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microRNA are key regulators of the human
transcriptome across a number of diverse biolog-
ical processes, such as development, aging, and
cancer, where particular miRNA have been iden-
tified as tumour suppressive and oncogenic. In
this work, we sought to elucidate, in a compre-
hensive manner, across 15 epithelial cancer types
comprising 7,316 clinical samples from the Can-
cer Genome Atlas, the association of miRNA ex-
pression and target regulation with the pheno-
typic hallmarks of cancer. Utilising penalized re-
gression techniques to integrate transcriptomic,
methylation andmutation data, we find evidence
for a complex map of interactions underlying the
relationship of miRNA regulation and the hall-
marks of cancer. This highlighted high redun-
dancy for the oncomiR-1 cluster of oncogenic
miRNAs, in particular hsa-miR-17-5p. In addi-
tion, we reveal extensive miRNA regulation of
tumour suppressor genes such as PTEN, FAT4,
and CDK12, uncovering an alternative mecha-
nism of repression in the absence of mutation,
methylation or copy number changes.

The hallmarks of cancer very clearly outline the1

major phenotypic changes underlying the oncogenic2

process [24, 25]. These changes characterise can-3

cer as a disease, and may define actionable targets4

for therapeutic intervention. Since the definition of5

these characteristic hallmarks in 2001 [24], and the6

subsequent ‘genomic revolution’ that has occurred7

in the field of cancer biology, multiple groups have8

proposed gene expression signatures as biomarkers9

of these phenotypic hallmarks [26, 47, 53]. These10

gene signatures generally consist of a set of tens to11

several hundred coding genes, for which a summary12

metric of their collective expression is associated 13

with a known hallmark, and may help with defining 14

therapeutic strategies [3]. Encapsulated within this 15

methodology and these signatures is a vast amount 16

of biological discovery for particular genes impli- 17

cated in the development and progression of these 18

hallmarks. However, since the more recent publica- 19

tion of the updated hallmarks in 2011 [25], there has 20

been a second revolution in the field of genomics; 21

namely, the discovery of the diverse, critical roles of 22

non-coding RNAs in cancer. 23

Previously thought to be ‘junk DNA,’ non- 24

coding RNA are those RNA derived from DNA 25

that do not code for proteins, and consists of a di- 26

verse family of evolutionarily conserved species, in- 27

cluding long non-coding RNA (lncRNA), circular 28

RNA (circRNA), and microRNA (miRNA), among 29

others [23, 40, 41]. Much effort has focused on 30

the characterisation of these non-coding RNA, and 31

early work has shown that these species, particularly 32

miRNA, are involved in a number of cellular de- 33

velopmental, and differentiation processes [50]. In 34

addition, miRNA have been implicated in a num- 35

ber of human diseases, ranging from diabetes to 36

cancer, and in oncology, recent work has led to 37

the discovery of tumour-suppressive and oncogenic 38

miRNA [7, 42, 44, 49]. miRNA exert their function 39

within the cell primarily as repressors of protein 40

production, functioning as post-transcriptional reg- 41

ulators of mRNA, inhibiting translation or encour- 42

aging transcript degradation. miRNA exert their 43

effects by complementary base-pair binding to a 44

short 7-8 nucleotide ‘seed region’ typically located 45

on the 3’ untranslated region of the messenger RNA 46

which they inhibit [40]. A single miRNA is thought 47
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to able to exert its repressive effects on hundreds48

