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Abstract: Important traits in agricultural, natural, and human populations are increasingly being shown 30 
to be under the control of many genes that individually contribute only a small proportion of genetic 31 
variation. However, the majority of modern tools in quantitative and population genetics, including 32 
genome wide association studies and selection mapping protocols, are designed to identify individual 33 
genes with large effects. We have developed an approach to identify traits that have been under 34 
selection and are controlled by large numbers of loci. In contrast to existing methods, our technique 35 
utilizes additive effects estimates from all available markers, and relates these estimates to allele 36 
frequency change over time. Using this information, we generate a composite statistic, denoted 𝐺�, 37 
which can be used to test for significant evidence of selection on a trait. Our test requires pre- and post-38 
selection genotypic data but only a single time point with phenotypic information. Simulations 39 
demonstrate that 𝐺� is powerful for identifying selection, particularly in situations where the trait being 40 
tested is controlled by many genes, which is precisely the scenario where classical approaches for 41 
selection mapping are least powerful. We apply this test to breeding populations of maize and chickens, 42 
where we demonstrate the successful identification of selection on traits that are documented to have 43 
been under selection.   44 
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Introduction 45 

Quantitative traits encompass an inexhaustible number of phenotypes that vary in populations, from 46 

characters such as height (Yang et al. 2010) to weight (Barsh et al. 2000) to disease resistance (Poland et 47 

al. 2009). These types of traits are so essential for agriculture and human health that the entire field of 48 

quantitative genetics revolves around their study (Plomin et al. 2009; Wallace et al. 2014). However, the 49 

nature of quantitative traits makes it difficult to study their genetic basis; for nearly a century, scientists 50 

have modeled quantitative traits by assuming that their underlying control involves many loci each 51 

contributing a very small proportion to genetic variance (Fisher 1918), the so-called ‘infinitesimal 52 

model’. Therefore, conducting studies with enough power to identify a substantial proportion of the loci 53 

that contribute to a quantitative trait requires a massive sample size, imposing financial and logistical 54 

barriers. However, this model of quantitative trait variation does an excellent job when predicting 55 

important characteristics such as response to selection (Visscher et al. 2008). For instance, genomic 56 

prediction methodologies (Meuwissen et al. 2001) allow the breeding value and/or phenotype of 57 

individuals to be predicted with remarkable precision from genomic information alone.  58 

The models of quantitative genetics have had a less dramatic impact on studies of evolutionary 59 

adaptation, where genomes are often scanned to identify adaptive loci with large effects (Akey 2009). 60 

Positive selection on such loci leaves behind pronounced signatures, deemed “selective sweeps”. There 61 

is an abundance of evidence for such sweeps in humans (Sabeti et al. 2007), natural populations 62 

(Schweizer et al. 2016), livestock (Qanbari and Simianer 2014), and crops (Hufford et al. 2012; Qanbari 63 

and Simianer 2014; Schweizer et al. 2016). However, alternative forms of selection, including purifying 64 

selection against new mutations (Lawrie et al. 2013), selection on standing variation (Garud et al. 2015), 65 

or selection on many loci of small effect (Turchin et al. 2012), rarely leave these discernible signatures at 66 

individual loci. Evidence of these forms of selection can be difficult to identify. When they can be found, 67 

it is often through the pooling of weak evidence at individual loci into a stronger signal across a class of 68 

loci. For example, Beissinger et al (2016) demonstrated the importance of purifying selection during 69 

maize evolution by combining evidence from all maize genes. An approach implemented by Berg and 70 

Coop (2014) tests for evidence of selection on a quantitative trait by evaluating allele frequencies at all 71 

loci that have previously been implicated by genome-wide association studies (GWAS) as putatively 72 

associated with that trait. This approach has since been used to test for selection on multiple human 73 

traits, including height (Mathieson et al. 2015) and telomere length (Hansen et al. 2016). 74 
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In studies of model organisms or agricultural species, large collections of previously identified 75 

“GWAS hits” are not as abundant as in humans, on which the Berg and Coop (2014) method depends. 76 

This is due in part to the more modest sample sizes that tend to be used in experimental settings 77 

compared to clinical studies, often combined in large-scale meta-analyses (Evangelou and Ioannidis 78 

2013). Conversely, genotypic data across at least two time points are often readily available for model 79 

and agricultural species. Due to improving technologies for sequencing ancient DNA (Mathieson et al. 80 

2017; Berg et al. 2017), and/or by leveraging populations that have benefitted from excellent historical 81 

record-keeping (Kong et al. 2017), genetic data with a temporal component is increasingly available in 82 

humans. We have developed a test for selection on complex traits that leverages such genotype-over-83 

time data. Our test depends on the relationship between the change in allele frequency between two 84 

generations and the estimated additive effect of the same allele, computed for every genotyped locus. 85 

We use these values to compute an estimate of the direction of genetic gain, which can be shown to be 86 

additive across all loci considered. Our estimate lends itself to a simple permutation-based test for 87 

significance that avoids many of the demographic history and population structure related caveats that 88 

complicate determining significance when testing for selection (de Villemereuil et al. 2014). The method 89 

utilizes additive effects estimates for each locus calculated simultaneously, using shrinkage-based 90 

methods that have been honed over the past 15 years for the purpose of genomic selection and 91 

prediction (Campos et al. 2013). Therefore, this test can be considered analogous to reverse genomic 92 

selection; rather than using predictions of breeding value to drive selection and hence future changes in 93 

allele frequency, we use the same data coupled with knowledge of past changes in allele frequency to 94 

make inferences regarding which traits were effectively under selection in the past. Interestingly, we 95 

find by simulation that this approach is most powerful for identifying selection on traits controlled by 96 

many loci of small effect, which is exactly the situation where other tests for selection and/or 97 

association are least powerful. 98 

Herein, we first motivate and describe our test for selection on complex traits, which we call 𝐺�. 99 

Then, we perform simulations demonstrating the validity of the method and explore the situations 100 

where it is most and least powerful. Finally, we apply the method to breeding populations of maize and 101 

chicken. In both of these experimental situations, we successfully identify the traits that are known to 102 

have been selected. Collectively, our results demonstrate that this approach may be leveraged to 103 

identify novel traits or component-traits that may be used to inform future breeding decisions and/or 104 
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for enhanced historical, ecological, and basic scientific understanding. Software for implementing this 105 

test can be found in the accompanying Github repository, github.com/timbeissinger/ComplexSelection. 106 

 107 

Results 108 

Theoretical Motivation: 109 

 Assume that a trait is fully controlled by additive di-allelic loci 𝑗 = 1, …𝑚. Then the genotypic 110 

value, aj, of an allele at locus j, is equal to its gene substitution effect, αj. Based on this equivalency, the 111 

mean phenotypic effect, Mj, attributable to the locus is given by Mj = αj(2pj-1), where pj is the frequency 112 

of the reference allele at this locus. It follows that the change in the population mean resulting from 113 

selection on this locus, what we may consider the locus-specific response to selection, is given by  114 

