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Abstract

In recent years, the development of algorithms to detect neuronal spiking activity from1

two-photon calcium imaging data has received much attention. Meanwhile, few re-2

searchers have examined the metrics used to assess the similarity of detected spike3

trains with the ground truth. We highlight the limitations of the two most commonly4

used metrics, the spike train correlation and success rate, and propose an alternative,5

which we refer to as CosMIC. Rather than operating on the true and estimated spike6

trains directly, the proposed metric assesses the similarity of the pulse trains obtained7

from convolution of the spike trains with a smoothing pulse. The pulse width, which8

is derived from the statistics of the imaging data, reflects the temporal tolerance of the9

metric. The final metric score is the size of the commonalities of the pulse trains as a10

fraction of their average size. Viewed through the lens of set theory, CosMIC resembles11

a continuous Sørensen-Dice coefficient — an index commonly used to assess the sim-12

ilarity of discrete, presence/absence data. We demonstrate the ability of the proposed13

metric to discriminate the precision and recall of spike train estimates. Unlike the spike14

train correlation, which appears to reward overestimation, the proposed metric score is15

maximised when the correct number of spikes have been detected. Furthermore, we16

show that CosMIC is more sensitive to the temporal precision of estimates than the17

success rate.18
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1 Introduction1

Two-photon calcium imaging has enabled neuronal population activity to be monitored2

in vivo in behaving animals (Dombeck et al., 2010; Peron et al., 2015). Modern micro-3

scope design allows neurons to be imaged at sub-cellular resolution in volumes span-4

ning multiple brain areas (Sofroniew et al., 2016). Coupled with the current generation5

of fluorescent indicators (Chen et al., 2013), which have sufficient sensitivity to read out6

single spikes, this imaging technology has great potential to further our understanding7

of information processing in the brain.8

The fluorescent probe, however, does not directly report spiking activity. Rather, it9

reads out a relatively reliable indicator of spiking activity — a cell’s intracellular cal-10

cium concentration — from which spike times must be inferred. A diverse array of11

techniques have been proposed for this task, including deconvolution approaches (Vo-12

gelstein et al., 2010; Friedrich et al., 2017; Pachitariu et al., 2017), methods that identify13

the most likely spike train given a signal model (Vogelstein et al., 2009; Deneux et al.,14

2016) and approaches that exploit the sparsity of the underlying spike train (Oñativia15

et al., 2013). To enable the investigation of neural coding hypotheses, reconstructed16

spike trains must have sufficient temporal precision for analysis of synchrony between17

neurons and behavioural variables (Huber et al., 2012), whilst accurately inferring the18

rate of spiking activity.19

Although the development of spike detection algorithms has received a lot of recent20

attention, few researchers have examined the metrics used to assess an algorithm’s per-21

formance. At present, there is no consensus in the best choice of metric. In fact, from22

our survey, 44% of papers presenting a new method assess its performance using a met-23

ric unique to that paper. This inconsistency impedes progress in the field — algorithms24

are not directly comparable and, consequently, data collectors cannot easily select the25

optimal algorithm for a new dataset.26

The two most commonly used metrics, the spike train correlation (STC) and the27

success rate, are not well-suited to the task. The STC, which is invariant under linear28

transformations of the inputs, is not able to discriminate the similarity of the rates of29

two spike trains (Paiva et al., 2010). Moreover, the temporal binning that occurs prior30

to spike train comparison impairs the STC’s ability to compare spike train synchrony31

(Paiva et al., 2010). These limitations suggest that the STC, whilst a quick and intuitive32

method, is not appropriate for assessing an algorithm’s spike detection performance.33

The success rate, which does accurately compare spike rates, does not reward increas-34

ing temporal precision above a given threshold. Consequently, it is not an appropriate35

metric for evaluating an algorithm’s performance when the end goal is, for example, to36

investigate the synchrony of activations within a network.37

In this paper, we present a metric that can discriminate both the temporal and rate38

precision of an estimated spike train with respect to the ground truth spike train. Un-39

like the STC, we do not bin the spike trains. Rather, spike trains are convolved with a40

smoothing pulse that allows comparison of spike timing with an implicit tolerance. The41

similarity between the resulting pulse trains is subsequently assessed. This type of con-42

tinuous approach is also preferred by metrics assessing the relationship between spike43

trains from different neurons (van Rossum, 2001; Schreiber et al., 2003). We set the44

pulse width to reflect the temporal precision that an estimate is able to achieve given the45
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statistics of the dataset. As such, the metric is straightforward to implement since there1

are no parameters to tune. For convenience, we refer to the proposed metric as CosMIC2

— a Consistent Metric for spike Inference from Calcium imaging. In the following, we3

demonstrate CosMIC’s ability to discriminate spike train similarity on real and simu-4

lated data. We include comparisons against the two most commonly used metrics, the5

spike train correlation and the success rate, and against two metrics designed to assess6

similarity between spike trains from different neurons (Victor and Purpura, 1997; van7

Rossum, 2001).8

2 Constructing the metric9

In this paper, we present a metric for comparing the similarity of two sets of spikes:10

a ground truth set, S = {tk}Kk=1, and a set of estimates, Ŝ = {t̂k}K̂k=1. Due to limiting11

factors, such as noise and model mismatch, it is improbable that an estimate will match12

a true spike with infinite temporal precision. As such, we do not expect that t̂j = tk for13

any j or k. Rather, we wish to reward estimates within a reasonable range of accuracy14

given the limitations of the data. We achieve this by leveraging results from fuzzy set15

theory (Zimmermann, 2010).16

In contrast to classical sets, to which an element either belongs or does not be-17

long, fuzzy sets contain elements with a level of certainty represented by a membership18

function — the higher the value of the membership function, the more certain the mem-19

bership. In the following, we define two fuzzy sets, Sε and Ŝε, which represent the20

original sets of spikes, S and Ŝ, with a level of temporal tolerance defined by a parame-21

ter ε. We set ε to reflect the temporal precision that an estimate is able to achieve given22

the statistics of a dataset (see Section 3). The corresponding membership functions y(t)23

and ŷ(t), which are defined for t ∈ R, are calculated through convolution of the spike24

trains,25

x(t) =
K∑
k=1

δ(t− tk) and x̂(t) =
K̂∑
k=1

δ(t− t̂k), (1)

with a triangular pulse, pε(t), such that y(t) = x(t) ∗ pε(t) and ŷ(t) = x̂(t) ∗ pε(t).26

The resulting functions have local maxima at the locations of the respective sets of27

spikes (Fig. 1A). As x(t) and x̂(t) are analogous to the membership functions of the28

classical sets of spikes, we can think of the convolution as a temporal smoothing of the29

membership. The pulse that we employ is a triangular B-spline (Fig. 1B),30

pε(t) =

{
ε−|t|
ε

|t| ≤ ε,

0 otherwise.
(2)

Using this triangular pulse means that, the further a time point, t, is from a spike, the31

less weight the membership function receives at that point. Past a certain distance,32

ε, the membership function receives no weight. Many pulse shapes could be chosen33

to introduce this grading of temporal precision, we select a triangular pulse as it is34

straightforward to examine analytically and implement computationally.35

3
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Figure 1: A flow diagram of the proposed metric. The ground truth spike train and esti-
mated spike train are convolved with a triangular pulse (B), whose width is determined
by the statistics of the data. The metric compares the difference between the resulting
pulse trains (A). Metric scores are in the range [0,1] — a perfect estimate achieves score
1 and an empty spike train is scored 0 (C).