to thousands of transcripts, meaning that specific49

miRNA may have very wide-ranging and fast-acting50

effects on cellular phenotype [40]. Despite this po-51

tential, due to the highly variable effect on the single52

target transcripts and the many factors involved in53

post-transcriptional gene regulation in addition to54

miRNA, the repressive signal on their targets, both55

validated targets and predicted targets by sequence56

complementarity, remains challenging to detect in57

clinical datasets [6]. As a result, behavioural charac-58

terisation of miRNA has been progressing at a slow59

rate, with studies focusing on changes induced by a60

single miRNA or small families of miRNA, without61

any efforts for large-scale characterisation.62

A further complicating factor with respect to the63

study of miRNAs is the relative promiscuity of their64

targets [36]. A given miRNA may have thousands65

of targets, with many experimentally verified, but66

often these targets possess significant differences in67

function [54]. This has led to an almost paradoxi-68

cal finding about the effects of miRNAs, in that a69

single miRNA may theoretically exert effects in op-70

posing directions within the cell [54]. This paradox71

is resolved by the observation that miRNA likely72

play different roles depending on the environment in73

which they are expressed [10, 20, 36]. Therefore, in74

addition to the challenge of measuring the repressive75

effect of miRNAs within a transcriptome, the effect76

of a miRNA on a transcriptome may vary massively,77

depending on the relative abundance of each of its tar-78

gets. That is, a miRNA may only repress targets to79

which it is able to bind, and this requires the presence80

of the target in a detectable concentration compared81

to all others [14]. This means that the effect of a82

miRNA on phenotype can only be observed in sam-83

ples for which the transcriptomes are comparable in84

the expression of the key targets in consideration,85

and such effects are highly context-dependent.86

In this work, we show how this context-87

dependent action can be exploited to gain high confi-88

dence predictions uncovering known and unknown89

associations with miRNA and phenotype. Through90

the classification of tumour transcriptomes by gene91

expression signatures, we uncover the diverse roles92

of miRNAs in regulating the hallmarks of cancer.93

Our results point towards a scenario wherein the 94

trancriptome of the cancer cell, known to be driven 95

by dysregulation of tumour suppressor genes and 96

oncogenes, is heavily regulated by miRNAs. We 97

show that predicted miRNA-target associations that 98

retain significance across multiple cancer types in- 99

volve a number of critical tumour suppressor genes 100

and oncogenes. Study of these tumour suppressor 101

genes yields novel conclusions about their regula- 102

tion, particularly with respect to their repression by 103

miRNA, methylation and mutation, and the exclu- 104

sivity of the occurrence of these modes of regulation 105

across human cancers. 106

Results 107

Evaluation of Hallmark gene signatures 108

across cancers 109

The first prerequisite to our study was to identify 110

suitable biomarkers to infer cancer phenotype. In or- 111

der to achieve this, we chose 24 previously identified 112

gene expression signatures (Supplementary S1) that 113

have already been shown to be representative for a 114

wide number of samples, and a number of fundamen- 115

tal phenotypic properties, with the hopes of alleviat- 116

ing issues related to highly tissue-specific expression 117

patterns. With this in mind, we applied sigQC, an 118

R package encapsulating a robust methodology for 119

the evaluation of gene signatures on various datasets 120

for the basic statistical properties underlying their 121

applicability [16]. We ran this package on all combi- 122

nations of 15 datasets and 24 signatures considered 123

in this study, and tested the consistency of signature 124

performance across cancer types, giving confidence 125

in the application of the signatures to these datasets. 126

All summary plots from the sigQC quality control 127

protocol are presented in Supplementary Section S2. 128

Each of the signatures considered over the 15 epithe- 129

lial cancer datasets showed good applicability, strong 130

signature gene expression, moderate-strong compact- 131

ness, and good gene signature score variability, as 132

well as strong autocorrelation of signature metrics. 133

The previous validation of these signatures, and our 134

study-specific quality control results, justify our sub- 135

sequent use of these signatures in a pan-cancer man- 136
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ner, to identify conserved associations of miRNA137