Rj = Mj1 - Mj0 = αj(2pj1-1) - αj(2pj0-1) = 2αj(pj1-pj0),  115 

where pj0 is the allele frequency before selection and pj1 is the allele frequency after selection. Define Δj 116 

= (pj1-pj0), leading to Rj = 2 Δjαj. Based on our earlier assumption of complete additivity, summing over all 117 

m loci provides a genome-wide estimate of the response to selection (Falconer and Mackay 1996): 118 

 𝑅� = 2�∆𝑗𝛼𝑗

𝑚

𝑗=1

 (1) 

Strictly speaking, since relative effect sizes may change each generation with changing allele frequencies 119 

throughout the genome, (1) is applicable for a single generation. However, under the assumption of 120 

many loci affecting a trait, (1) may approximately apply for many generations of selection. This estimate 121 

of selection response also naturally arises from the logic of random regression BLUP (RRBLUP) 122 

(Meuwissen et al. 2001). Here, a model is used 123 

𝑦 = 𝑋𝑋 + 𝑍𝑍 + 𝑒  ,                       (2) 124 

where 𝒚 is a vector of length 𝑛 containing phenotypes for a specific trait, 𝑏 are fixed effects, 125 

𝑠~𝑁(0, 𝐼𝜎𝑠2) is the vector of length 𝑚 containing additive SNP effects at 𝑚  loci; 𝑒~𝑁(0, 𝐼𝜎𝑒2) is the 126 

vector of random residual terms, and 𝜎𝑠2 and 𝜎𝑒2 are the corresponding variance components. 𝑋 and 𝑍 127 

are incidence matrices linking observations in 𝑦 to the respective levels of fixed effects in 𝑏 and random 128 

SNP effects in 𝑠. In more detail, 𝑍 is an 𝑛 × 𝑚 matrix where element 𝑧𝑖𝑖  contains the genotype of 129 
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individual 𝑖 at SNP locus 𝑗. Since such models are invariant with respect to linear transformations of the 130 

allele coding (Strandén et al. 2011), we may use the notation 𝑧𝑖𝑖 = 0, 1
2

, 𝑜𝑜 1, standing for zero, one, or 131 

two copies of the reference allele. Note that with this coding, 𝑠𝑗 is equivalent to 2𝛼𝑗 in the coding above, 132 

since it reflects the contrast between the two homozygous genotypes at locus 𝑗.  Due to the equivalence 133 

of genomic BLUP (GBLUP; VanRaden 2008) and RRBLUP (Endelman 2011), it is possible to calculate 134 

genomic breeding values of the genotyped individual as 𝑢� = 𝑍𝑠̂, where 𝑠̂ are the solutions for the SNP 135 

effects obtained using RRBLUP with model (2). 136 

Assume now further that individuals in the vector 𝑦 can be assigned to 𝑔 discrete generations 137 

and that the individuals of the oldest generation come first and the individuals of the last generation 138 

come latest. We then can define a 𝑔 × 𝑛 matrix 139 

𝐿 = �
𝑙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑙𝑔

�, 

where 𝑙𝑝 is a row vector of length 𝑛𝑝, which is the number of individuals in generation p, of which all 140 

elements are 1/𝑛𝑝.  With this, a vector 𝑢� of length 𝑔 reflecting average breeding values per generation 141 

can be calculated as 𝑢� = 𝐿𝑢� , and estimated selection response results as 𝑅� = 𝑢�𝑔 − 𝑢�1. Now, 142 

𝑢� = 𝐿𝑢� = 𝐿𝑍𝑠̂, where 𝐿𝐿 is a 𝑔 × 𝑚 matrix in which element 𝑝, 𝑗 reflects the average allele frequency of 143 

the reference allele at SNP 𝑗 in generation 𝑝. The allele frequency change between generation 1 and 144 

generation g can be obtained as a linear contrast between the first and the last row of this matrix as   145 

∆ = 𝑘′𝐿𝐿 where 𝑘 is a vector of length g with 𝑘1 = −1 , 𝑘𝑔 = 1 , and all other elements are zero. Finally, 146 

the selection response can be written as 𝑅� = ∆𝑠̂, which is identical to equation (1), given that 𝑠 is 147 

equivalent to 2𝛼.  148 

Furthermore, theory suggests that under the assumption that selection intensity is equal for all 149 

loci across the genome, the change of allele frequency ∆𝑗  should be approximately proportional to the 150 

allele effect 𝛼𝑗, such that for a trait under selection a non-zero correlation between allele frequency 151 

change and the additive effect of alleles on that trait is expected (Wright 1937). Alternatively stated, (1) 152 

emphasizes the temporal component of the Breeder’s Equation, R = h2S, where h2 is the narrow-sense 153 

heritability of a trait and S is the selection differential. Given a population of individuals with two time-154 

points of genotypic data, it is simple to compute ∆𝑗  for every genotyped locus. Furthermore, the 155 

shrinkage methods of genomic prediction (Campos et al. 2013), including Ridge Regression (Endelman 156 
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2011) and GBLUP (VanRaden 2008) allow additive effects, αj, to be approximated for every genotyped 157 

position. For this, a set of individuals genotyped and phenotyped in at least one generation is needed.  158 

A notable benefit of the estimator in (1) is that by leveraging pre- and post-selection data from 159 

genotypes rather than from phenotypes, it only requires one generation of phenotyping. Additionally, 160 

this suggests that if we consider 𝑅 a random variable, then given the distribution of R in a scenario 161 

without selection, a test of whether or not 𝑅� is different from zero may be performed. Since 𝑅� is the 162 

genomic response to selection, this is equivalent to testing whether or not a trait has been under 163 

selection during the timeframe under study. 164 

 165 

Test Statistic and Significance Testing: 166 

We implemented a permutation-based strategy to test whether or not 𝑅� is significantly different 167 

from zero. Genetic drift and selection jointly determine changes in allele frequency, ∆𝑗, but without 168 

selection these changes in frequency should not be related to effect size or direction. The reverse is also 169 

true; effect sizes, 𝛼𝑗, are estimated based on a genomic prediction model applied to phenotypes 170 

measured in a single panel of individuals, and therefore they are not correlated with changes in allele 171 

frequency. While a correlation between minor allele frequency and the magnitude of SNP effects is 172 

possible due to estimation error during genomic prediction, without ongoing selection allele frequency 173 

should not correlate with the direction of SNP effects. This suggests that a null distribution for 𝑅� in a no-174 

selection scenario may be generated via a permutation approach. Assuming no linkage disequilibrium 175 