We design the proposed metric to quantify the size of the intersection of the fuzzy1

sets of true and estimated spikes with respect to the average size of the sets, such that2

M
(

S, Ŝ
)

=
µ(Sε ∩ Ŝε)(

µ (Sε) + µ(Ŝε)
)
/2

, (3)

where µ is the L1-norm: µ(Sε) = ‖y‖ =
∫
R |y(t)| dt. An analogous formula was3

presented for discrete fuzzy sets by Pappis and Karacapilidis (1993). Our formula can4

be interpreted as the continuous version of the Sørensen-Dice coefficient (Dice, 1945;5

Sørensen, 1948) — a score which is commonly used to assess the similarity of discrete,6

presence/absence data. Also known as the F1-score, in the context of spike detection,7

the Sørensen-Dice coefficient is referred to as the success rate (Section 4.1).8

The membership function of an intersection of sets is the minimum of their respec-9

tive membership functions. It follows that10

µ(Sε ∩ Ŝε) = ‖min(y, ŷ)‖ =

∫
R
|min(y(t), ŷ(t))| dt. (4)

Taking the minimum of the membership functions produces a conservative represen-11

tation of the intersection of two sets; in our context, spikes that appear in one spike12

train and not in the other are removed (Fig. 2A) and spikes that are detected with poor13

temporal precision are assigned less weight (Fig. 2B and 2C).14

4
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Figure 2: The proposed metric quantifies the commonalities of the sets of true and
estimated spikes as a proportion of the average size of those sets. Commonalities are
found by taking the minimum of the pulse trains — as such, spikes that appear in only
one pulse train are excluded (A) and estimates with lower temporal precision receive a
lower score (B and C).

The metric can also be written in alternative form1

M
(

S, Ŝ
)

= 1− ‖y − ŷ‖
‖y‖+ ‖ŷ‖

, (5)

the derivation of which is shown in Appendix A.1. From Eq. (5), it is clear that the2

maximal score of 1 is achieved when the membership functions, and therefore the sets3

of true and estimated spikes, are equivalent. The minimal score of 0 is achieved when4

the support of the membership functions do not overlap, i.e. no estimates are within the5

tolerance of the metric (Fig. 1C).6

2.1 Ancestor metrics7

Like the success rate, CosMIC can alternatively be derived from a pair of metrics, which8

we refer to as ancestor metrics. The first of these metrics measures the proportion of9

ground truth spikes that were detected within the precision of the pulse width, such that10

11

RCosMIC =
µ(Sε ∩ Ŝε)
µ(Sε)

=
‖min(y, ŷ)‖
‖y‖

. (6)

This score is analogous to the recall of a spike train estimate, one of the ancestor met-12

rics from which the success rate is formed. The second of CosMIC’s ancestor metrics13

measures the proportion of estimated spikes that detect a ground truth spike within the14

precision of the pulse width, such that15

PCosMIC =
µ(Sε ∩ Ŝε)

µ(Ŝε)
=
‖min(y, ŷ)‖
‖ŷ‖

. (7)

This is analogous to the precision, the second metric used to compute the success rate.16

Finally, computing the harmonic mean of the two ancestor metrics and rearranging, we17

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 25, 2018. ; https://doi.org/10.1101/238592doi: bioRxiv preprint 

https://doi.org/10.1101/238592
http://creativecommons.org/licenses/by-nc-nd/4.0/


obtain CosMIC:1

2
RCosMIC ∗ PCosMIC

RCosMIC + PCosMIC
= 2

µ(Sε∩Ŝε)
µ(Sε)

µ(Sε∩Ŝε)
µ(Ŝε)

µ(Sε∩Ŝε)
µ(Sε)

+ µ(Sε∩Ŝε)
µ(Ŝε)

= 2
µ(Sε ∩ Ŝε)

µ (Sε) + µ(Ŝε)
= M(S, Ŝ). (8)

The analogy to the success rate can be seen clearly from the presentation of that metric2

in Section 4.1.3

3 Temporal error tolerance4

The width of the triangular pulse with which the spike trains are convolved reflects the5

accepted tolerance of an estimated spike’s position with respect to the ground truth. To6

set this width, we calculate a lower bound on the temporal precision of the estimate7

of one spike — the Cramér-Rao bound (CRB) — from the statistics of the data. The8

CRB reports the lower bound on the mean square error of any unbiased estimator (Kay,9

1993). It is therefore useful as a benchmark; an estimator that achieves the CRB should10

be awarded a relatively high metric score. In Section 3.1, we detail the calculation of the11

CRB. In Section 3.2, we outline how we use this bound to determine the pulse width.12

Then, in Section 3.3, we provide practical advice on the calculation of the bound.13

3.1 Cramér-Rao bound for spike detection14

We consider the problem of estimating the location of one spike, t0, from noisy calcium15

imaging data. The fluorescence signal is modelled as16

f(t) = A
(
e−α(t−t0) − e−γ(t−t0)

)
1t>t0 , (9)

where α, γ and A are parameters that determine the shape and amplitude of the calcium17

transient. We assume that we have access to N noisy samples, such that18

y[n] = f [n] + ξ[n], n ∈ {0, 1, ...,N − 1}, (10)

where ξ[n] are independent samples of a zero-mean Gaussian process with standard de-19

viation σ and f [n] = f(nT ) are samples of the fluorescence signal with time resolution20

T . The CRB on the uncertainty in the estimated position of t0 is21

CRB(t0) =

[
A2

σ2

N−1∑
n=0

(
αe−α(nT−t0) − γe−γ(nT−t0)

)2
1nT>t0

]−1
. (11)

This bound was first presented by Schuck et al. (2017). The bound is derived by calcu-22

lating the inverse of the Fisher Information, which, in the case of samples corrupted by23

independent, zero-mean, Gaussian noise, is24

I(t0) =
1

σ2

N−1∑
n=0

(
∂f

∂t0
(nT )

)2

,

6
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Figure 3: The pulse width is set to reflect the temporal precision achievable given the
statistics of the dataset. We calculate the Cramér-Rao bound (CRB), σ2

CRB, a lower
bound on the mean square error of the estimated location of one spike from calcium
imaging data (A). This bound decreases as the scan rate (Hz) and peak signal-to-noise
ratio (squared calcium transient peak amplitude/noise variance) increase. We set the
pulse width to ensure that an estimate of one spike at the temporal precision of the CRB
achieves, on average, a score of 0.8. This results in a pulse width of approximately 7.3
σCRB (B).

where ∂f/∂t0 is the derivative of the fluorescence signal with respect to the spike time,1

t0:2

∂f

∂t0
(nT ) = A

(
αe−α(nT−t0) − γe−γ(nT−t0)

)
1nT>t0 .

