be calculated from data, and then a permuted null distribution for 𝐺� that assumes linkage 

equilibrium may be generated. This permutation distribution is then approximated with a normal 

distribution and the variance is scaled according to the effective number of independent markers. 

Ultimately, significance is evaluated by comparing 𝐺� to a normal distribution with mean 𝐺�𝑝𝑒𝑝𝑚�������� and 

standard deviation 𝑆𝑆�𝐺�𝑝𝑒𝑝𝑚��𝑚 𝑚𝑖𝑖𝑖�   . 

Simulations: 

We conducted a series of simulations to evaluate the power of the 𝐺� statistic for identifying selection on 

complex traits. Genotypic data were simulated with the software program QMSim (Sargolzaei and 

Schenkel 2009).  We simulated selection in a generic species with ten chromosomes, each 100 cM in 

length, with a total of 100,000 equally-spaced markers (10,000 per chromosome). In the first step of 

each simulation, the total population was established based on 10,000 individuals randomly mating for 

5,000 generations. Then, 500 males and 500 females were randomly chosen to establish a base 

population that would undergo selection. Each generation, 1,000 individuals (500 males and 500 

females) were permitted to mate out of a population of 5,000, providing a selection proportion of 20%. 

For each simulation, heritability was set to 0.5. This general scheme encapsulates characteristics of most 

plant and animal breeding populations, including the large number of progeny typical of plants and the 

truncation selection protocol often associated with animal breeding and/or selection in the wild. 

Additional details regarding the simulated population are included in Supplemental Table 1.  

We simulated variable numbers of additive QTL controlling traits, from 10, representing a simple 

trait controlled by large-effect QTL, to 1,000, representing a highly quantitative trait controlled nearly 

infinitesimally. QTLs were evenly spaced along each chromosome and QTLs themselves were not 

included in the marker set for analysis. One hundred simulations were performed for each level of trait 

complexity. First, we used these simulations to establish the appropriate number of independent 

markers, mind as defined above, for this test. We calculated how distant two markers must be to have an 

expected LD level of 𝑅2 ≤ 0.03. Then we counted the total number of blocks of this size genome-wide. 

The 0.03 level was established by performing a grid-search of potential values and tuning the false 

positive rate (Supplemental Figure 1).  An LD cutoff that is too high leads to a high false-positive rate, 
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while one that is too low weakens the power of the test. For populations similar to those we simulated, 

we expect that requiring 𝑅2 ≤ 0.03 will be appropriate.  

When we tested for selection in our simulated data, we observed a direct relationship between 

the number of QTL controlling a trait and the power of 𝐺� to identify selection on that trait. 𝐺� powerfully 

identifies selection on highly polygenic traits, but is not powerful for identifying selection on traits 

controlled by a small number of QTLs. Analyses of the same simulations using FST-based selection 

mapping showed that traits controlled by a small number of QTLs can be mapped using traditional 

selection mapping approaches. However, as traits become increasingly polygenic, our simulations 

demonstrate that the ability to map individual selected genes diminishes (Figure 1). These findings 

demonstrate how 𝐺� and traditional mapping are complementary depending on the underlying genetic 

architecture of a trait. Table 1 depicts detection and false positive rates for 𝐺� and FST-based mapping 

under different genetic architectures.   