(LD) between markers, a simple shuffling of ∆𝑗 and 𝛼𝑗 can be implemented to generate the desired null 176 

distribution. However, LD between markers compromises the applicability of this simplified approach 177 

for most populations—such an approach overestimates the sample size of the permutation test by 178 

treating each marker as an independent observation, while in reality any level of LD between markers 179 

leads to fewer independent observations than markers. Therefore, we have employed a semi-180 

parametric approach that scales the variance of the permutation test statistic according to the realized 181 

extent of LD to alleviate this discrepancy.  182 

Let 𝐺� = ∑ ∆𝑗𝛼𝑗𝑚
𝑗=1 , which is proportional to 𝑅� as defined in (1). This value, colloquially “G-hat”, 183 

serves as our test statistic. The summation is over all m genotyped markers, and effect sizes are 184 

estimated based on genomic prediction using available phenotypes with corresponding genotypes from 185 
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any generation. Often, phenotypes from the most recent generation will be the most readily available, 186 

but individuals with phenotypes scored in any generation may suffice. To test whether or not the 187 

observed value of 𝐺� can be significantly attributed to selection, define p to be a vector of length m that 188 

is a permutation of the vector J = [1,..,m]. A permuted value of 𝐺� may be obtained via   𝐺�𝑝𝑝𝑝𝑝 =189 

∑ ∆𝑗𝛼𝑝𝑗
𝑚
𝑗 . Because ∆𝑗  and  𝛼𝑝𝑗  are no longer indexed to the same locus, 𝐺�𝑝𝑝𝑝𝑝 does not reflect 190 

selection, but instead captures genetic drift over time (∆𝑗  terms) as well as the genetic architecture of 191 

the underlying trait (𝛼𝑗 terms). Generating repeated values of 𝐺�𝑝𝑝𝑝𝑝 through repeated permutations of 192 

J therefore generates a null distribution for 𝐺� which assumes no selection and complete linkage 193 

equilibrium.  194 

The Central Limit Theorem dictates that realizations of 𝐺�𝑝𝑝𝑝𝑝 are normally distributed with 195 

approximate mean 𝐺�𝑝𝑝𝑝𝑝�������� and standard deviation 𝑆𝑆(𝐺�𝑝𝑝𝑝𝑝). Therefore, σ, the underlying standard 196 

error of a single-locus estimate for 𝐺�𝑝𝑝𝑝𝑝 is given by 𝜎 = 𝑆𝑆(𝐺�𝑝𝑝𝑝𝑝)√𝑚, where 𝑆𝑆(𝐺�𝑝𝑝𝑝𝑝) is the 197 

observed standard error of 𝐺�𝑝𝑝𝑝𝑝. Consider the quantity mind, representing the effective number of 198 

independent loci. If the standard deviation of 𝐺�𝑝𝑝𝑝𝑝 were calculated using mind independent markers, its 199 

expectation would be 𝑆𝑆𝑖𝑖𝑖�𝐺�𝑝𝑝𝑝𝑝� =  𝜎
�𝑚𝑖𝑖𝑖
� . Plugging in the estimate for 𝜎 obtained above, 200 

𝑆𝑆𝑖𝑖𝑖�𝐺�𝑝𝑝𝑝𝑝� becomes 𝑆𝑆𝑖𝑖𝑖�𝐺�𝑝𝑝𝑝𝑝� =  𝑆𝑆�𝐺�𝑝𝑝𝑝𝑝��𝑚 𝑚𝑖𝑖𝑖� .  201 

In practice, the above implies that to test for selection, 𝐺� = ∑ ∆𝑗𝛼𝑗𝑚
𝑗=1  may be calculated from 202 

data, and then a permuted null distribution for 𝐺� that assumes linkage equilibrium can be generated. 203 

This permutation distribution may then be approximated with a normal distribution, whose variance can 204 

be scaled according to the effective number of independent markers, 𝑚𝑖𝑖𝑖. We show in the following 205 

section that 𝑚𝑖𝑖𝑖  can be efficiently estimated based on LD-decay. Ultimately, significance may be 206 

evaluated by comparing 𝐺� to a normal distribution with mean 𝐺�𝑝𝑝𝑝𝑝�������� and standard deviation 207 

𝑆𝑆�𝐺�𝑝𝑝𝑝𝑝��𝑚 𝑚𝑖𝑖𝑖�   . 208 

Simulations: 209 

We conducted a series of simulations to evaluate the power of the 𝐺� statistic for identifying selection on 210 

complex traits. Genotypic data were simulated with the software program QMSim (Sargolzaei and 211 

Schenkel 2009).  An overview of our simulation strategy at the most general level is that we simulated 212 
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selection in a generic species with 1,000 QTL dispersed along ten 100 cM chromosomes, with a total of 213 

100,000 equally-spaced markers (10,000 per chromosome). In the first step of each simulation, the total 214 

population was established based on 10,000 individuals randomly mating for 5,000 generations. Then, 215 

500 males and 500 females were randomly chosen to establish a base population that would undergo 216 

selection for 20 generations. Each generation, 1,000 individuals (500 males and 500 females) were 217 

permitted to mate out of a population of 5,000, providing a selection proportion of 20%. For each 218 

simulation, heritability was set to 0.5. This general scheme encapsulates characteristics of most plant 219 

and animal breeding populations, including the large number of progeny typical of plants and the 220 

truncation selection protocol often associated with animal breeding and/or selection in the wild. 221 

Additional details regarding the simulated population are included in Supplemental Table 1. In the 222 

following subsections, we describe how varying parameters from the generic scenario described here 223 

affected the power of 𝐺� to identify selection. All simulation scripts can be found at 224 

github.com/timbeissinger/ComplexSelection. 225 

Number of QTL 226 

We simulated variable numbers of additive QTL controlling traits, from 10, representing a simple 227 

trait controlled by large-effect QTL, to 10,000, representing a highly quantitative trait controlled nearly 228 

infinitesimally. QTLs were evenly spaced along each chromosome and QTLs themselves were not 229 

included in the marker set for analysis. One hundred simulations were performed for each level of trait 230 

complexity. First, we used these simulations to establish the appropriate number of independent 231 

markers, mind as defined above, for this test. We calculated how distant two markers must be to have an 232 

expected LD level of 𝑅2 ≤ 0.03. Then we counted the total number of blocks of this size genome-wide. 233 

The 0.03 level was established by performing a grid-search of potential values and tuning the false 234 

positive rate (Supplemental Figure 1).  An LD cutoff that is too high leads to a high false-positive rate, 235 

while one that is too low weakens the power of the test. For populations similar to those discussed 236 

herein, we observe that requiring 𝑅2 ≤ 0.03 will be appropriate.  237 

When we tested for selection in our simulated data, we observed a direct relationship between 238 

the number of QTL controlling a trait and the power of 𝐺� to identify selection on that trait. 𝐺� powerfully 239 

identifies selection on highly polygenic traits, but is not powerful for identifying selection on traits 240 

controlled by a small number of QTLs. Analyses of the same simulations using FST-based selection 241 

mapping, which involves mapping loci that have been previously subjected to selection (Wisser et al. 242 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/238295doi: bioRxiv preprint 

https://doi.org/10.1101/238295


9 
 

2008), showed that traits controlled by a small number of QTLs can be mapped using traditional 243 

selection mapping approaches. However, as traits become increasingly polygenic, our simulations 244 

demonstrate that the ability to map individual selected genes diminishes (Figure 1). These findings 245 

demonstrate how 𝐺� and traditional selection mapping can be complementary depending on the 246 

underlying genetic architecture of a trait. Table 1 depicts detection and false positive rates for 𝐺� and FST-247 

based mapping under different genetic architectures.   248 

 249 

Genetic Architecture 10 QTL 50 QTL 100 QTL 1,000 QTL 10,000 QTL 

Ĝ      

    True positive rate 0.04 0.54 0.94 1.0 1.0 

    False positive rate 0.03 0.03 0.02 0.03 0.04 

FST-based Selection Mapping      

    Mean # true positives (rate) 5.6 (56%) 22 (44%) 39 (39%) 187 (18.7%) 1,676 (16.8%) 