and signature gene expression across tissue types.138

Hallmark gene signatures association analy-139

sis reveals a complex pan-cancer miRNA reg-140

ulatory network141

To determine the association of gene signatures to142

miRNA expression, we set the signature score (see143

Online Methods) for each signature equal to a linear144

model consisting of all miRNAs showing at least145

moderate univariate predictive ability for the signa-146

ture summary score, as depicted in Figure 1a. Mul-147

tivariable linear modelling with L1/L2 penalized148

regression optimized by cross-validation was used149

as previously described [6] to identify the miRNAs150

which showed the greatest predictive ability for each151

hallmark signature score across the cancer types con-152

sidered, thereby identifying those miRNA common153

to the gene signature across tumour types (see On-154

lineMethods) . An example of the values for miRNA155

coefficients across cancer types following the model156

fitting is depicted in Figure 1b. miRNAs were then157

ranked based on their final model coefficient (reflec-158

tive of the strength of association to the signature),159

and miRNAs consistently ranking highly as posi-160

tive predictors of a given hallmark signature across161

cancer types were aggregated, from which statisti-162

cally significant miRNAs were isolated with the rank163

product test (signature-associated miRNAs). Like-164

wise, for each gene signature, the miRNAs most165

consistently ranked as strong negative predictors of166

signature score across cancer types were aggregated167

by a rank-based methodology (negatively signature-168

associated miRNA), as depicted in Figure 1c. This169

analysis reveals both many known and unknown170

significant associations between miRNA and gene171

signature scores, facilitating an understanding of the172

miRNA involved with hallmark phenotypes, provid-173

ing both novel hypotheses, and adding to evidence174

for existing ones.175

To verify the validity of these predictions, we176

considered the example case of miRNAs found to177

associate significantly with the hypoxia signatures178

considered. Hypoxia is one of the most studied mi-179

croenvironmental perturbations in the context of180

miRNA regulation, and one with a very well-defined 181

pathway, controlled largely by a single transcrip- 182

tion factor, HIF-1α [48]. Taking the intersection 183

of the sets of miRNAs found to associate positively 184

with the two previously validated hypoxia gene sig- 185

natures (Hypoxia, Buffa et al. [5], and Hypoxia, 186

MSigDb [34]), we obtained high confidence predic- 187

tions for hypoxia-associated miRNAs. 188

As shown in the Tables associated with Supple- 189

mentary S3, this analysis reveals that many of the 190

miRNAs found to be commonly associated with 191

both hypoxia gene signatures have been previuosly 192

identified as hypoxia regulated. High confidence 193

predictions are made for: hsa-miR-210-3p [8], -21- 194

3p, -21-5p, -23a-5p, -23a-3p, -24-3p, -24-2-5p, -27a- 195

5p, [31], let-7e-5p, let-7e-3p [11], -22-5p, -22-3p [57]. 196

This analysis also suggests significant, pan-cancer, 197

potential roles for other members of the let-7 family 198

of miRNAs in hypoxia; namely, let-7b-5p, let-7b-3p, 199

let-7d-5p, let-7d-3p, as well as hsa-miR-223-3p, -18a- 200

5p, and -28-3p, which have potentially escaped the 201

notice of other approaches. 202

In the context of all gene signatures considered, 203

we identify a global underlying ‘map’ connecting 204

each miRNA to each gene signature with which we 205

have found an association. As shown in Figure 1d, 206

this is a highly interconnected and complex network, 207

with the conservation of a core set ofmiRNAs shared 208

across the hallmarks of cancer. A similar analysis re- 209

veals an analogous result for the miRNA-hallmarks 210

network for the miRNA negatively associated with 211

both signatures, as described in Supplementary Sec- 212

tion S4. To validate the reproducibility of these re- 213

sults, we rebuilt the signature-miRNA linear model 214

using a large independent dataset, theMetabric breast 215

cancer cohort [13]. The miRNA identified as posi- 216

tively and negatively associated with gene signatures 217

in this dataset show highly significant concordance 218

over a majority of signatures with the correspond- 219

ing miRNAs identified from analysis of the TCGA 220

dataset (Supplementary Figure ??, Section S5). 221
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Figure 1. Overview of approach used to identify hallmarks-associated miRNA. (a) Overview of the linear
model used in the fitting, for each gene signature and cancer type under consideration. (b) Example of a
heatmap depicting the values of the coefficients identified for the miRNA predictors (rows), across cancer
types (columns) for our previously developed angiogenesis signature [39]. (c) Consistently positive and
negatively ranking miRNA coefficients, identified as statistically significant by the rank product statistic,
are taken as the positive and negative hallmark-associated miRNA for each hallmark signature. (d) Network
‘map’ of signatures (coloured nodes) and their positively associated miRNA (grey nodes), connected by
edges when an association was found, highlighting strong interconnectivity between distinct molecular
signatures.