Genetic Architecture 10 QTL 50 QTL 100 QTL 1,000 QTL 

Ĝ     

    True positive rate 0.04 0.54 0.94 1.0 

    False positive rate 0.03 0.03 0.02 0.03 

FST-based Selection Mapping     

    Mean # true positives (rate) 5.6 (56%) 22 (44%) 39 (39%) 187 (18.7% 

    Mean # false positives 52 280 715 1,745 

Table 1: Detection and false positive rates for Ĝ and Selection mapping. One Ĝ test is conducted per 
simulation, so true and false positive rates are shown. For selection mapping, one test is conducted 
per marker in each simulation, so the mean number of markers that were declared true and false 
positives is shown. A marker was declared a false positive in selection mapping if it exceeded a 5% 
simulation-based experiment-wide significance threshold but was not within a .1 cM region around a 
simulated QTL. 
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Figure 1: The power of Ĝ to identify selection. Top: The detection rate of Ĝ compared to Fst-based 
selection mapping. Vertical lines indicate one standard deviation. Standard deviations for selection 
mapping were estimated empirically. Standard deviations for Ĝ were estimated based on the binomial 
distribution. Bottom: Exemplary heat plots depicting individual-SNP allelic effect estimates linearly 
regressed on allele frequency change over time. Each point represents a SNP, while the contour lines 
indicate the density of SNPs. From the regression line, observe that a stronger relationship between 
frequency change and effect size corresponds to increasing polygenicity. 

 

Selection on maize silage traits: 

We re-analyzed data from a previous study that tested for selection in a decades-long breeding program 

for maize silage quality (Lorenz et al. 2015). Very briefly, a selection index comprised of experimentally-

measured traits related to silage quality was used to perform reciprocal recurrent selection for breeding 

improved maize. Traits comprising the index included acid detergent fiber (ADF), protein content, starch 

content, in-vitro digestibility, and yield (www.cornbreeding.wisc.edu). In total, 648 individuals from 

various stages of selection were genotyped. Between 240 and 300 of these individuals were also 

phenotyped, depending on the trait.  Selection mapping (Wisser et al. 2008) was previously performed 

utilizing simulations of drift to scan for selection, but the analysis did not identify any loci that showed 
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significant evidence of selection. This is in spite of quantifiable improvement of the population and 

demonstrated heritability of the index-composing traits (Lorenz et al. 2015). We re-analyzed the same 

data to evaluate evidence for polygenic selection on the measured traits, which included NDF, in-vitro 

digestibility, crude protein content, starch content, yield, and dry matter. After filtering, these data 

consisted of 10,023 polymorphic markers. Due to the relatively small population size and recurrent 

selection breeding scheme, we expect slow LD decay and therefore for most of the genome to be 

represented with this marker set. Further analysis of LD to determine the value of Meff to utilize in our 

test for selection confirms this (Supplemental Figure 2). 

 Figure 2 depicts the maize patterns of selection that were observed in our analysis. In these 

plots, the histogram shows the null distribution of 𝐺� that was observed from a permutation test, while 

the vertical line depicts the observed value of 𝐺� when applied to the experimental data. We observed 

that with the exception of protein, for the traits where we had an a priori expectation of selection, we 

not only identified that selection did occur, but we correctly estimated the direction of selection 

(positive or negative) from the data. One of the traits measured was silage dry matter (DM), which was 

not a part of the selection index. We did not identify evidence of selection on DM, as was expected. 
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Figure 2: Evidence of selection for maize silage traits. For six traits, the relationship between 

estimated allelic effects at individual SNPs and the change in allele frequency over generations is 

plotted. The red line is a regression of effect size on allele frequency change. Contour lines indicate 

the density of points, with blue contours indicating fewer points than red. Inset plots depict observed 

values of Ĝ (blue lines) and their statistical significance based on a comparison to permuted null 
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distributions (red densities) for no-selection scenarios. An exact two-sided p-value is given within each 

inset. Significant values of Ĝ above the permuted mean indicate selection operated in the positive 

direction, while significant values below the permutation mean indicated selection operated in the 

negative direction. 

 

Selection on chicken traits: 

We tested for evidence of selection in two panels of commercial lines of laying hens: one white layer 

(WL) and one brown layer (BL). Both closed lines have been selected over decades with a similar 

composite breeding goal, comprised of laying rate, body weight and feed efficiency, egg weight, and egg 

quality, among other objectives. The respective weights applied to the different traits varied between 

lines and over time.  Traits analyzed included laying rate, egg weight, and breaking strength of eggs. 

Genotypes were available only for the post-selection population, so initial allele frequencies were 

inferred based on pedigree data (Gengler et al. 2007). Mind was determined based on separate 

evaluations of LD in the WL (Supplemental Figure 3) and BL (Supplemental Figure 4) populations. 