    Mean # false positives 52 280 715 1,745 - 

Table 1: Detection and false positive rates for Ĝ and selection mapping. One Ĝ test is conducted per 250 
simulation, so true and false positive rates are shown. For selection mapping, one test is conducted 251 
per marker in each simulation, so the mean number of markers that were declared true and false 252 
positives is shown. A marker was declared a false positive in selection mapping if it exceeded a 5% 253 
simulation-based experiment-wide significance threshold but was not within a .1 cM region around a 254 
simulated QTL. Note that there are no selection mapping false positives in the 10,000 QTL simulation 255 
because every marker was within 0.1 cM of a simulated QTL. 256 

 257 
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 258 

Figure 1: The power of Ĝ to identify selection. Top: The detection rate of Ĝ compared to Fst-based 259 
selection mapping. Vertical lines indicate one standard deviation. Standard deviations for selection 260 
mapping were estimated empirically. Standard deviations for Ĝ were estimated based on the binomial 261 
distribution. Bottom: Exemplary heat plots depicting individual-SNP allelic effect estimates linearly 262 
regressed on allele frequency change over time. Each point represents a SNP, while the contour lines 263 
indicate the density of SNPs. From the regression line, observe that a stronger relationship between 264 
frequency change and effect size corresponds to increasing polygenicity. 265 

 266 

Number of generations 267 

 Simulations showed an interesting relationship between the number of generations of selection 268 

and the power of Ĝ. We observed a definite sweet-spot from ~10 to just under 50 generations for which 269 

Ĝ was most powerful. Conversely, if selection took place for 100 generations or only for a single 270 

generation, Ĝ became dramatically less powerful (Table 2). We suspect that two forces interact to 271 

reduce the power of Ĝ in the case of a large number of generations of selection. First, over the course of 272 

many generations, our simulated populations became highly inbred, which notably increased LD and 273 

therefore reduced Mind. Since Ĝ is summed over markers and then scaled by Mind, this substantially 274 

reduces power. Secondly, our simulations involved a predetermined number of QTL with fixed effects at 275 
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the onset of selection, but as selection persisted these QTL could be lost to fixation, or as allele 276 

frequencies change, their effects could decrease (Sargolzaei and Schenkel 2009). Since we estimated 277 

SNP effects based on phenotypes in the final generation (but see the section on phenotyping 278 

generation, below), power could be reduced by the fixation of a lost QTL that previously had an effect. 279 

Although these issues weakened Ĝ in our simulations, it is unclear whether or not they would have the 280 

same impact in a real application, and it is likely unlikely that the powerful sweet-spot would be the 281 

same. Regarding the weak power of Ĝ to identify selection after only one generation, this is not 282 

unexpected, since for quantitative traits a single generation is rarely long-enough to appreciably shift 283 

allele frequencies. 284 

 We also investigated how the power of Ĝ is affected by temporary selection. Specifically, we 285 

simulated 20 generations of selection followed by different numbers of generations without selection. 286 

We observe that Ĝ remains powerful for at least 20 generations post-selection, but after 100 287 

generations without selection, the ability of Ĝ to identify selection is lost. Like above, this loss of power 288 

can likely be attributed to inbreeding and the fixation of QTL. 289 

Phenotyping generation 290 

In practical applications, we predict that phenotypes will typically be more readily available from 291 

later generations of selection than early generations. However, since this generalization will not always 292 

apply, we explored how the power of Ĝ is affected by the generation in which individuals are 293 

phenotyped. We observed the highest power when phenotypes were scored in recent time-points or 294 

midway through selection, but power was still high (0.86) when phenotypes were scored in generation 295 

0, at the onset of selection (Table 2). As discussed above in the section on the number of generations of 296 

selection, changing QTL effects as allele frequencies change during evolution are likely to explain this 297 

drop in power. We explored whether or not the generation of phenotyping can lead to bias by 298 

evaluating the false positive rate for simulations where phenotypes were scored at different time-299 

points, out of 20 generations of selection. False positive rates were respectively 0.02, 0.08, and 0.0, 300 

when phenotyping occurred in generation 20, 10, and 0. 301 

Intensity of selection 302 

 The intensity of selection, or the proportion of individuals that reproduce each generation, 303 

directly impacts the efficacy of a selection regime. Therefore, we explored the ability of Ĝ to identify 304 

selection across several selection intensities representing realistic values observed in experimental and 305 
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agricultural selection programs (Table 2). To achieve this, in our simulations we varied the total number 306 

of progeny each generation rather than altering the total number of individuals reproducing, as a 307 

reduced number of individuals would rapidly lead to high levels of inbreeding. For intermediate to 308 

strong selection intensities, from 50% to 5% of individuals reproducing, we observed that Ĝ was highly 309 

effective for identifying selection, with power at or near 1.0. Only in the case of very strong selection, 310 

when 1% of individuals reproduced each generation, did we observe a minor reduction in the power of 311 

Ĝ. Despite our attempts to minimize inbreeding in these simulations, in the case of 1% selection 312 

intensity inbreeding was likely still generated via a large number of progeny originating from the same 313 

combination of superior parents. We suspect this is what resulted in the reduction in power. 314 

Sample size 315 

 Since the accuracy of estimated marker effects depends on sample size, we explored the impact 316 

that the number of phenotyped individuals has on the power of Ĝ. Unsurprisingly, as sample size 317 

decreases so does the power of Ĝ to identify selection (Table 2). However, it is notable that even with 318 

sample sizes as small as 250 individuals, power remains above 0.8. Even with only 50 phenotyped 319 

individuals, selection can be identified in one out of five scenarios. Together, these observations 320 

emphasize that the power of Ĝ comes from its accumulation of information across markers rather than 321 

from a small number of highly-informative markers. 322 

Parameter Varied Tested Values 

No. individuals phenotyped 1,000 500 250 100 50 

    Power 1 0.99 0.83 0.4 0.21 

Selection intensity 1% 5% 20% 50% - 

    Power 0.95 0.99 1.0 1.0 - 

No. Gens. of selection 100 50 20 10 1 

    Power 0 0.81 1.0 1.0 0.18 

Phenotyping generation 20 10 0 - - 

    Power 1 1 0.86 - - 

No. Gens. post-selection 5 20 50 100 - 

    Power 1 1 0.26 0 - 

Table 2: Power of Ĝ as simulation parameters vary. Aside from whichever parameter was being 323 
explored, simulations assumed 20 generations of selection with a selection intensity of 0.2, a genetic 324 
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architecture of 1,000 QTL, a selection population consisting of 500 males and 500 females, and the 325 
additional parameters of our “generalize” selection scenario are given in Supplementary Table 1. 326 