Multiple members of the same miRNA family222

display opposite tumour suppressor and onco-223

genic behaviour224

Subsets of miRNAs that typically share common,225

evolutionarily-conserved sequences or functional226

motifs in their sequences are grouped into fam-227

ilies [28, 29]. Interestingly, grouping the miR-228

NAs found to be significantly upregulated and sig-229

nificantly downregulated in association with each230

of the gene signatures considered reveals that a231

number of miRNAs from the same families are 232

present in different sets. That is, as summarised 233

in Supplementary Section S6, many of the same 234

miRNA families contain a significant number of 235

miRNAs, some of which are positively and others 236

negatively associated across gene signatures for the 237

hallmarks of cancer. In particular, the miR-17/17- 238

5p/20ab/20b-5p/93/106ab/427/518a-3p/519 and let- 239

7/98/4458/4500 families have multiple members 240

across signatures both in statistically significant pos- 241

itive and negative associations. This highlights once 242
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more the context-dependent nature of miRNA regu-243

lation, and the potentially antagonistic behaviours244

of miRNAs when grouped by family, supporting245

previous findings. Here, we argue that such a group-246

ing does not necessarily reflect conserved function247

in the different tumour tissues, and we highlight that248

an additional context-dependent functional miRNA249

classification uncovering key functional associations250

is desirable.251

Hallmarks-associated miRNA targets are sig-252

nificantly enriched for tumour suppressor253

genes254

Starting from a list of positively associated miRNA255

with each gene signature, we aimed to identify which256

predicted miRNA-target pairs showed strong evi-257

dence of negative regulation across cancer types. The258

union of five miRNA target prediction algorithms,259

as implemented by the Bioconductor package miR-260

NAtap was used [45], with a minimum number of261

two sources required to be included in the analysis262

(see Methods). We considered only the miRNA and263

predicted target mRNA pairs for which there was264

a statistically significant negative Spearman corre-265

lation of expression across at least 5 cancer types,266

and used a rank-product test to identify the miRNA-267

target pairs showing consistency across cancer types268

(Figure 2a). As depicted by the process in Figure 2b-269

c, analysis of these significant miRNA-target pairs270

revealed a strong enrichment for tumour suppressor271

genes (as defined by the COSMIC database list of272

141 TSG), as might be expected for miRNA asso-273

ciated with oncogenic processes (p = 0.0006, two-274

sided Fisher’s exact test). This suggests that miRNA-275

mediated suppression of tumour suppressor genes276

may be relatively common, significant, and associ-277

ated with the phenotypic hallmarks of cancer.278

A different picture emerged upon repeating this279

analysis for oncogenes, and for the miRNAs found280

to be significantly negatively associated with one281

or more hallmark signature. We identified 1283 sig-282

nificantly anti-correlated miRNA-target pairs for283

these downregulated hallmark-associated miRNAs.284

Likewise, analysing all predicted miRNA-oncogene285

interactions among the 231 COSMIC oncogenes,286

there were only 2 showing significant anticorrela- 287

tion across tumour types with their predicted target 288

miRNA (ESR1 and ABL2). Taking the intersection 289

of these lists of 2 COSMIC oncogenes and the 1283 290

miRNA-oncogene pairs associated with gene signa- 291

tures identified only ESR1 (interacting withmiR-18a- 292

5p and miR-130b-3p) in common (p = 1.2 · 10−5, 293

Fisher’s exact test). This suggests that ESR1, estro- 294

gen receptor alpha, may play a significant role across 295

the hallmarks of cancer, and de-repression by reduc- 296

tion of its miRNA-mediated repression may play 297

a role in cancer phenotype, and ultimately, onco- 298

genesis [35, 52]. On the other hand, this result is 299

also a strong negative control for our analysis, and it 300

concurs in supporting the common oncogenic role 301

of miRNAs via co-ordinated repression of tumour 302

suppressor genes. 303

A core set of tumour suppressor genes are 304

associated with the hallmark gene signatures 305

across cancer types 306

Next, we asked whether our results could be bi- 307

ased by the initial selection of miRNA, namely the 308

ones associated with the cancer hallmarks. To an- 309

swer this, we conducted a complementary analy- 310

sis, namely we sought to determine which of the 311

miRNA-mediated tumour suppressor genes showed 312

significance in downregulation, in the context of 313

all other tumour suppressor genes. Thus, we re- 314

peated the previous analysis extended to all predicted 315

miRNA-TSG pairs, considering again the significant 316

associations across at least 5 cancer types, and then 317

collated with a rank product test, as summarised by 318

Figure 2d. Considering themiRNA-TSG pairs found 319

to be of significance in both analyses from Figures 2c 320

and d, we identified a set of 22 miRNA-TSG pairs, 321

comprising 8 TSG (FAT4, TGFBR2, ARHGEF12, 322

DNMT3A, CDK12, ACVR2A, SFRP4, and PTEN) 323

and 17 miRNAs in Figure 2e, in common. We show 324

also that the miRNA found to be associated to each 325

of these TSG are, in many cancer types, expressed 326

at significantly higher levels in wildtype cases for 327

the associated TSG, across multiple tumour types 328

(Supplementary Figure ??, Section S7). These re- 329

sults show that for these tumour suppressor genes, i) 330
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miRNA-TSG interactions show significance across331