 Among the traits evaluated, we observed significant evidence of selection for increased laying 

rate in both WLs (p = 0.027) and BLs (p = 0.0193). Tests were also suggestive of selection for increased 

eggshell breaking strength in WLs (p < 0.1; one-sided p < 0.05), while there was no evidence of directed 

selection for egg weight (Figure 3). To verify that these results were not driven by a small number of 

SNPs with high estimated effect sizes, we repeated the analysis with the 10 largest effect-size SNPs 

removed and saw virtually identical results (Supplemental Figure 5). The result for egg weight can be 

seen as a ‘negative control’ since for this trait an optimum value is already achieved and maintained by 

balancing selection. The fact that we were not able to detect significant evidence of selection in a trait 

such as eggshell breaking strength in both lines (although a tendency can be observed) may be due to 

the fact that improving those traits is part of a complex multi-objective breeding program, or simply that 

our test was underpowered for these traits. The unavailability of experimentally-estimated initial 

frequencies and our alternative use of pedigree-inferred initial allele frequencies likely weakened the 

power of the test as compared to the more complete data available for maize and in the simulations. 
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Figure 3: Evidence of selection for chicken traits. For three traits in white (left column) and brown 

(right column) laying hens, the relationship between estimated allelic effects at individual SNPs and 

the change in allele frequency over generations is plotted. The red line is a regression of effect size on 
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allele frequency change. Contour lines indicate the density of points, with blue contours indicating 

fewer points than red. Inset plots depict observed values of Ĝ (blue lines) and their statistical 

significance based on a comparison to permuted null distributions (red densities) for no-selection 

scenarios. An exact two-sided p-value is given within each inset. Significant values of Ĝ above the 

permuted mean indicate selection operated in the positive direction, while significant values below 

the permutation mean indicated selection operated in the negative direction. 

 

Discussion 

We have defined a test statistic, 𝐺�, that combines phenotypic and genotypic information to test for 

selection on traits controlled by many loci of small effect. The approach utilizes estimated effect sizes for 

individual loci and allele frequency changes over time resulting from selection on those loci. Therefore, 

𝐺� is most applicable in experimental or breeding populations, where both pieces of information are 

readily available via genotyping individuals from multiple generations. However, phenotypic information 

for estimating allelic effects is only required from a single time-point, so this approach can be applied 

post-hoc using DNA samples from previous generations even if phenotyping is no longer possible. As the 

practice of sequencing ancient DNA from archeological sites, museum samples, or other sources 

becomes progressively commonplace (Orlando et al. 2015), we envision that this approach may become 

increasingly applicable for ecological questions, evolutionary studies, and for human research. 

Powerful for highly quantitative traits 

 Methods for mapping genes associated with important traits or for identifying loci that are 

under selection are most powerful for large-effect genes. A simple explanation for the disappointing 

number of associations that have been uncovered to date through GWAS is that complex traits are often 

controlled by many genes of small effect (Yang et al. 2011). If this is the case, enormous sample sizes are 

required to map loci regardless of the methodological enhancements that can be applied. Human 

geneticists have had success studying complex traits by utilizing extremely large sample sizes (Rietveld et 

al. 2013; Wood et al. 2014).  But, sample sizes of this magnitude are not yet achievable within resource 

limitations for most species, and, arguably, will never be. Conversely, population genetic studies aiming 

to scan for selection have been most successful at identifying hard sweeps, where a new mutation of 

large effect rapidly rises to fixation as a result of selection (Pritchard et al. 2010). Only few 
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methodologies with  limited power exist for mapping soft sweeps, when the beneficial allele is already 

at intermediate frequency at the start of selection (Garud et al. 2015); Ma et al. 2015). A likely 

explanation for the presence of soft sweeps is that they often result from loci of small effect increasing 

in frequency slowly in a population and therefore existing on multiple distinct haplotypes or mutating 

multiple times before fixation. In an agricultural context, many soft sweeps may be due to newly defined 

breeding goals which put selection pressure on genes that previously were segregating in the 

populations, but were selectively neutral. The 𝐺� statistic does not attempt to map specific genes—

instead it pools information from all SNPs to test for selection on specific traits. This approach 

completely avoids the question of which loci are associated with a trait. Instead of testing each SNP, we 

perform one test based on information from all SNPs. Therefore, a strong statistical signal arises when a 

large proportion of SNPs behave similarly but not when a few SNPs portray strong signals on their own.  