In this work, we use the CRB to set the temporal tolerance of the metric. In order3

that the CRB holds for an arbitrarily placed spike, we remove the dependency on the4

true spike time by averaging the result over several values of t0. We compute σ2
CRB =5

1
M

∑M
m=1 CRB(tm0 ), where tm0 are evenly placed in the interval (nT , (n+1)T ) for a fixed6

n. In Fig. 3, we plot σCRB as the sampling rate and peak signal-to-noise ratio (PSNR)7

of the data vary. The PSNR is computed as A2
peak/σ

2, where σ is the standard deviation8

of the noise and Apeak is the peak amplitude (maximum) of the fluorescence signal in9

Eq. (9). For this example, we use α = 3.18s−1 and γ = 34.49s−1; the parameters for a10

Cal-520 AM pulse (Tada et al., 2014). We see that the CRB decreases as either the scan11

rate or the PSNR of the data increases.12

3.2 Pulse width13

The CRB can be used as a benchmark for temporal precision of any unbiased estimator.14

As such, we set the pulse width to ensure that, on average, an estimate at the precision15

of the CRB achieves a relatively high score. We set the benchmark metric score at 0.8,16

as this represents a relatively high value in the range of the metric, which is between 017

and 1. The importance of this score is not the particular benchmark value — there are18

a range of values that give similar performance — but rather that it is a reproducible19

number with a clear interpretation. In this paper, we characterise the discrimination20

performance of CosMIC with a benchmark value of 0.8, so that its scores can be inter-21

preted when applied to spike inference algorithms on real data. The benchmark value22

7
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was set lower than the metric’s maximum value, 1, so that the score does not saturate1

when the model assumptions are not ideally satisfied. On real data, the noise may not2

be stationary (σ may vary in time), and so algorithms may appear to outperform the3

CRB. A benchmark score of 0.8 means that the metric score does not saturate in this4

scenario.5

We consider a true spike at t0 and an estimate, U , normally distributed around it at6

the precision of the CRB, such that U ∼ N (t0,σ
2
CRB). Then, we fix the pulse width so7

that, on average, E [M(t0,U)] = 0.8. In Appendix A.3, we show that this condition is8

satisfied when9

0.4 = (Φ(1/β)− 0.5)
(
β2 + 1

)
+

β√
2π

(
exp(−1/2β2)− 2

)
, (12)

where β = σCRB/w, w is the pulse width and Φ denotes the cumulative distribution10

function of the standard normal distribution. We observe that the pulse width that solves11

this equation is approximately equal to 7σCRB (Fig. 3B).12

3.3 Implementation13

Code to implement the metric can be found at github.com/stephanierey/metric along14

with a demonstration. In order to use the metric, one must have estimates of the fluores-15

cence signal parameters, {α, γ,A,σ}, see Eq. (9). In the following, we provide some16

guidance on the estimation of these parameters. Alternative strategies have been sug-17

gested by numerous model-based algorithms, whose spike detection procedures utilise18

a subset of the above parameters (Vogelstein et al., 2009; Pnevmatikakis et al., 2013,19

2016; Deneux et al., 2016).20

The standard deviation of the noise, σ, can be computed as the sample standard21

deviation of a portion of the data in which there were no calcium transients. The pa-22

rameters that determine the speed of the rise and decay of the pulse — α and γ —23

are predominantly defined by characteristics of the fluorescent indicator that was used24

to generate the imaging data. In Table 1, we provide documented values of α and γ25

for four commonly used fluorescent indicators, extracted from the corresponding refer-26

ences: Cal-520 AM (Tada et al., 2014), OGB-1 AM (Lütcke et al., 2013), GCaMP6f27

and GCaMP6s (Chen et al., 2013). These values can be used as a guideline; in practise,28

they will vary with the indicator expression level as well as the cell type. We note that29

the time taken for a calcium transient to rise to its peak and the decay time are functions30

of both α and γ; the values presented in Table 1 are thus not easily interpretable in terms31

of the shape of a calcium transient pulse.32

It is typically necessary for a spike detection algorithm to estimate the value of33

the amplitude parameter, A, in order to detect spikes. Indeed, Vogelstein et al. (2009)34

integrate this step into the spike detection procedure, iteratively estimating the spike35

locations and the amplitude, amongst other parameters. If, however, A is not known,36

we recommend that the parameter is fit from the data samples and the signal model,37

such that38

g(t) = b(t) + A

K∑
k=1

(
e−α(t−tk) − e−γ(t−tk)

)
1t>tk , (13)

8
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Fluorescent indicator α (s−1) γ (s−1)
GCaMP6f 4.88 60.97
GCaMP6s 1.26 15.16
OGB-1 AM 1.5 101.5
Cal-520 AM 3.18 34.39

Table 1: To calculate CosMIC’s pulse width, the parameters that define the speed of rise
and decay of the calcium transient, α and γ, are required. Here, we provide documented
values of these parameters for four commonly used fluorescent indicators.

where b(t) is a baseline component and α, γ are the estimated pulse shape parameters.1

When the baseline component is constant and there is no indicator saturation, this is a2

linear problem. In practise, a neuron’s spike amplitude is not constant over time. In fact,3

depending on the fluorescent indicator, the amplitude may increase (Chen et al., 2013)4

or saturate (Lütcke et al., 2013) at high spike rates. We recommend that the amplitude5

parameter is fit from a subset of the data in which neither saturation nor supra-linear6

amplitudes are present.7

4 Numerical experiments8

To assess the discriminative ability of CosMIC, we simulate true and estimated spike9

trains in various informative scenarios. We compare CosMIC with the two most com-10

monly used metrics in the spike inference literature, which we define in Sections 4.111

and 4.2 for completeness. We also compare against two metrics designed to assess the12

similarity of spike trains from different neurons. We define the metrics of Victor and13

Purpura (1997) and van Rossum (2001) in Sections 4.3 and 4.4, respectively.14

4.1 Success rate15

The success rate, which is defined as a function of the true and false positive rates16

or, alternatively, as a function of precision and recall, appears in various forms in the17

literature. Spike inference performance has been assessed using true and false positive18

rates (Rahmati et al., 2016), precision and recall analysis (Reynolds et al., 2017) and19

using the complement of the success rate, the error rate (Deneux et al., 2016). We study20

this class of metrics under the umbrella of the success rate, which we define here.21

A ground truth spike is deemed to have been ‘detected’ if there is an estimate within22

δ1/2 (s) of that spike, where δ1 is a free parameter. Only one estimate can be deemed to23

detect one ground truth spike. The recall is the percentage of ground truth spikes that24

were detected. The precision is the percentage of estimates that detect a ground truth25

spike. Then, the success rate is the harmonic mean of the precision and recall, such that26

27

success rate = 2
precision ∗ recall
precision + recall

. (14)

A binary true detection region centred around each ground truth spike is analogous to28

9
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Figure 4: We compare the scores of three metrics: CosMIC, the spike train correlation
(STC) and the success rate (SR). None of the metrics compute scores directly from the
true and estimated spike trains, shown in A. Rather, CosMIC initially convolves the
spike trains with a triangular pulse (B). The STC first discretizes the temporal interval
and utilises the counts of spikes in each time bin, the bin edges and counts are plotted
in C. The SR uses a bin centered around each true spike — an estimate in that bin is
deemed a true detection (D). In order that the metric scores are comparable, we fix the
STC and SR bin widths to be equal to CosMIC’s pulse width.