 327 

Selection on maize silage traits: 328 

We re-analyzed data from a previous study that tested for selection in a decades-long breeding program 329 

for maize silage quality (Lorenz et al. 2015). Very briefly, a selection index comprised of experimentally-330 

measured traits related to silage quality was used to perform reciprocal recurrent selection for breeding 331 

improved maize. Traits comprising the index included acid detergent fiber (ADF), protein content, starch 332 

content, in-vitro digestibility, and yield (www.cornbreeding.wisc.edu). In total, 648 individuals from 333 

various stages of selection were genotyped. Between 240 and 300 of these individuals were also 334 

phenotyped, depending on the trait.  Selection mapping was previously performed utilizing simulations 335 

of drift to scan for selection, but the analysis did not identify any loci that showed significant evidence of 336 

selection. This is in spite of quantifiable improvement of the population and demonstrated heritability of 337 

the index-composing traits (Lorenz et al. 2015). We re-analyzed the same data to evaluate evidence for 338 

polygenic selection on the measured traits, which included NDF, in-vitro digestibility, crude protein 339 

content, starch content, yield, and dry matter. After filtering for quality, but not minor allele frequency, 340 

these data consisted of 10,023 polymorphic markers. Genomic prediction for these traits was generally 341 

effective (Supplemental Figure 2). Due to the relatively small population size and recurrent selection 342 

breeding scheme, we expect slow LD decay and therefore for most of the genome to be represented 343 

with this marker set. Further analysis of LD to determine the value of mind to utilize in our test for 344 

selection confirms this (Supplemental Figure 3). 345 

 Figure 2 depicts the maize patterns of selection that were observed in our analysis. In these 346 

plots, the histogram shows the null distribution of 𝐺� that was observed from a permutation test, while 347 

the vertical line depicts the observed value of 𝐺� when applied to the experimental data. We observed 348 

that with the exception of protein, for the traits where we had an a priori expectation of selection, we 349 

not only identified that selection did occur, but we correctly estimated the direction of selection 350 

(positive or negative) from the data. One of the traits measured was silage dry matter (DM), which was 351 

not a part of the selection index. We did not identify evidence of selection on DM, as was expected. To 352 

ensure that the existence of a single individual with a high breeding value does not lead to spurious false 353 

positives, we re-analyzed the maize data after removing all SNPs with minor allele frequency less than 354 

0.05. This did not lead to any appreciable change in the results  (Supplemental Figure 6). 355 
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 356 

Figure 2: Evidence of selection for maize silage traits. For six traits, the relationship between 357 

estimated allelic effects at individual SNPs and the change in allele frequency over generations is 358 

plotted. The red line is a regression of effect size on allele frequency change. Contour lines indicate 359 

the density of points, with blue contours indicating fewer points than red. Inset plots depict observed 360 

values of Ĝ (blue lines) and their statistical significance based on a comparison to permuted null 361 
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distributions (red densities) for no-selection scenarios. An exact two-sided p-value is given within each 362 

inset. Significant values of Ĝ above the permuted mean indicate selection operated in the positive 363 

direction, while significant values below the permutation mean indicated selection operated in the 364 

negative direction. 365 

 366 

Selection on chicken traits: 367 

We tested for evidence of selection in two panels of commercial lines of laying hens: one white layer 368 

(WL) and one brown layer (BL). Both closed lines have been selected over decades with a similar 369 

composite breeding goal, comprised of laying rate, body weight and feed efficiency, egg weight, and egg 370 

quality, among other objectives. The respective weights applied to the different traits varied between 371 

lines and over time.  Traits analyzed included laying rate, egg weight, and breaking strength of eggs. 372 

Genotypes were available only for the post-selection population, so initial allele frequencies were 373 

inferred based on pedigree data (Gengler et al. 2007). Mind was determined based on separate 374 

evaluations of LD in the WL (Supplemental Figure 4) and BL (Supplemental Figure 5) populations. 375 

 Among the traits evaluated, we observed significant evidence of selection for increased laying 376 

rate in both WLs (p = 0.021) and BLs (p = 0.021). Tests were also suggestive of selection for increased 377 

eggshell breaking strength in WLs (p < 0.1; one-sided p < 0.05), while there was no evidence of directed 378 

selection for egg weight (Figure 3). To verify that these results were not driven by a small number of 379 

SNPs with high estimated effect sizes, we repeated the analysis with the 10 largest effect-size SNPs 380 

removed and saw virtually identical results (Supplemental Figure 7). The result for egg weight can be 381 

seen as a ‘negative control’ since for this trait an optimum value is already achieved and maintained by 382 

stabilizing selection. The fact that we were not able to detect significant evidence of selection in a trait 383 

such as eggshell breaking strength in both lines (although a tendency can be observed) may be due to 384 

the fact that improving those traits is part of a complex multi-objective breeding program, or simply that 385 

our test was underpowered for these traits. The unavailability of experimentally-estimated initial 386 

frequencies and our alternative use of pedigree-inferred initial allele frequencies likely weakened the 387 

power of the test as compared to the more complete data available for maize and in the simulations. 388 
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 389 

Figure 3: Evidence of selection for chicken traits. For three traits in white (left column) and brown 390 

(right column) laying hens, the relationship between estimated allelic effects at individual SNPs and 391 

the change in allele frequency over generations is plotted. The red line is a regression of effect size on 392 
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allele frequency change. Contour lines indicate the density of points, with blue contours indicating 393 

fewer points than red. Inset plots depict observed values of Ĝ (blue lines) and their statistical 394 

significance based on a comparison to permuted null distributions (red densities) for no-selection 395 

scenarios. An exact two-sided p-value is given within each inset. Significant values of Ĝ above the 396 

permuted mean indicate selection operated in the positive direction, while significant values below 397 

the permutation mean indicated selection operated in the negative direction. 398 

 399 

Discussion 400 

We have defined a test statistic, 𝐺�, that combines phenotypic and genotypic information to test for 401 

selection on traits controlled by many loci of small effect. The approach utilizes estimated effect sizes for 402 

individual loci and allele frequency changes across two time-points reflecting possible selection on those 403 

loci. Therefore, 𝐺� is most applicable in experimental or breeding populations, where both pieces of 404 

information are readily available via genotyping individuals from multiple generations. However, 405 

phenotypic information for estimating allelic effects is only required from a single time-point, so this 406 

approach can be applied post-hoc using DNA samples from previous generations even if phenotyping is 407 

no longer possible. As the practice of sequencing ancient DNA from archeological sites, museum 408 

samples, or other sources becomes progressively commonplace (Orlando et al. 2015), it will be 409 

interesting to explore whether or not this approach may prove applicable for ecological questions, 410 

evolutionary studies, and for human research. However, simulations showed a decrease in power as the 411 

number of post-selection generations increased, so there is a limit to how far back our test statistic can 412 

be fruitfully applied. 413 

Powerful for highly quantitative traits 414 

 Methods for mapping genes associated with important traits or for identifying loci that are 415 

under selection are most powerful for large-effect genes. A simple explanation for the disappointing 416 