It was recently argued that most complex disease traits in humans are controlled by small-effect 

genes dispersed throughout the genome – the omnigenic hypothesis (Boyle et al. 2017). Likewise, many 

important traits in agricultural animal and plant species tend to be quantitative in nature and are 

presumably controlled by small-effect genes (Goddard and Hayes 2009; Wallace et al. 2014). For these 

agricultural organisms, geneticists and breeders have long recognized the benefits that can be achieved 

by predicting breeding values and/or phenotypes based on models that use all SNPs simultaneously 

(Meuwissen et al. 2001; Heffner et al. 2009; Goddard and Hayes 2009). In fact, the development of 

these models has led to dramatic re-designs of modern breeding protocols (Schaeffer 2006; Cabrera-

Bosquet et al. 2012). The 𝐺� statistic represents one avenue to leverage information from all measured 

SNPs to gain an understanding of the evolutionary history of a population. This approach is analogous to 

genomic selection/prediction as utilized by animal and plant breeders, with an important distinction: 

instead of predicting breeding values to determine which individuals should be selected for the future, it 

utilizes genotypic frequencies over time coupled with phenotypic information to unravel the history of 

selection in the past. 

Genotypes from base population provide high power: 

Compared to other methods that test for selection on quantitative traits (Berg and Coop 2014; 

Zeng et al. 2017), 𝐺� is unique in that it leverages genotypic information from multiple time points and 

that it incorporates information from all SNPs instead of restricting to a previously identified set of SNPs 

from one or multiple independent GWAS’s. With the exception of a few traits in heavily studied species, 
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such as human height (Wood et al. 2014), few species, if any, provide the enormous sample sizes 

required to implicate a large number of loci for any quantitative traits. This includes situations where 

scientists are reasonably certain that a genetic architecture consisting of small-effect loci persists. 

Importantly, 𝐺� is powerful because of the independence of the estimation of allele frequency changes 

across generations and effect sizes, respectively. Even when allelic effects and/or allele frequency 

changes are small, they cumulatively generate a powerful test since they can be compared across all 

genotyped loci. However, our analysis of the chicken data suggested that the power of the test can be 

reduced through noisy estimation of allele frequency change. Our reliance on pedigree data to derive 

initial allele frequencies was not as precise as the direct measurement of initial allele frequencies that 

was conducted for maize. Although we were still able to find evidence of selection on traits including 

laying rate, which was almost certainly under the strongest selection, there were selected traits we did 

not detect potentially due to this noise. 

Future directions and conclusions: 

We have developed an approach to test for selected traits that avoids the preliminary identification of 

candidate genes or regions. The approach is particularly applicable in experimental, agricultural, and 

natural populations for which available resources dictate limited sample sizes for conducting massive 

mapping studies for such preliminary identification. In contrast to purely population-genetic analyses, 

which rely solely on genotypic information, our methodology requires that phenotypic data be collected 

on at least one time-point of genotyped individuals. Additionally, multiple time-points of genotypic 

information are needed, either directly or through pedigree-based imputation.  

While the 𝐺� statistic is most directly applicable for the discovery of traits that have been 

previously under selection during recent evolution, it may have additional applications. Recent studies 

have demonstrated that distinct physical regions of the genome, such as individual chromosomes, often 

contribute a disproportionate amount to trait variance (Bernardo and Thompson 2016). Rather than 

applying the 𝐺� statistic genome-wide, future research should be conducted regarding whether it can be 

applied across any collections of loci such as individual chromosomes, pathways, gene-families, 

functional classes, or other categories to test if these show evidence of selection on a quantitative trait. 

This would represent a process allowing researchers to map significant features as opposed to genes. 