an implementation of CosMIC with a box function pulse. To ensure that the success1

rate ‘pulse’ has the same width as CosMIC’s pulse, we set δ1 = ε, where ε is half the2

pulse width, see Fig. 4.3

4.2 Spike train correlation4

The first step in the calculation of the spike train correlation (STC) is the discretization5

of the temporal interval into bins of width δ2. Two vectors of spike counts, c and ĉ,6

are subsequently produced, whose ith elements equal the number of spikes in the ith7

time bin for the true and estimated spike trains, respectively. The STC is the Pearson8

product-moment correlation coefficient of the resulting vectors, i.e.9

STC =
〈c−m(c), ĉ−m(ĉ)〉√

v(c)
√
v(ĉ)

, (15)

where 〈·, ·〉, m(·) and v(·), represent the inner product, sample mean and sample vari-10

ance, respectively. To remain consistent with the success rate, in all numerical experi-11

ments, we define δ2 = δ1 = ε.12

The STC takes values in the range [-1, 1]. In practise, however, it is rare for a spike13

detection algorithm to produce an estimate that is negatively correlated with the ground14

truth (Berens et al., 2017). Moreover, an estimate with maximal negative correlation is15

equally as informative as one with maximal positive correlation. In this paper, we utilise16
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the normalised spike train correlation, the absolute value of the STC. This ensures that1

the range of each metric that we analyse is equivalent (and equal to [0,1]) and that, as a2

consequence, the distribution of metric values are comparable.3

4.3 Victor-Purpura dissimilarity4

Victor and Purpura (1997) introduced a distance metric to compare the dissimilarity5

between sets of spikes from different neurons: S1 = {t1k}
K1
k=1 and S2 = {t2k}

K2
k=1. The6

distance is the minimum cost of transforming one set of spikes into the other using7

a set of three operations: insertion, deletion and temporal shifts of spikes. A cost is8

associated with each operation; insertion and deletion both carry a cost of 1, whereas the9

cost of a temporal shift depends on the extent of the shift and the value of a parameter,10

q. In particular, the cost of transforming one spike into another is11

Kq(t
1
k, t

2
j) =

{
q‖t1k − t2j‖ if ‖t1k − t2j‖ < 2/q,

2 otherwise.
(16)

If the spikes are within the precision prescribed by the shift parameter, 2/q, the cost12

relates to a temporal shift. Otherwise, the cost invoked is the sum of the costs of delet-13

ing one spike and inserting another at the correct location. In all experiments, we set14

2/q to be equal to CosMIC’s pulse width, so that the minimum tolerated precision of15

CosMIC and this metric are equivalent. Finally, the distance between two sets of spikes,16

DVP(S1,S2), is the minimum total cost of the operations transforming one spike train17

to the other. A larger score indicates less similar spike trains, whereas the minimum18

score, zero, is awarded to identical spike trains.19

4.4 van Rossum dissimilarity20

A distance metric introduced by van Rossum (2001) was also designed to quantify21

the dissimilarity between sets of spikes from different neurons. The respective spike22

trains are first convolved with a biologically-motivated pulse, q(t) = exp (−t/τ) 1t>0,23

where τ is a tunable parameter and 1 is the indicator function. The metric score is the24

Euclidean distance between the resulting pulse trains, f1,τ and f2,τ , such that25

DvR(S1,S2) =
1

τ

∫ ∞
0

(f1,τ (t)− f2,τ (t))2 dt. (17)

Following Kreuz et al. (2007), when computing the score of the van Rossum dissimi-26

larity, we set τ with respect to the Victor-Purpura metric parameter: τ = 1/q.27

5 Results28

To investigate metric properties, we simulated estimated and ground truth spike trains29

and analysed the metric scores. To mimic the temporal error in spike time estimation,30

unless otherwise stated, estimates were normally distributed about the true spike times.31

In the following, we refer to the standard deviation of the normal distribution as the32

‘jitter’ of the estimates.33
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5.1 CosMIC rewards high temporal precision1

CosMIC was more sensitive to temporal precision than the STC or success rate (Fig.2

5). First, we investigated this characteristic at the level of estimates of a single spike,3

ttrue. CosMIC depends only on the absolute difference between the estimate, test, and the4

true spike — the further the distance, the smaller the score. The relationship between5

CosMIC and the temporal error, δ = ttrue − test, is6

M(ttrue, test) =


(
|δ|
w
− 1
)2

if |δ| < w

0 otherwise,
(18)

where w is the width of the pulse. The derivation of this result is given in Appendix7

A.2. The success rate, on the other hand, does not reward increasing temporal precision8

above the bin width; an estimate is assigned a score of 1 or 0, when its precision is9

above or below the bin width, respectively. Moreover, the STC is asymmetric in the10

temporal error; estimates the same distance from the true spike are not guaranteed to be11

awarded the same score, see Fig. 5A. This asymmetry stems from this metric’s temporal12

discretisation. The temporal interval is first discretised into time bins and the number13

of spikes in each bin are counted (Fig. 4). It follows that estimated spikes that are the14

same absolute distance from a true spike can fall into different time bins, thus achieving15

a different score. We note that the STC is always positive in Fig. 5A as, in this paper,16

we utilise the absolute value of the correlation (see Section 4.2).17

On simulated data, we investigated the effect of these properties when spike train es-18

timates, rather than single spikes, were evaluated. In particular, we analysed the metric19

scores when spike train estimates contained the correct number of spikes but their tem-20

poral precision varied. We simulated the ground truth spike train as a Poisson process21

with rate 1Hz over 200s. The corresponding calcium transient signal was generated22

assuming a Cal-520 pulse shape (see Table 1) and a sampling rate of 30 Hz. White23

Gaussian noise was added to the calcium transient signal to generate two fluorescence24

signals, one with low and the other with relatively high noise (Fig. 5B). The corre-25

sponding metric pulse widths, as calculated from the CRB, were 33ms and 78ms, or26

1 and 2.3 sample widths, respectively. Spike train estimates were normally distributed27

about the true spikes with varying jitter. The metric scores were then calculated for 10028

realisations of spike train estimates at each jitter level in both the low and high noise29

settings (Fig. 5C and D, respectively).30

As the correct number of spikes were always estimated, the level of jitter represented31

the quality of a spike train estimate in this setting. Ideally, a metric would reliably32

reward spike train estimates of the same quality with the same score. The STC, however,33

took a relatively large range of values for estimates of the same jitter (Fig. 5C and D),34

despite having the same range as CosMIC and the success rate. This inconsistency35

is a consequence of the edge effects introduced by binning. Here, we use the term36

consistency in line with its semantic rather than mathematical definition.37

We observed a roughly linear trend in the scores of CosMIC and the success rate38

(Fig. 5E). As expected, CosMIC was boosted with respect to the success rate when the39

root mean square error (RMSE) of detected spikes was relatively low when measured40

as a fraction of the pulse width. In each case, the RMSE was computed empirically41
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from the estimated spikes within the precision of CosMIC and the success rate’s pulse1

width. Conversely, CosMIC was relatively low with respect to the success rate when the2

RMSE was relatively high. This trend is visible in the Bland-Altman plot (Altman and3

Bland, 1983; Giavarina, 2015), in which the mean of the two methods is plotted against4

the difference. We conclude that CosMIC is more sensitive to the temporal precision5

of detected spikes, as, unlike the success rate, it discriminates precision above the bin6

width.7

5.2 CosMIC penalises overestimation8

As opposed to the STC, CosMIC and the success rate penalised overestimation of spikes9