cancer types, and more so than all other TSG con-332

sidered, ii) miRNA-TSG interactions show strong333

associations with the phenotypic hallmarks of can-334

cer, and iii) miRNA-TSG interactions may show335

increased importance in cases with wild-type TSG.336

Importantly, the conserved miRNA-TSG regulation337

across cancer types reveals this as a potential new338

common epigenetic mechanism, alternative to ge-339

netic mutations, to achieve functional inhibition of340

TSGs in cancer.341

The action of hallmarks-associated miRNAs342

shows cancer context-dependency343

The presented analysis highlights the action of344

miRNA in cancer. However, to further understand345

if this was cancer-specific, we sought to determine346

whether similar conclusions could be reached when347

analysing non-tumour tissues. Starting from the as-348

sociated adjacent normal tissue datasets from TCGA349

for tissue types with at least 20 samples for both350

miRNA and mRNA expression (BRCA, UCEC,351

HNSC, KIRC, LUAD, and BLCA), we fitted a lin-352

ear model for gene signature score as a function of353

all miRNA, for each signature, in each of the 6 tissue354

types. Aggregating coefficients across tissue types,355

we found that while a highly significant number of356

miRNA associated with the gene signature scores357

across tissue types are the same as uncovered for358

the cancer tissues, there are significant differences.359

Across signatures, an overlap of on average 54% was360

observed for signature-associated miRNA, showing361

high statistical significance for miRNA positively362

and negatively associated with signatures (p < 10−19
363

in all cases, by Fisher’s exact test).364

Examining the targets of these positively365

signature-associated miRNA from normal tissues,366

we identified 233 recurrently negatively correlated367

miRNA-target pairs, of which two contain miRNA-368

TSG pairs (CEBPA and NCOA4). However, this369

overlap of the 142 unique genes among the 233370

miRNA-target pairs with the 141 COSMIC tumour371

suppressor genes does not show significance, and372

may be due to chance alone (p = 0.26 by Fisher’s373

exact test). Thus, while the biology captured by374

the phenotypes of the gene signatures may be con- 375

sistent, more than chance alone would predict, be- 376

tween tumour and normal samples, the resultant 377

miRNA-target interactions are significantly differ- 378

ent, and miRNA-TSG enrichment is not retained 379

among normal tissue samples, highlighting the con- 380

text dependency of these associations. 381

Analysis of modes of regulation confirms 382

that copy number and mutational status are 383

key determinants of TSG expression 384

With a set of TSG purported to be significantly regu- 385

lated by miRNA in relation to phenotype identified, 386

we next sought to characterise the determinants of 387

their expression. In particular, we consider an ap- 388

proach integrating multiple lines of genomic infor- 389

mation; namely, methylation status, copy number, 390

miRNA expression, and mutational status (see Meth- 391

ods), with the linear model depicted in Figure 3a. 392