 Although 𝐺� does have potential as a tool for mapping categories of selected loci, the simple 

identification of traits that have been under selection may prove enormously useful. Whether 
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agricultural, experimental, or natural, it is often difficult to determine all of the traits that are 

advantageous in a population or respond to natural or anthropogenic selection, including undesired 

selection responses. The application of the 𝐺� statistic genome-wide allows this determination, which 

may help scientists select the right traits for maximum agricultural production, determine inadvertently 

selected lab traits impacting experimental outcomes, and establish ecologically important traits for 

survival in the wild. 

 

Materials and methods 

Simulations: 

Each simulation started with a random mating historical population. After 5 thousand generations, 

selection began and simulations proceeded with more control over each generation. Truncation 

selection was performed based on high phenotype. Drift simulations were identical to selection 

simulations in terms of genome layout and genetic basis of the trait, but individuals were selected 

randomly. Simulations were performed with QMSim (Sargolzaei and Schenkel 2009).  Parameters for 

simulations are provided in full in Supplemental Table 1.  

Selection mapping in simulations: 

Pre- and post-selection simulated allele frequencies were output from QMSim. These were used to 

calculate marker-specific FST values, as was performed by (Lorenz et al. 2015). FST was computed 

according to 𝐹𝑆𝑆 =  𝑍2

𝑝�(1−𝑝�)+𝑍2/2
 , where s2 is the sample variance of allele frequency between pre- and 

post-selection populations, and 𝑝� is the mean allele frequency (Weir and Cockerham 1984). Experiment-

wide 5% significance threshold were identified based on the 95% FST quantile observed from drift 

simulations. These thresholds were applied to FST values obtained from selection simulations to 

determine detection and false positive rates. Simulated QTL were declared detected if a significant 

marker was identified within a .1 cM window surrounding the QTL. False positives were defined as 

markers that were not within a .1 cM window surrounding  any simulated QTL. 

Maize data: 
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All maize data were previously published and described by Lorenz et al. (2015). In brief, a selection index 

comprised silage-quality traits was used to perform reciprocal recurrent selection. Traits comprising the 

index were yield, dry matter content, neutral detergent fiber (NDF), protein content, starch content, and 

in-vitro digestibility (www.cornbreeding.wisc.edu). Phenotypic data included five cycles of selection, 

encompassing approximately 20 generations in total. Tens to hundreds of individuals were sampled 

from each cycle of selection to be genotyped. Genotyping was performed with the MaizeSNP50 

BeadChip, which includes 56,110 markers in total (Ganal et al. 2011). After removing monomorphic 

SNPs, redundant SNPs, quality filtering, and imputing, as described in Lorenz (2015), 10,023 informative 

SNPs remained. 

 Allele frequencies were computed for each cycle of selection. Because only 5 and 11 individuals 

from cycles 0 and 1 were genotyped, respectively, allele frequency change from cycle 2 (n = 163) to cycle 

5 (n = 211) was computed for each SNP. Since all SNPs were di-allelic, the frequency of only one allele 

was tracked, and the frequency change for that allele perfectly mirrored the change for the other allele. 

For the tracked allele only, allelic effects were estimated using the R package RR-BLUP (Endelman 2011). 

Phenotypic information was available from individuals representing selection cycles 1 through 4. 

Therefore, a fixed effect for cycle was included in our model. Our exact analysis scripts are available at 

github.com/timbeissinger/ComplexSelection.  

Chicken data: 

Data were available for one white layer (WL) and one brown layer (BL) line from a commercial breeding 

program. Both closed lines have been selected over decades with a similar composite breeding goal, 

comprising, among others, laying rate, body weight and feed efficiency of the hens, as well as egg 

weight and egg quality, where the respective weights of the different traits varied between lines and 

over time. In total, 673 (743) WL (BL) individuals were genotyped, of which > 80% were from the last 

generation and the remaining animals were parents, grand-parents, and great-grandparents of the 

actual birds. For all genotyped individuals, complete pedigree data were available comprising 2109 

(1879) individuals and going 13 (9) generations back in WL (BL). The oldest generation was defined as 

the base population and comprised 111 (64) ungenotyped individuals being separated from the majority 

of genotyped individuals by 12 (8) generations. 