(Fig. 6). We simulated spike train estimates that were normally distributed about the10

true spike times. When the number of detected spikes (Kest) was less than the number11

of true spikes (Ktrue), the locations about which the estimates were distributed were12

chosen without replacement. When Kest > Ktrue, the set of locations included all the13

true spikes plus a subset of extras chosen with replacement. The overestimation ratio14

(Kest/Ktrue) reflects the degree of accuracy to which an estimate matches the rate of a15

ground truth spike train. We observed that, rather than penalising overestimation, the16

STC increased with the overestimation ratio. In contrast, CosMIC and the success rate17

were maximised when the correct number of spikes were detected. This behaviour was18

consistent as the jitter of the estimated spikes varied; in this example, the jitter was σCRB19

(Fig. 6A), 2 σCRB (Fig. 6B) and 3 σCRB (Fig. 6C), respectively.20

It is the type of normalisation used by the STC that caused it to be insensitive to21

overestimation. Scaling factors present in the spike count vectors cancel out in the22

numerator and denominator, see Eq. (15), rendering the STC invariant under scalar23

transformations of the inputs. When the STC was adapted to the continuous-time as-24

sessment of spike train similarity, by first convolving spike trains with a smoothing25

pulse, this flaw persisted (Paiva et al., 2010).26

When the spike train estimates have jitter σCRB and their rate increases from perfect27

rate estimation to an overestimation ratio of 3, the success rate and CosMIC scores are28

reduced by 49% and 40%, respectively. Both metrics are thus penalising overestima-29

tion, with the former metric doing so more harshly. When the jitter is larger than the30

CRB, the reduction in CosMIC from perfect rate estimation to overestimation is rela-31

tively smaller, as CosMIC is already substantially penalising the temporal discrepancy.32

5.3 Application to real imaging data33

On imaging data of the mouse visual cortex at a frame rate of 13 Hz, CosMIC was more34

sensitive than the success rate to the temporal precision of detected spikes (Fig. 7). For35

a detailed description of the imaging data, see Reynolds et al. (2017). Briefly, four neo-36

cortical layer-5 pyramidal cells were simultaneously recorded in whole-cell configura-37

tion, different Poisson spiking patterns were evoked by brief current pulses, and calcium38

transients were imaged with a two-photon laser-scanning microscope (see Abrahams-39

son et al. 2017), thus establishing a realistic imaging data set with electrophysiological40

ground truth. An existing algorithm was used to detect spikes from each of 83 traces41

(Oñativia et al., 2013; Reynolds et al., 2016). Detected spike trains were subsequently42
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compared to the electrophysiological ground truth using CosMIC, the success rate and1

the STC.2

As detailed in Section 3, the metric’s pulse width was set with respect to the CRB.3

On this dataset, the pulse widths were concentrated between 1 and 3 sample widths —4

this range encompassed 92% of the data, see (Fig. 7F). As the noise level of the data5

increases, so does the pulse width, see Eq. (11). Consequently, the tolerance of the6

metric with regards to the temporal precision of estimates also increases. As a result,7

estimates on noisier data (Fig. 7B) were scored with more lenience than those on less8

noisy data (Fig. 7A).9

As was found on simulated data in Section 5.1, there was a linear trend between10

the scores of CosMIC and the success rate (Fig. 7C). CosMIC was relatively high with11

respect to the success rate when the temporal precision, represented by RMSE as a12

fraction of the pulse width, was relatively high. Conversely, CosMIC was low with13

respect to the success rate when the temporal precision was relatively low. This pattern14

was conserved when CosMIC’s ancestor metrics, PCosMIC and RCosMIC (Section 2.1),15

were compared to the precision and recall (Fig. 7D and E). The average RMSE over all16

traces was 27ms, or 0.37 sample widths. As CosMIC is able to discriminate precision17

above the pulse width, it is more able to reward this super-resolution performance than18

the success rate or STC.19

5.4 CosMIC discriminates precision and recall of spike trains20

By construction, CosMIC bears a strong resemblance to the Sørensen-Dice coefficient,21

which, in the context of spike detection, is referred to as the success rate. The success22

rate is the harmonic mean of the precision and recall, two intuitive metrics which rep-23

resent the proportion of estimates that detect a ground truth spike and the proportion24

of true spikes detected, respectively. In this section, we demonstrate that CosMIC can25

accurately discriminate both the precision and recall of spike train estimates.26

When a spike train estimate detects exactly a subset of the true spikes, plus no27

remainders, CosMIC and the success rate depend only on the percentage of true spikes28

detected (the recall) and not the location of that subset, see Fig. 8A and D. Denoting29

the size of the subset of true detections as K−R, with K the number of true spikes and30

0 ≤ R ≤ K, we have31

M
(

S, Ŝ
)

= 1− 1

2K/R− 1
, (19)

see Appendix A.4 for a proof. Thus, CosMIC depends only on the proportion of ‘miss-32

ing’ spikes, R/K, not their location. In contrast, the STC exhibited significant variation33

at each level of recall. This is illustrated in Fig. 8A, in which we plot the distribution34

of CosMIC, success rate and correlation scores over 100 realizations of spike train esti-35

mates at each level of recall. It can be seen that, in this setting, CosMIC and the success36

rate are fixed with the recall of the spike train estimates.37

When all the true spikes were exactly detected plus R ≥ 0 surplus spikes, CosMIC38

and the success rate depend only on the level of precision not the location of the surplus39

spikes, see Fig. 8B and E. We have40

M(S, Ŝ) =
1

1 +R/2K
, (20)
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where K is the number of true spikes, see Appendix A.5 for a proof. The fall-out rate,1

which is the complement of the precision, is the proportion of estimates that were not2

deemed to have detected a ground truth spike. It is apparent from Eq. (20) that, in this3

setting, CosMIC depends only on the fall-out rate, R/K. The correlation, on the other4

hand, varied with the location of the surplus spikes. In Fig. 8E, we plot the distribution5

of the correlation scores for 100 realizations of spike train estimates at each level of6

precision. CosMIC and the success rate, which were constant (and identical) at a given7

precision, in this scenario, are also shown.8

5.5 Comparison with Victor-Purpura and van Rossum distances9

The Victor-Purpura (VP) and van Rossum (vR) spike distances were originally designed10

to quantify the dissimilarity between spike trains from different neurons (Victor and11

Purpura, 1997; van Rossum, 2001). Due to the obvious parallels between that scenario12

and ours, we investigated the applicability of the VP and vR metrics to scoring spike13

inference.14

The vR metric initially convolves the respective spike trains with a causal expo-15

nential pulse and computes the Euclidean distance between the resulting pulse trains16

(Section 4.4). Despite the causality of the pulse, the metric score is symmetric in the er-17

ror of a single estimate about a true spike (Fig. 9A). The VP distance implicitly evokes18

a box function pulse, resulting in a piecewise linear relationship between the error of an19

estimate and the metric score (Fig. 9A). Although the VP distance is not defined with20

respect to a smoothing pulse, this interpretation follows from an analogous argument to21

that presented in A.2. It is known that, as the pulse width increases from small to large22

with respect to the interspike interval, both metrics vary between coincidence detectors23

and rate detectors. To the best of our knowledge, the optimal pulse width for a compro-24

mise between rate and timing detection is not known, so we set the widths of vR and25