number of associations that have been uncovered to date through GWAS is that complex traits are often 417 

controlled by many genes of small effect (Yang et al. 2011). If this is the case, enormous sample sizes are 418 

required to map loci regardless of the methodological enhancements that can be applied. Human 419 

geneticists have had success studying complex traits by utilizing extremely large sample sizes (Rietveld et 420 

al. 2013; Wood et al. 2014).  But, sample sizes of this magnitude are not yet achievable within resource 421 
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limitations for most species, and, arguably, will never be. Conversely, population genetic studies aiming 422 

to scan for selection have been most successful at identifying hard sweeps, where a new mutation of 423 

large effect rapidly rises to fixation as a result of selection (Pritchard et al. 2010). Only few 424 

methodologies with  limited power exist for mapping soft sweeps, when the beneficial allele is already 425 

at intermediate frequency at the start of selection (Garud et al. 2015); Ma et al. 2015). A likely 426 

explanation for the presence of soft sweeps is that they often result from loci of small effect increasing 427 

in frequency slowly in a population and therefore existing on multiple distinct haplotypes or mutating 428 

multiple times before fixation. In an agricultural context, many soft sweeps may be due to newly defined 429 

breeding goals which put selection pressure on genes that previously were segregating in the 430 

populations, but were selectively neutral. The 𝐺� statistic does not attempt to map specific genes—431 

instead it pools information from all SNPs to test for selection on specific traits. This approach 432 

completely avoids the question of which loci are associated with a trait. Instead of testing each SNP, we 433 

perform one test based on information from all SNPs. Therefore, a strong statistical signal arises when a 434 

large proportion of SNPs behave similarly but not when a few SNPs portray strong signals on their own. 435 

That said, researchers are often interested in identifying selected traits whether they correspond to 436 

selection on many genes at once or simply a few large-effect genes. In this case, the implementation of 437 

our 𝐺� test in conjunction with a traditional selection-mapping approach aimed at identifying selected 438 

loci will likely together be powerful for identifying selection regardless of the underlying genetic 439 

architecture (Figure 1). 440 

It was recently argued that most complex disease traits in humans are controlled by small-effect 441 

genes dispersed throughout the genome (Boyle et al. 2017). Likewise, many important traits in 442 

agricultural animal and plant species tend to be quantitative in nature and are presumably controlled by 443 

small-effect genes (Goddard and Hayes 2009; Wallace et al. 2014). For these agricultural organisms, 444 

geneticists and breeders have long recognized the benefits that can be achieved by predicting breeding 445 

values and/or phenotypes based on models that use all SNPs simultaneously (Meuwissen et al. 2001; 446 

Heffner et al. 2009; Goddard and Hayes 2009). In fact, the development of these models has led to 447 

dramatic re-designs of modern breeding protocols (Schaeffer 2006; Cabrera-Bosquet et al. 2012). The 𝐺� 448 

statistic represents one avenue to leverage information from all measured SNPs to gain an 449 

understanding of the evolutionary history of a population. This approach is analogous to genomic 450 

selection/prediction as utilized by animal and plant breeders, with an important distinction: instead of 451 

predicting breeding values to determine which individuals should be selected for the future, it utilizes 452 
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genotypic frequencies over time coupled with phenotypic information to unravel the history of selection 453 

in the past. 454 

Genotypes from base population provide high power: 455 

Compared to other methods that test for selection on quantitative traits (Berg and Coop 2014; 456 

Zeng et al. 2017), 𝐺� leverages genotypic information from multiple time points and that it incorporates 457 

information from all SNPs instead of restricting to a previously identified set of SNPs from one or 458 

multiple independent GWAS’s. With the exception of a few traits in heavily studied species, such as 459 

human height (Wood et al. 2014), few species, if any, provide the enormous sample sizes required to 460 

implicate a large number of loci for any quantitative traits. This includes situations where scientists are 461 

reasonably certain that a genetic architecture consisting of small-effect loci persists. Importantly, 𝐺� is 462 

powerful because of the independence of the estimation of allele frequency changes across generations 463 

and effect sizes, respectively. Even when allelic effects and/or allele frequency changes are small, they 464 

cumulatively generate a powerful test since they can be compared across all genotyped loci. However, 465 

our analysis of the chicken data suggested that the power of the test can be reduced through noisy 466 

estimation of allele frequency change. Our reliance on pedigree data to derive initial allele frequencies 467 

was not as precise as the direct measurement of initial allele frequencies that was conducted for maize. 468 

Although we were still able to find evidence of selection on traits including laying rate, which was almost 469 

certainly under the strongest selection, there were selected traits we did not detect potentially due to 470 

this noise. 471 

Future directions and conclusions: 472 

The use of 𝐺� to test for selected traits avoids the requirement of preliminarily identifying candidate 473 

genes or regions. Therefore, the approach is particularly applicable in experimental, agricultural, and 474 

natural populations for which available resources dictate limited sample sizes for conducting massive 475 

mapping studies for such preliminary identification. In contrast to purely population-genetic analyses, 476 

which rely solely on genotypic information, the method requires that phenotypic data be collected from 477 

at least one time-point of genotyped individuals. Additionally, two time-points of genotypic information 478 

are needed, either directly or through pedigree-based imputation.  479 

While the 𝐺� statistic is most directly applicable for the discovery of traits that have been 480 

previously under selection during recent evolution, it may have additional applications. Recent studies 481 
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have demonstrated that distinct physical regions of the genome, such as individual chromosomes, often 482 

contribute a disproportionate amount to trait variance (Bernardo and Thompson 2016). Rather than 483 

applying the 𝐺� statistic genome-wide, future research should be done to determine whether it can be 484 

applied across any collections of loci such as individual chromosomes, pathways, gene-families, 485 

functional classes, or other categories to test if these show evidence of selection on a quantitative trait. 486 

This would represent a process allowing researchers to map significant features as opposed to individual 487 

genes. Likewise, thus far we have estimated the direction of selection (positive or negative) from Ĝ, but 488 

not the magnitude. Further research should be performed to determine whether or not this or a similar 489 

statistic can be used to recapitulate the selection gradient.  490 

 As it stands, using Ĝ simply to identify traits that have been under selection in the past may 491 

prove enormously useful. Whether agricultural, experimental, or natural, it is often difficult to 492 

determine all of the traits that are advantageous in a population or respond to natural or anthropogenic 493 

selection, including undesired selection responses. The application of the 𝐺� statistic genome-wide 494 

allows this determination, which may help scientists select the right traits for maximum agricultural 495 

production, determine inadvertently selected lab traits impacting experimental outcomes, and establish 496 

ecologically important traits for survival in the wild. 497 

 498 

Materials and methods 499 

Simulations: 500 

Each simulation started with a random mating historical population. After 5 thousand generations, 501 

selection began and simulations proceeded with more control over each generation. Truncation 502 

selection was performed based on high phenotype. Drift simulations were identical to selection 503 

simulations in terms of genome layout and genetic basis of the trait, but individuals were selected 504 

randomly. Simulations were performed with QMSim (Sargolzaei and Schenkel 2009).  Parameters for our 505 

generic simulation model are provided in full in Supplemental Table 1. We varied specific parameters as 506 

follows: 507 

Number of QTL: Genetic architectures with 10, 50, 100, 1,000, or 10,000 QTL were simulated. 508 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/238295doi: bioRxiv preprint 

https://doi.org/10.1101/238295


21 
 

Number of individuals phenotyped: After selection was simulated, the phenotypes from a subset 509 

included 1,000, 500, 250, 100, or 50 individuals were sampled and used for estimating SNP effects. 510 