Current individuals were genotyped with the Affymetrix Axiom® Chicken Genotyping Array 

which initially carries 580K SNPs. This data were pruned by discarding sex chromosomes, unmapped 
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linkage groups, and SNPs with minor allele frequency (MAF) lower than 0.5% or genotyping call rate 

smaller than 97%. Individuals with call rates smaller than 95% were also discarded. Subsequently, 

missing genotypes at the remaining loci were imputed with Beagle version 3.3.2 (Browning and 

Browning 2009),resulting in sets of 277‘522 (334‘143) SNPs for the WL (BL) individuals. 

To calculate the allele frequency change in the chicken populations, the allele frequency in the 

base population individuals had to be reconstructed by statistical means. This was done with the 

approach of Gengler et al. (2007), which, in short, considers the allele frequency in an individual as a 

quantitative and heritable trait and uses a mixed model approach to obtain a best linear unbiased 

prediction (BLUP) for the allele frequency of all un-genotyped individuals. This is done by linking the 

genotyped offspring to the un-genotyped ancestors via the pedigree information (for details, see 

Gengler et al. 2007). This required solving 277‘522 (334‘143) linear equation systems of dimension 2109 

(1879) for the WL (BL) data set. Next, ∆𝑖  for locus 𝑖 was calculated as the difference of the observed 

allele frequency of the genotyped individuals in the current and the 3 ancestral generations and the 

average estimated allele frequency of the  111 (64) base population individuals 12 (8) generations back. 

For each genotyped individual, conventional (non-genomic) BLUP breeding values and the 

respective reliabilities for a wide set of traits were available. SNP effects were estimated in a two-step 

procedure: first, for each trait in each line genomic breeding values were estimated via genomic BLUP 

(GBLUP), followed by a back-solution of estimated SNP effects. In the GBLUP step, the model 𝒚 = 𝟏𝜇 +

𝒁𝒁 + 𝒆, was solved, where 𝒚 is the vector of de-regressed proofs DRPs of genotyped individuals   for a 

specific trait; 𝜇 is the overall mean; 𝒁 is the vector of additive genetic values (i.e. genomic breeding 

values) for all genotyped chickens; 𝒆 is the vector of residual terms; 𝟏 is a vector of 1s and 𝒁 is a squared 

design matrix assigning DRPs to additive genetic values with dimension number of all genotyped 

individuals. Residual terms were assumed to be distributed 𝒆 ~ 𝑁(0,𝑹𝜎𝑒2), where 𝑹 is a diagonal matrix 

with diagonal elements 𝑅𝑖𝑖 = �𝑐+(1−𝑝𝐷𝐷𝐷𝐷
2 )/𝑝𝐷𝐷𝐷𝐷

2 �ℎ2

1−ℎ2
 (Garrick et al. 2009) for an individual i in the 

training set, where 𝑜𝐷𝐷𝐷𝑖2  is the reliability of DRP for individual i, 𝜎𝑒2 is the residual variance, using 𝑐 set to 

0.1. The distribution of additive genetic values is assumed to be 𝒁 ~ 𝑁(0,𝑮𝜎𝑔2), where 𝜎𝑔2 is the additive 

genetic variance and 𝑮 is a realized genomic relationship matrix which was constructed according to 

(VanRaden 2008). Estimation of variance components and genomic breeding values was done with 

ASReml  3.0 (Gilmour et al., 2009). 

Next, estimated SNP effects �̂� were obtained following Strandén and Garrick (2009) as 
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𝒔� =
1

2∑ 𝑝𝑖(1− 𝑝𝑖)𝑚
1=1

𝑴𝑇𝒁𝑇𝒁�  

where 𝑴 is a matrix of dimension number of genotyped individuals x number of genotyped SNPs with 

entry 𝑚𝑖𝑗 = 𝑥𝑖𝑗 − 2𝑝𝑗 where 𝑥𝑖𝑗 is the genotype of individual 𝑖 at locus 𝑗 (coded as 0, 1, or 2 which are 

counts of the reference allele) and 𝑝𝑗 is the population frequency of the reference allele at SNP 𝑗. 