VP with respect to CosMIC’s pulse width.26

Although it is already clear that, when the width is set correctly, VP and vR can27

discriminate the rate and temporal precision of spike trains with respect to one another28

(Paiva et al., 2010), it is not clear whether they are suitable for scoring spike train29

estimates. In Fig. 9B-D, we plot the scores of VP, vR and CosMIC, respectively, as30

the precision and recall of spike train estimates vary. We observed that vR and VP31

were less sensitive to the recall than the precision of spike train estimates; relatively32

low distances were obtained when only 50% of true spikes were detected. In contrast,33

CosMIC only attained a relatively high score when both the precision and recall were34

high (D). As it is crucial that a spike inference metric penalises both undetected and35

falsely-detected spikes, this result suggests that, without modification, VP and vR are36

not ideal for scoring spike train estimates.37

The results correspond to a ground truth spike train consisting of 200 spikes gener-38

ated from a Poisson process with rate 1Hz. False positives were uniformly distributed39

about the temporal interval, whereas true positives were normally distributed about true40

spikes with jitter 20ms. The pulse width was set assuming a CRB of 20ms. At each41

level of precision and recall, results were averaged over 100 realisations of spike train42

estimates.43
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Figure 5: CosMIC was more sensitive to the temporal precision of estimates than the
spike train correlation (STC) or success rate (SR). Unlike the STC, CosMIC awards
estimated spikes (test) with the same proximity to the true spike (ttrue) the same score (A).
In contrast to both the STC and SR, CosMIC rewards increasing precision above the
pulse width (2ε) with strictly increasing scores. In C and D, we plot the distribution of
scores awarded to estimates that detect the correct number of spikes at varying temporal
precision, in a low and high noise setting, respectively. In B, a sample of each of
the following signals are plotted: the ground truth spike train, simulated as a Poisson
process at rate 1Hz over 200s; the corresponding calcium transient signal, sampled with
interval T =1/30s; the low and high noise fluorescence signal and the corresponding
pulse widths. At each noise and jitter level, 100 realisations of spike train estimates
normally distributed about the true spike times were generated. In both the low (C)
and high noise (D) settings, the STC exhibited a relatively large variation in the scores
awarded to estimates of the same jitter. CosMIC and the SR were roughly linearly
related (E). CosMIC was boosted with respect to the success rate when temporal error,
represented by the root mean square error (RMSE) of estimates as a fraction of the
pulse width, was low (F). Conversely, CosMIC was relatively low with respect to the
SR when temporal error was relatively high. The colormap in E and F is thresholded at
the 1st and 99th percentiles of the RMSE for visual clarity.
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Figure 6: In contrast to the spike train correlation, CosMIC and the success rate were
maximised when the correct number of spikes were detected. We display the distribu-
tion of metric scores as the number of estimated spikes (Kest) varies with respect to the
number of true spikes (Ktrue). The true spike train, which was identical throughout, con-
sisted of 200 spikes simulated from a Poisson process with spike rate 1Hz. Estimated
spikes were normally distributed about the true spikes, with jitter σCRB (A), 2 σCRB (B)
and 3 σCRB (C), respectively, where σCRB=20ms. When the number of estimated spikes
was greater than the number of true spikes, estimates were distributed around a set of
locations including all true spikes plus an extra subset chosen with replacement. For
each metric we plot the mean (darker central line) and standard deviation (edges of
shaded region) of metric scores on a set of 100 spike train estimates generated at each
overestimation and jitter combination.
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Figure 7: On mouse in vitro imaging data, CosMIC was more sensitive than the success
rate (SR) to the temporal precision of detected spikes. Spikes were detected using an
existing algorithm (Onativia et al. 2013; Reynolds et al. 2016) from 83 traces sam-
pled from visual cortex slices at 13Hz. In A and B, we display from top to bottom:
an example fluorescence trace (∆F/F ), ground truth and detected spike trains, and the
corresponding pulse trains. There was an approximately linear relationship between
CosMIC and the SR (C). CosMIC was relatively high with respect to the SR when tem-
poral error, represented by root mean square error (RMSE) as a fraction of the pulse
width, was relatively low. Conversely, CosMIC was low with respect to the SR when
temporal error was relatively high. This pattern was conserved in the relationship be-
tween the precision and CosMIC’s analogous ancestor metric, PCosMIC, (D) and between
the recall and RCosMIC (E). The range of pulse widths as computed from the Cramér-Rao
bound (F) and the range of spike train correlation (STC) scores (G) are also shown.
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Figure 8: CosMIC scored estimated spike trains of the same recall and fall-out rate
consistently, unlike the spike train correlation (STC). When a spike train estimate de-
tected precisely the location of a subset of spikes from a true spike train, the scores of
CosMIC and the success rate depended only on the percentage of spikes detected (the
recall), not the location of the detected spikes (A, D). In contrast, the STC varied with
the subset of spikes that were detected. When a spike train estimate detected all the true
spikes precisely plus a number of surplus spikes, the STC varied with the placement
of the surplus spikes (B, E). In contrast, the success rate and CosMIC depended only
on the percentage of estimated spikes that did not correspond to ground truth spikes
(the fall-out rate, also known as the false positive rate). The distribution of correlation
scores plotted in D and E stem from 100 realizations of estimated spike trains at each
recall and fall-out rate. In C, we plot an example of a true spike train. In D and E, we
plot estimated spike trains, with a recall and fall-out rate of 50% and 33%, respectively,
along with the corresponding metric scores. The spikes with a black ‘x’ marker in E
indicate the surplus spikes.
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Figure 9: CosMIC was more sensitive to the precision and recall of spike train estimates
than the Victor-Purpura (VP) or van Rossum (vR) spike distances. Both VP and vR are
dissimilarity metrics, reaching a minimum of 0 when a true spike train and estimated
spike train are equivalent. In A, this is demonstrated for one estimate (test) of one spike
(ttrue). The parameters of VP and vR were set with respect to CosMIC’s pulse width, 2ε,
which, in this example, was computed from a CRB of 20ms. The VP and vR distances
were less sensitive to the recall than the precision of spike train estimates (B and C,
respectively). CosMIC, however, only attained a relatively high score when both the
precision and recall were high (D). At each level of precision and recall, the metric
scores were averaged over 100 realisations of spike train estimates. The ground truth
spike train contained 200 Poisson distributed spikes at rate 1Hz. False positives were
uniformly distributed about the temporal interval, whereas true positives were normally
distributed about true spikes with jitter 20ms.
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6 Discussion1

Much recent attention has been focused on the development of algorithms to detect2

spikes from calcium imaging data, while the suitability of the metrics that assess those3

algorithms have been predominantly overlooked. In this paper, we presented a novel4

metric (‘CosMIC’) to assess the similarity of spike train estimates compared to the5

ground truth. Our results demonstrate that CosMIC accurately discriminates both the6

temporal and rate precision of estimates with respect to the ground truth.7

Using two-photon calcium imaging, the activity of neuronal populations can be8

monitored in vivo in behaving animals. Inferred spike trains can be used to investi-9

gate neural coding hypotheses, by analysing the rate and synchrony of neuronal activity10

with respect to behavioural variables. To justify such analysis, the ability of spike de-11

tection algorithms to generate accurate spike train estimates must be verified. When12

spike frequency is to be investigated, it is crucial that an estimate accurately matches13

the rate of the ground truth spike train. We have shown that the STC is not fit for this14

purpose; rather than penalising overestimation of the number of spikes, it is rewarded15