Selection intensity: The number of males and females reproducing each generation was always 511 

simulated to be 500, respectively. To vary selection intensity, we simulated litter sizes of 4, 20, 40, and 512 

200. 513 

Number of generations of selection: Selection simulations were conducted for 1, 10, 20, 50, and 100 514 

generations. 515 

Phenotyping generation: For 20-generation simulations, phenotypes were analyzed from pre-selection 516 

individuals (generation 0), mid-selection individuals( generation 10), and post-selection individuals 517 

(generation 20). 518 

Number of generations after selection: After 20 generations of selection, we evaluated whether 𝐺� was 519 

still significant after 5, 20, 50, or 100 generations without selection. 520 

Selection mapping in simulations: 521 

For the set of simulations where number of QTL were varied, pre- and post-selection simulated allele 522 

frequencies were output from QMSim. These were used to calculate marker-specific FST values, as was 523 

performed by (Lorenz et al. 2015). FST was computed according to 𝐹𝑆𝑆 =  𝑠2

𝑝�(1−𝑝�)+𝑠2/2
 , where s2 is the 524 

sample variance of allele frequency between pre- and post-selection populations, and 𝑝� is the mean allele 525 

frequency (Weir and Cockerham 1984). Experiment-wide 5% significance threshold were identified 526 

based on the 95% FST quantile observed from drift simulations. These thresholds were applied to FST 527 

values obtained from selection simulations to determine detection and false positive rates. Simulated 528 

QTL were declared detected if a significant marker was identified within a .1 cM window surrounding 529 

the QTL. False positives were defined as markers that were not within a .1 cM window surrounding  any 530 

simulated QTL. 531 

Maize data: 532 

All maize data were previously published and described by Lorenz et al. (2015). In brief, a selection index 533 

comprised of silage-quality traits was used to perform reciprocal recurrent selection. Traits comprising 534 

the index were yield, dry matter content, neutral detergent fiber (NDF), protein content, starch content, 535 
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and in-vitro digestibility (www.cornbreeding.wisc.edu). Phenotypic data included five cycles of selection, 536 

encompassing approximately 20 generations in total. Tens to hundreds of individuals were sampled 537 

from each cycle of selection to be genotyped. Genotyping was performed with the MaizeSNP50 538 

BeadChip, which includes 56,110 markers in total (Ganal et al. 2011). After removing monomorphic 539 

SNPs, redundant SNPs, quality filtering, and imputing, as described in Lorenz (2015), 10,023 informative 540 

SNPs remained. 541 

 Allele frequencies were computed for each cycle of selection. Because only 5 and 11 individuals 542 

from cycles 0 and 1 were genotyped, respectively, allele frequency change from cycle 2 (n = 163) to cycle 543 

5 (n = 211) was computed for each SNP. Since all SNPs were di-allelic, the frequency of only one allele 544 

was tracked, and the frequency change for that allele perfectly mirrored the change for the other allele. 545 

For the tracked allele only, allelic effects were estimated using the R package RR-BLUP (Endelman 2011). 546 

Phenotypic information was available from individuals representing selection cycles 1 through 4, and 547 

since population size was small we used all phenotyped individuals to estimate SNP effects. To 548 

accomplish this without biasing effect estimates due to drift, a fixed effect for cycle was included in our 549 

model. Our exact analysis scripts are available at github.com/timbeissinger/ComplexSelection.  550 

Chicken data: 551 

Data were available for one white layer (WL) and one brown layer (BL) line from a commercial breeding 552 

program. Both closed lines have been selected over decades with a similar composite breeding goal, 553 

comprising, among others, laying rate, body weight and feed efficiency of the hens, as well as egg 554 

weight and egg quality, where the respective weights of the different traits varied between lines and 555 

over time. In total, 673 (743) WL (BL) individuals were genotyped, of which > 80% were from the last 556 

generation and the remaining animals were parents, grand-parents, and great-grandparents of the 557 

actual birds. For all genotyped individuals, complete pedigree data were available comprising 2109 558 

(1879) individuals and going 13 (9) generations back in WL (BL). The oldest generation was defined as 559 

the base population and comprised 111 (64) ungenotyped individuals being separated from the majority 560 

of genotyped individuals by 12 (8) generations. 561 

Current individuals were genotyped with the Affymetrix Axiom® Chicken Genotyping Array 562 

which initially carries 580K SNPs. This data were pruned by discarding sex chromosomes, unmapped 563 

linkage groups, and SNPs with minor allele frequency (MAF) lower than 0.5% or genotyping call rate 564 

smaller than 97%. Individuals with call rates smaller than 95% were also discarded. Subsequently, 565 
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missing genotypes at the remaining loci were imputed with Beagle version 3.3.2 (Browning and 566 

Browning 2009),resulting in sets of 277,522 (334,143) SNPs for the WL (BL) individuals. 567 

To calculate the allele frequency change in the chicken populations, the allele frequency in the 568 

base population individuals had to be reconstructed by statistical means. This was done with the 569 

approach of Gengler et al. (2007), which, in short, considers the allele frequency in an individual as a 570 

quantitative and heritable trait and uses a mixed model approach to obtain a best linear unbiased 571 

prediction (BLUP) for the allele frequency of all un-genotyped individuals. This is done by linking the 572 

genotyped offspring to the un-genotyped ancestors via the pedigree information (for details, see 573 

Gengler et al. 2007). This required solving 277,522 (334,143) linear equation systems of dimension 2109 574 

(1879) for the WL (BL) data set. Next, ∆𝑖 for locus 𝑖 was calculated as the difference of the observed 575 

allele frequency of the genotyped individuals in the current and the 3 ancestral generations and the 576 

average estimated allele frequency of the  111 (64) base population individuals 12 (8) generations back. 577 

For each genotyped individual, conventional (non-genomic) BLUP breeding values and the 578 

respective reliabilities for a wide set of traits were available. SNP effects were estimated in a two-step 579 

procedure: first, for each trait in each line genomic breeding values were estimated via genomic BLUP 580 

(GBLUP), followed by a back-solution of estimated SNP effects. In the GBLUP step, the model 𝒚 = 𝟏𝜇 +581 