Computational Resources: 

Computation was performed using the University of Missouri Informatics Core Research Facility 

BioCluster (https://bioinfo.ircf.missouri.edu/). Computational nodes where simulations were performed 

had 64 cores and 512 GB of RAM. 

Data availability: 

Maize data are available in from Lorenz et al. (2015). Chicken data, including allele frequency change 

and estimated SNP effects, will be made available on Github or Figshare upon publication. All scripts 

used for simulations and analysis are available at github.com/timbeissinger/ComplexSelection. 
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Supplemental Table 1: Simulation parameters. 

 

 

  

Parameter Value(s) 
Genetic basis of the trait  

Heritability 0.5 
QTL Heritability 0.5 (all heritability attributable to QTL) 
Phenotypic variance 1 

Historical Population  
Population size 10,000 
Number of generations 5,000 
Marker mutation rate (only historical gens) 2.5e-5 
QTL mutation rate (only historical gens) 2.5e-5 

Breeding (selected) Population  
Number of selected males/generation 500 
Number of selected females/generation 500 
Litter size 10 (total pop size = 500*50 = 25,000) 
Number of generations 20 
Mating design Random union of gametes, discrete 

generations 
Genome  

Number of chromosomes 10 
Chromosome size 100 cM 
Markers/chromosome 10,000 
Marker spacing Even 
Alleles/marker 2 
Marker allele frequencies Random (uniformly distributed) 
Number of QTL 10, 50, 100, 1,000 
QTL spacing Even 
Alleles/QTL 2 
QTL allele frequencies (in first gen) Equal (0.5) 
QTL allele effects Random (uniformly distributed) 
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Supplemental Figure 1: False positive rate depends on the number of effective markers. The y-axis of 
this plot shows the false positive rate for simulations of different genetic architectures that was realized 
with varying effective numbers of markers. The x-axis depicts the mean LD-threshold across simulations 
that corresponded to a particular effective number of markers. Simulations suggested that defining the 
effective number of markers as the number of genome-segments such that LD across each segment is 
expected to be in the interval R2 ∈ [0.027, 0.038] appropriately controls false positive rate.  
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Supplemental Figure 2: LD Decay by chromosome in the WQS maize population. For each chromosome, 
LD is plotted against the distance between SNPs (in number of markers). The effective number of 
markers for our test was determined by dividing the total number of markers by the mean distance 
between markers such that R2 ≤ 0.03. 
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Supplemental Figure 3: LD Decay by chromosome in the White Layer chicken population. For each 
chromosome, LD is plotted against the distance between SNPs (in number of markers). The effective 
number of markers for our test was determined by dividing the total number of markers by the mean 
distance between markers such that R2 ≤ 0.03. 
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Supplemental Figure 4: LD Decay by chromosome in the Brown Layer chicken population. For each 
chromosome, LD is plotted against the distance between SNPs (in number of markers). The effective 
number of markers for our test was determined by dividing the total number of markers by the mean 
distance between markers such that R2 ≤ 0.03. 
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Supplemental Figure 5: Evidence of selection for chicken traits, with potential outliers removed. This 
plot demonstrates a reanalysis of the chicken data shown in Figure 3 after removing of the 10 SNPs with 
the largest-magnitude effect size for each trait. For three traits in white (left column) and brown (right 
column) laying hens, the relationship between estimated allelic effects at individual SNPs and the 
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change in allele frequency over generations is plotted. Contour lines indicate the density of points, with 
blue contours indicating fewer points than red. Inset plots depict observed values of Ĝ (blue lines) and 
their statistical significance based on a comparison to permuted null distributions (red densities) for no-
selection scenarios. An exact two-sided p-value is given within each inset. Significant values of Ĝ above 
the permuted mean indicate selection operated in the positive direction, while significant values below 
the permutation mean indicated selection operated in the negative direction. 
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