Notably, when considering the impact of miRNA in 393

this model, we considered all reported miRNA to po- 394

tentially discover novel miRNA-target interactions. 395

We then fit this model with penalised linear regres- 396

sion over the various cancer types, and then subse- 397

quently aggregated coefficients by the rank product 398

statistic to identify recurrently positive and nega- 399

tive predictors across cancer types, for each of the 400

8 tumour suppressor genes identified in Figure 2e. 401

This analysis yields both expected results, such as the 402

important positive predictive role of copy number 403

for each of the tumour suppressor genes, as seen in 404

the left panel of Figure 3b, and novel associations, 405

such as the positive association of many miRNA, 406

and some methylation probes with TSG expression 407

in some cases. These miRNA may be co-expressed 408

for a variety of reasons, such as competitive inter- 409

actions, repression of repressors of the TSG, or a 410

nearby genomic locus, though penalised regression 411

minimises the effect of co-location because of the 412

inclusion of copy number as a covariate. 413

Likewise, the identified modes of negative regula- 414

tion give expected results, with non-sense mutations 415

and frame shift deletions consistently negatively as- 416

sociated with TSG mRNA expression. Further, be- 417

cause this analysis was done with all miRNA, and 418
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Figure 2. Approach used for interpreting miRNA-target interactions. (a) First, miRNA-target pairs
for each positively associated hallmark-associated miRNA were identified, and the correlation between
these was determined. (b) Next, the correlations across cancer types were aggregated, and those identified
as consistently negative-ranking were identified with the rank product statistic. (c) Among this list of
miRNA-mRNA target pairs, there was highly significant enrichment for tumour suppressor genes, as
identified by the Fisher exact test. (d) The same procedure as described in (a) and (b) was repeated for all
miRNA and all predicted target TSG pairs. (e) From the lists identified in (b) and (d), we identified those
miRNA-TSG pairs in common, and plot their interactions on a circos plot, showing the repressive actions
of each miRNA on its predicted target TSG.

not just those predicted to have a given TSG target,419

these results may implicate novel miRNA-TSG in-420

teractions. The complete rank product tables and421

all autocorrelation matrices can be found in Supple-422

mentary Section S8.423

PTEN, FAT4, and CDK12 tumour suppres- 424

sor genes show exclusive regulation by either 425

miRNA, promoter methylation or mutation 426

across cancer types 427

Once the modes of regulation and their relative im- 428

portance was established (Figure 3), we sought to 429

determine the relative occurrence of each of these 430

modes of regulation. We identified which negative 431

regulators co-occurred with each other as synergis- 432

tic repressors, and conversely which were exclusive 433
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repressors (Figure 4a). A cursory analysis of auto-434