𝒁𝒁 + 𝒆, was solved, where 𝒚 is the vector of de-regressed proofs [DRPs] of genotyped individuals   for a 582 

specific trait; 𝜇 is the overall mean; 𝒈 is the vector of additive genetic values (i.e. genomic breeding 583 

values) for all genotyped chickens; 𝒆 is the vector of residual terms; 𝟏 is a vector of 1s and 𝒁 is a squared 584 

design matrix assigning DRPs to additive genetic values with dimension number of all genotyped 585 

individuals. Residual terms were assumed to be distributed 𝒆 ~ 𝑁(0,𝑹𝜎𝑒2), where 𝑹 is a diagonal matrix 586 

with diagonal elements 𝑅𝑖𝑖 = �𝑐+(1−𝑟𝐷𝐷𝐷𝐷
2 )/𝑟𝐷𝐷𝐷𝐷

2 �ℎ2

1−ℎ2
 (Garrick et al. 2009) for an individual i in the 587 

training set, where 𝑟𝐷𝐷𝐷𝐷2  is the reliability of DRP for individual i, 𝜎𝑒2 is the residual variance, using 𝑐 set to 588 

0.1. The distribution of additive genetic values is assumed to be 𝒈 ~ 𝑁(0,𝑮𝜎𝑔2), where 𝜎𝑔2 is the additive 589 

genetic variance and 𝑮 is a realized genomic relationship matrix which was constructed according to 590 

(VanRaden 2008). Estimation of variance components and genomic breeding values was done with 591 

ASReml  3.0 (Gilmour et al., 2009). 592 

Next, estimated SNP effects 𝑠̂ were obtained following Strandén and Garrick (2009) as 593 
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𝒔� =
1

2∑ 𝑝𝑖(1 − 𝑝𝑖)𝑚
1=1

𝑴𝑇𝒁𝑇𝒈� 

where 𝑴 is a matrix of dimension number of genotyped individuals x number of genotyped SNPs with 594 

entry 𝑚𝑖𝑖 = 𝑥𝑖𝑖 − 2𝑝𝑗 where 𝑥𝑖𝑖  is the genotype of individual 𝑖 at locus 𝑗 (coded as 0, 1, or 2 which are 595 

counts of the reference allele) and 𝑝𝑗  is the population frequency of the reference allele at SNP 𝑗. 596 

Computational Resources: 597 

Computation was performed using the University of Missouri Informatics Core Research Facility 598 

BioCluster (https://bioinfo.ircf.missouri.edu/). Computational nodes where simulations were performed 599 

had 64 cores and 512 GB of RAM. Analysis of maize and chicken data was performed on a mediocre 600 

laptop with 8 GB of RAM. 601 

Data availability: 602 

Maize data are available in from Lorenz et al. (2015). Chicken data, including allele frequency change 603 

and estimated SNP effects, are available at Figshare with DOI 10.6084/m9.figshare.5899267. All scripts 604 

used for simulations and analysis are available at github.com/timbeissinger/ComplexSelection. 605 
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Supplemental Table 1: Simulation parameters. 729 

 730 

 731 

  732 

Parameter Value(s) 
Genetic basis of the trait  

Heritability 0.5 
QTL Heritability 0.5 (all heritability attributable to QTL) 
Phenotypic variance 1 

Historical Population  
Population size 10,000 
Number of generations 5,000 
Marker mutation rate (only historical gens) 2.5e-5 
QTL mutation rate (only historical gens) 2.5e-5 

Breeding (selected) Population  
Number of selected males/generation 500 
Number of selected females/generation 500 
Litter size 10 
Number of generations 20 
Mating design Random union of gametes, discrete 

generations 
Genome  

Number of chromosomes 10 
Chromosome size 100 cM 
Markers/chromosome 10,000 
Marker spacing Even 
Alleles/marker 2 
Marker allele frequencies Random (uniformly distributed) 
Number of QTL 1,000 
QTL spacing Even 
Alleles/QTL 2 
QTL allele frequencies (in first gen) Equal (0.5) 
QTL allele effects Random (uniformly distributed) 
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 733 

Supplemental Figure 1: False positive rate depends on the number of effective markers. The y-axis of 734 
this plot shows the false positive rate for simulations of different genetic architectures that was realized 735 
with varying effective numbers of markers. The x-axis depicts the mean LD-threshold across simulations 736 
that corresponded to a particular effective number of markers. Simulations suggested that defining the 737 
effective number of markers as the number of genome-segments such that LD across each segment is 738 
expected to be in the interval R2 ∈ [0.027, 0.038] appropriately controls false positive rate.  739 

 740 

 741 
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 743 

Supplemental Figure 2: Correlation between predicted and observed phenotypes when RRBLUP was 744 
used for genomic prediction in the maize dataset.  745 
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 746 

 747 

Supplemental Figure 3: LD Decay by chromosome in the WQS maize population. For each chromosome, 748 
LD is plotted against the distance between SNPs (in number of markers). The effective number of 749 
independent markers (mind) for our test was determined by dividing the total number of markers by the 750 
mean distance between markers such that R2 ≤ 0.03. 751 
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 753 

 754 

 755 

 756 

Supplemental Figure 4: LD Decay by chromosome in the White Layer chicken population. For each 757 
chromosome, LD is plotted against the distance between SNPs (in number of markers). The effective 758 
number of independent markers (mind) for our test was determined by dividing the total number of 759 
markers by the mean distance between markers such that R2 ≤ 0.03. 760 

 761 
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 763 

 764 

Supplemental Figure 5: LD Decay by chromosome in the Brown Layer chicken population. For each 765 
chromosome, LD is plotted against the distance between SNPs (in number of markers). The effective 766 
number of independent markers (mind) for our test was determined by dividing the total number of 767 
markers by the mean distance between markers such that R2 ≤ 0.03. 768 
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 770 

Supplemental Figure 6: Evidence of selection for maize silage traits. SNPs with minor allele frequency 771 

<0.05 were removed for this analysis. For six traits, the relationship between estimated allelic effects 772 

at individual SNPs and the change in allele frequency over generations is plotted. The red line is a 773 
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regression of effect size on allele frequency change. Contour lines indicate the density of points, with 774 

blue contours indicating fewer points than red. Inset plots depict observed values of Ĝ (blue lines) and 775 

their statistical significance based on a comparison to permuted null distributions (red densities) for 776 

no-selection scenarios. An exact two-sided p-value is given within each inset. Significant values of Ĝ 777 

above the permuted mean indicate selection operated in the positive direction, while significant 778 

values below the permutation mean indicated selection operated in the negative direction.  779 
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 781 

Supplemental Figure 7: Evidence of selection for chicken traits, with potential outliers removed. This 782 
plot demonstrates a reanalysis of the chicken data shown in Figure 3 after removing of the 10 SNPs with 783 
the largest-magnitude effect size for each trait. For three traits in white (left column) and brown (right 784 
column) laying hens, the relationship between estimated allelic effects at individual SNPs and the 785 
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change in allele frequency over generations is plotted. Contour lines indicate the density of points, with 786 
blue contours indicating fewer points than red. Inset plots depict observed values of Ĝ (blue lines) and 787 
their statistical significance based on a comparison to permuted null distributions (red densities) for no-788 
selection scenarios. An exact two-sided p-value is given within each inset. Significant values of Ĝ above 789 
the permuted mean indicate selection operated in the positive direction, while significant values below 790 
the permutation mean indicated selection operated in the negative direction. 791 
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