(Fig. 6). In contrast, CosMIC and the success rate are maximised when the correct16

number of spikes are detected. When the ultimate goal is to analyse spike timing with17

respect to other variables, it is critical that spikes can be detected with high tempo-18

ral precision. We have shown that CosMIC has superior discriminative ability in this19

regard, compared to the success rate and STC (Fig. 5).20

The current inconsistency in the metrics used to assess spike detection algorithms,21

hinders both experimentalists, aiming to select an algorithm for data analysis, and devel-22

opers. In light of this problem, a recent benchmarking study tested a range of algorithms23

on a wide array of imaging data (Berens et al., 2017). Although informative, the study,24

which relied heavily on the STC to assess algorithm performance, may not provide the25

full picture. By introducing a new metric, we hope to complement such efforts in the26

pursuit of a thorough, quantitative evaluation of spike inference algorithms.27

By construction, CosMIC bears a resemblance to the Sørensen-Dice coefficient,28

which is commonly used to compare discrete, presence/absence data (Dice, 1945; Sørensen,29

1948). This metric, which is also known as the F1-score, is widely used in many fields,30

including ecology (Bray and Curtis, 1957) and image segmentation (Zou et al., 2004).31

When applied to spike inference, this coefficient is referred to as the success rate and32

is one of the two most commonly used metrics. We have demonstrated that this con-33

struction confers some of the advantages of the success rate to CosMIC. In particular,34

CosMIC is able to accurately discriminate the precision and recall of estimated spike35

trains (Fig. 8). We have also shown the advantages of CosMIC over the success rate;36

most importantly, it is more sensitive to a spike train estimate’s temporal precision than37

the success rate (Fig. 5). Furthermore, CosMIC’s parameter is defined with respect to38

the statistics of the dataset and unlike the success rate’s bin size, it does not need to be39

selected by a user.40

We demonstrated that CosMIC is boosted with respect to the success rate when41

temporal precision is relatively high. In particular, as temporal precision approaches the42

CRB, CosMIC increases to a maximum. It is not clear how close existing algorithms43

are to this theoretical bound. Nevertheless, it is important to discriminate between44

the temporal precision of algorithms, even if the performance is not yet optimal. For45
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example, if all algorithms produce estimates with error on the order of a sample width,1

it is still of interest to know which algorithm produces the lowest error. With its graded2

pulse shape, CosMIC is able to penalise decreasing error in this way.3

The width of the pulse is computed from a lower bound on temporal precision (Sec-4

tion 3), which, in turn, is derived from the statistics of the dataset. As a result, the metric5

will be more lenient for spike inference algorithms on noisier or lower sampling rate6

data. This is due to our assumption that a metric score should reflect the difficulty of the7

spike inference problem. To calculate the bound, knowledge of the calcium transient8

pulse parameters and the standard deviation of the noise are required. These parameters9

are typically used by algorithms in the spike detection process (Vogelstein et al., 2010;10

Deneux et al., 2016). Using only one pulse amplitude parameter, which relates to the11

amplitude of a single spike, is a simplification. Depending on the fluorescent indicator,12

amplitudes do, in fact, decrease (Lütcke et al., 2013) or increase (Chen et al., 2013) at13

high firing rates. Consequently, CosMIC may be slightly more punitive in the former14

case than the latter.15

The problem of comparing a ground truth and estimated spike train is analogous to16

that of comparing spike trains from different neurons. In the spike train metric literature,17

binless measures have been found to outperform their discrete counterparts (Paiva et al.,18

2010). It is also common to convolve spike trains with a smoothing pulse prior to19

analysis (van Rossum, 2001; Schreiber et al., 2003). In that context, the width and20

shape of the pulse reflect hypotheses about the relationship between neuronal spike21

trains. A width that is large with respect to the average interspike interval results in a22

metric tuned to the comparison of neuronal firing rates. Conversely, a relatively small23

width produces a metric that acts as a coincidence detector. To apply CosMIC to the24

problem of spike train comparison, one could similarly vary the pulse width to tailor its25

performance to the neural coding scheme. In the context of spike detection, which we26

view as a parameter estimation problem, the pulse width is fixed with respect to a lower27

bound on the precision with which a spike time can be estimated. Setting the width via28

this bound, which is tailored to calcium imaging data, results in a metric that assesses29

how accurately parameters have been estimated given the constraints of the data. This30

approach would need to be altered to extend CosMIC to other applications. We note31

that, in the absence of this pulse width, CosMIC is sufficiently universal to be applied32

to the comparison of any point processes.33

Finally, we note that the developed metric is able to accurately assess an estimate’s34

temporal and rate precision. This information is unified in a single score that sum-35

marises the overall performance of an algorithm. We consider a single summary score36

to be practical for users who do not have the time or desire to analyse multi-dimensional37

trade-offs. Alternatively, CosMIC’s ancestor metrics, RCosMIC and PCosMIC, can be used38

to determine the extent to which errors stem from undetected or falsely-detected spikes.39
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number 126137] (P. Jesper Sjöström) and NSERC Discovery Grant [grant number 418546-3

2] (P. Jesper Sjöström).4

A Appendices5

In the appendices, we provide derivations of some results presented in the main text.6

The following notation is consistent throughout. We denote with x(t) and x̂(t) the true7

and estimated spike trains, see Eq. (1). We denote the triangular smoothing pulse with8

pε(t), see Eq. (2). The true and estimated pulse trains are denoted y(t) = x(t) ∗ pε(t)9

and ŷ(t) = x̂(t) ∗ pε(t), respectively. The proposed metric score, when comparing the10

similarity between a ground truth set of spikes, S = {tk}Kk=1, with a set of estimates, Ŝ11

= {t̂k}K̂k=1, is12

M(S, Ŝ) = 2
‖min(y, ŷ)‖
‖y‖+ ‖ŷ‖

, (A.21)

where ‖ · ‖ is the L1-norm.13

A.1 Alternative metric form14

In the following, we derive an alternative equation for CosMIC; we show that15

M(S, Ŝ) = 1− ‖y − ŷ‖
‖y‖+ ‖ŷ‖

. (A.22)

We have16

1− ‖y − ŷ‖
‖y‖+ ‖ŷ‖

=
‖y‖+ ‖ŷ‖ − ‖y − ŷ‖

‖y‖+ ‖ŷ‖

=

∫
R y(t) + ŷ(t) dt−

∫
R |y(t)− ŷ(t)| dt

‖y‖+ ‖ŷ‖
,

where we have used the fact that y(t) and ŷ(t) are non-negative for all t ∈ R. De-17

composing both integrals over R into their counterparts over the disjoint sets {t ∈ R :18

y(t) > ŷ(t)} and {t ∈ R : y(t) ≤ ŷ(t)} and subsequently combining them, we have19

1− ‖y − ŷ‖
‖y‖+ ‖ŷ‖

=
2
∫
y>ŷ

ŷ(t)dt+ 2
∫
y≤ŷ y(t)dt

‖y‖+ ‖ŷ‖
=

2‖min (y, ŷ) ‖
‖y‖+ ‖ŷ‖

= M(S, Ŝ).