correlation heatmaps (e.g. Figure 4a) revealed that435

in some cases, the regulation by miRNA appeared436

to be exclusive from the regulation by methylation437

probes. A full series of heatmaps for all cancer types438

considered and all tumour suppressor genes with439

their associated negative regulators identified is pre-440

sented in Supplementary Section S9, Figures ??- ??,441

and for an independent dataset in Figure ??, details442

described in Online Methods. These results suggest443

that TSG expression can be altered by either miRNA444

or methylation, in addition to deletion or mutation,445

in a ‘BRCA-ness’-like phenomenon [43]. To charac-446

terise this, we devised a bootstrap resampling based447

approach (see Online Methods), to determine signif-448

icance of the difference in co-correlation between449

the miRNA and the methylation probes themselves,450

and then with each other. For each cancer type, we451

calculated the significance value of this proportion452

(Figure 4b), and from this analysis, it arose imme-453

diately that for each of the TSG considered, there454

are tumour types in which the regulation is consis-455

tently exclusive. Further, it also arose that across456

multiple cancer types, three key tumour suppressor457

genes, PTEN, FAT4, and CDK12, consistently tend458

towards exclusivity in their regulation, lending sup-459

port for the importance of miRNA-based regulation460

of these genes. We further use the identified nega-461

tively associated miRNA and methylation probes,462

along with mutation status, to define subgroups of463

samples, for which we show decreased TSG expres-464

sion in the subgroups with high expression of these465

miRNA or high methylation of these probes, in Fig-466

ures ??- ?? in Supplementary section S10. Further,467

we show that the miRNA-high and highly methy-468

lated samples have transcriptomes altered in a similar469

manner as in TSG mutated cases, via an analysis of470

differentially expressed genes in both cases, with sig-471

nificantly positively associated fold changes across472

cases, in Figures ??- ?? in Supplementary Section S10.473

ARHGEF12, SFRP4, TGFBR2, and their 474

cognate miRNAs, are consistently associated 475

with breast cancer molecular subtype 476

Next, we sought to identify associations with tu- 477

mour molecular subtypes, and as an initial analy- 478

sis chose the molecular subtypes of breast cancer, 479

owing to both the well-defined subtypes and the 480

relatively large number of cases available for each 481

subtype. An analysis of the eight identified tumour 482

suppressor genes consistently negatively downregu- 483

lated by miRNA across cancer types shows that in 484

many cases, their mRNA levels are inversely associ- 485

ated with breast cancer molecular subtype. In par- 486

ticular, the basal subtype shows the lowest median 487

expression of ARHGEF12, SFRP4, and TGFBR2, as 488

compared to normal tissue, luminal A, B, Her2 am- 489

plified, or normal subtypes of breast cancer as shown 490

in Supplementary Figure ?? in Section S11, and this 491

association is retained when cases are restricted to 492

wildtype expression of ARHGEF12, SFRP4, and 493

TGFBR2. At the level of the associated miRNA iden- 494

tified as negative regulators of these TSG, we show 495

that the median expression of these miRNA is also 496

significantly associated with breast cancer molecular 497

subtype, and inversely related to TSGmRNA expres- 498

sion by subtype. We have also shown that these asso- 499

ciations are preserved when samples with non-silent 500

mutations in the TSG are removed. For further vali- 501

dation, we also show reproducibility of these TSG 502

and miRNA associations to breast cancer subtype in 503

the independent Metabric dataset (N = 1293) [13]. 504

Discussion 505

In this work we have carried out a comprehensive 506

and rigorous association analysis of human transcrip- 507

tomic and genomic data to leverage an understanding 508

of the role of miRNA in regulating complex pheno- 509

types, through the lens of established gene expression 510

signatures. Gene signatures represent transcriptomic 511

association and we utilised them in two key ways, 512

adding significant power to the analysis. Firstly, we 513

use gene signatures to understand the relationship be- 514

tween non-coding RNA and phenotype; this exploits 515

the phenotypic associations intrinsic to established 516
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Figure 3. Approach used in determining the regulation of each TSG identified as potentially significantly
miRNA-regulated. (a) The linear model used whilst determining predictors of TSG mRNA expression. (b)
Model coefficients were aggregated across cancer types with the rank product statistic, and those identified
as statistically significant positive and negative predictors are depicted alongside the -log of their rank
product p-value.