Eq. (A.22) then follows.20

A.2 Score for estimate of one spike21

We now derive an expression for the metric score of the estimate of the location of22

one spike in terms of the temporal error of the estimate, |u|. We see that, as the tem-23

poral precision increases above the threshold precision (ε), the metric score increases24

monotonically.25
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Proposition 1. The score given to an estimate of the location of a single spike, t0, with1

temporal error u ∈ R is2

M(t0, t0 + u) =


(
|u|
2ε
− 1
)2

if |u| < 2ε

0 otherwise,
(A.23)

where ε is half the width of the pulse, pε(t), as in Eq. (2).3

Proof. Without loss of generality, we let the true spike location be at t0 = 0, as the4

metric score depends on the relative rather than absolute locations of the estimated and5

ground truth spikes. From Eq. (A.21), we have6

M(0,u) = 2
‖min(pε(t), pε(t− u))‖
‖pε(t)‖+ ‖pε(t− u)‖

.

When |u| > 2ε, the pulses do not overlap and, consequently, the numerator is equal to7

0. Therefore, the metric score is zero for all |u| > 2ε. For |u| ≤ 2ε, we write8

M(0,u) =
1

ε

(∫
A

pε(t) dt+

∫
B

pε(t− u) dt
)

, (A.24)

which follows from ‖pε‖ = ε, A = {t ∈ R : pε(t) < pε(t − u)} and B = {t ∈ R :9

pε(t) ≥ pε(t − u)}. From the change of variables v = t + u, we see that M(0,u) =10

M(0,−u). As M is even in the second argument, we must only calculate M(0,u) for11

0 < u < 2ε. To identify the support of A and B, we must identify the point at which12

pε(t) = pε(t− u). We have13

pε(t) = pε(t− u)⇔ 1− |t|
ε

= 1− |t− u|
ε
⇔ |t| = |t− u|.

For 0 < u < 2ε, the intersection point occurs in the right half of pε(t) and the left half14

of pε(t− u), it follows that t = u/2. Eq. (A.24) becomes15

M(0,u) =
1

ε

(∫ ε

u/2

pε(t) dt+

∫ u/2

u−ε
pε(t− u) dt

)

=
1

ε

(∫ ε

u/2

pε(t) dt+

∫ −u/2
−ε

pε(v) dv

)

=
2

ε

∫ ε

u/2

pε(t) dt,

which follows from the change of variables v = t+ u and the symmetry of pε(t) about16

0. Evaluating the integral, we obtain M(0,u) = (|u|/2ε− 1)2 , for |u| < 2ε.17

18
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A.3 Metric score at precision of CRB1

The CRB is commonly used as a benchmark for algorithm performance in parameter2

estimation problems. In the context of calcium imaging, it has been previously used3

to evaluate detectability of spikes under different imaging modalities (Reynolds et al.,4

2015; Schuck et al., 2018). In this case, the CRB reports the minimum uncertainty5

achievable by any unbiased estimator when estimating the location of one spike. We6

thus set the width of the pulse to ensure that, on average, an estimate of the location of7

one spike at the precision of the CRB achieves a metric score of 0.8. This benchmark8

score is relatively high in the range of the metric, which is between 0 and 1, whilst9

allowing leeway to be exceeded.10

Proposition 2. Let t0 denote the location of the true spike. The estimate is normally11

distributed about the true spike at the precision of the CRB, it is modelled with the12

random variable U ∼ N (t0,σ
2
CRB). We denote β = σCRB/w, where w is the pulse13

width. Then, we have E [M(t0,U)] = 0.8 if β satisfies the following equation,14

0.4 = (Φ(1/β)− 0.5)
(
β2 + 1

)
+

β√
2π

(
exp(−1/2β2)− 2

)
, (A.25)

where Φ denotes the cumulative distribution function of the standard normal distribu-15

tion.16

Proof. We want to identify the pulse width at which 0.8 = E [M(t0,U)] . Without loss17

of generality, we consider the case where t0 = 0. Due to the fact that M(0, ·) is even18

and the results of Appendix A.2, we have19

E [M(0,U)] =

∫
R
M(0,u)f(u)du

= 2

∫ w

0

( u
w
− 1
)2
f(u)du

=
2

w2

∫ w

0

u2f(u)du− 4

w

∫ w

0

uf(u)du+ 2

∫ w

0

f(u)du

=
2

w2
I1 −

4

w
I2 + 2I3,

where f(·) is the probability density function of U . Applying integration by parts to I1,20

we obtain21

I1 = σ2
CRB Pr (U ∈ [0,w))− σ2

CRBf(w)w.

The remaining integrals are I2 = −σ2
CRB(f(w) − f(0)) and I3 = Pr (U ∈ [0,w)),22

respectively. Putting the integrals together:23

E [M(0,U)] = 2

[
Pr (U ∈ [0,w))

(
σ2

CRB

w2
+ 1

)
+
σ2

CRB

w
(f(w)− 2f(0))

]
.

Writing β = σCRB/w, we have24

E [M(0,U)] = 2

(
(Φ(1/β)− 0.5)

(
β2 + 1

)
+

β√
2π

(
exp(−1/2β2)− 2

))
.

25
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A.4 Exact detection of subset of true spikes1

We have a set of K true spikes, S, and K̂ estimates, Ŝ. The set of estimates contains2

a subset of the ground truth spike times with the exception of R missing spikes and3

no extras, such that K̂ = K − R with 0 ≤ R ≤ K. Due to the distributivity of the4

convolution operation5

ŷ(t) = x̂(t) ∗ pε(t) = (x(t)− xr(t)) ∗ pε(t) = y(t)− r(t),

where xr(t) and r(t) are the spike train and pulse train, respectively, of the spikes6

missing from Ŝ. From the form in Eq. (A.22), the metric score becomes7

M(y, ŷ) = 1− ‖y − ŷ‖
‖y‖+ ‖ŷ‖

= 1− ‖y − (y − r)‖
‖y‖+ ‖y − r‖

= 1− R‖pε‖
K‖pε‖+ (K −R) ‖pε‖

= 1− 1

2K/R− 1
.

A.5 Exact detection of all true spikes with overestimation8

We have a set of K true spikes, S, and K̂ estimates, Ŝ. The set of estimates contains all9

the ground truth spike times plus R ≥ 0 extra spikes, such that K̂ = K +R. Due to the10

distributivity of the convolution operator, the estimated pulse train can be written11

ŷ(t) = x̂(t) ∗ pε(t) = (x(t) + xr(t)) ∗ pε(t) = y(t) + r(t),

where xr(t) and r(t) are the spike train and pulse train, respectively, of the surplus12

spikes. From the form in Eq. (A.22), the metric score becomes13

M(S, Ŝ) =
2‖min(y, ŷ)‖
‖y‖+ ‖ŷ‖

=
2‖min(y, y + r)‖
‖y‖+ ‖y + r‖

=
2‖y‖

2‖y‖+ ‖r‖

=
1

1 + ‖r‖/(2‖y‖)
,

where the penultimate line follows from the non-negativity of y and r. As ‖y‖ = K‖pε‖14

and ‖r‖ = R‖pε‖, it follows that15

M(S, Ŝ) =
1

1 +R/2K
.
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