gene signatures. Secondly, because miRNA can only517

repress mRNA that are present in sufficient quantity518

in a cell, when inferring function, it is vital to ‘group’519

transcriptomic profiles by miRNA targeted gene ex-520

pression. This allows for an understanding of the521

miRNA-mediated gene regulation important to the522

phenotype one wishes to uncover. Thus, this anal-523

ysis represents a novel and powerful assessment of524

the complexity of miRNA regulation of phenotypes,525

particularly in the context of cancer.526

Our work begins with ensuring applicability of527

the gene signatures, and then for each signature, we528

gain an understanding of the miRNA both signifi-529

cantly up- and down-regulated in association with 530

the signature score. From this, we obtain the net- 531

work shown in Figure 1, which describes for the 532

first time in a detailed fashion, and across cancer 533

types, the contribution of individual miRNA to the 534

complex cancer phenotype. We also show repro- 535

ducibility of this network in an independent dataset, 536

by considering the overlap with the network recon- 537

structed using theMetabric dataset and the same gene 538

signatures. Moreover, repeating this analysis, group- 539

ing the miRNA significantly upregulated and down- 540

regulated by miRNA family, illustrates that many 541

miRNA families participate with members antago- 542

9/22

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 22, 2017. ; https://doi.org/10.1101/238675doi: bioRxiv preprint 

https://doi.org/10.1101/238675


Exclusivity of regulation

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●0.00

0.25

0.50

0.75

1.00

SFRP4

CDK12

ACVR2A

ARHGEF12

TGFBR2

DNMT3A
FA

T4
PTEN

 

Em
pi

ric
 C

D
F 

pe
rc

en
til

e

 
●

●

●

●

●

●

●

●

●

●

●

●

BLCA

BRCA

CESC

HNSC

KIRC

KIRP

LIHC

LUAD

LUSC

PRAD

STAD

THCA

eCDF: Πρmethyl−methyl>0 −ΠρmiR−methyl>0

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

0.00

0.25

0.50

0.75

1.00

TGFBR2

ACVR2A
PTEN

ARHGEF12
FA

T4

DNMT3A

SFRP4

CDK12

 

Em
pi

ric
 C

D
F 

pe
rc

en
til

e

 
●

●

●

●

●

●

●

●

●

●

●

●

BLCA

BRCA

CESC

HNSC

KIRC

KIRP

LIHC

LUAD

LUSC

PRAD

STAD

THCA

eCDF: ΠρmiR−miR>0 −Πρmethyl−methyl>0

● ●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

ACVR2A

TGFBR2

SFRP4

ARHGEF12

DNMT3A

CDK12
FA

T4
PTEN

 

Em
pi

ric
 C

D
F 

pe
rc

en
til

e

 
●

●

●

●

●

●

●

●

●

●

●

●

BLCA

BRCA

CESC

HNSC

KIRC

KIRP

LIHC

LUAD

LUSC

PRAD

STAD

THCA

eCDF: ΠρmiR−miR>0 −ΠρmiR−methyl>0

ΠρmiR-miR > 0: Proportion of 
significantly positively co-correlated 

miRNA

Πρmethyl-methyl > 0: 
Proportion of 

significantly positively 
co-correlated 

methylation probes

ΠρmiR-methyl > 0: Proportion of significantly 
positively co-correlated miRNA-

methylation probe pairs

Empiric distribution: 1000x Bootstrap resampling over random 
equivalent length miRNA/methylation probe sets in dataset

cg
17
08
34
29

N
on
se
ns
e_
M
ut
at
io
n

Fr
am

e_
Sh
ift
_D

el
hs
a−
m
iR
−7
08
−5
p

cg
17
48
98
97

cg
09
52
88
84

cg
09
55
02
57

cg
13
52
88
47

cg
01
35
49
23

cg
19
35
83
49

cg
18
38
40
60

cg
08
96
07
54

cg
04
70
77
87

cg
18
95
38
73

cg
27
29
95
38

cg
18
81
98
18

hs
a−
m
iR
−1
93
a−
3p

hs
a−
m
iR
−2
35
5−
5p

hs
a−
m
iR
−1
8a
−5
p

hs
a−
m
iR
−3
06
5−
3p

hs
a−
m
iR
−1
49
−5
p

hs
a−
m
iR
−3
0b
−5
p

hs
a−
m
iR
−1
46
8−
5p

hs
a−
m
iR
−5
76
−5
p

hs
a−
m
iR
−3
67
7−
3p

hs
a−
m
iR
−3
74
a−
5p

hs
a−
m
iR
−4
50
b−
5p

hs
a−
m
iR
−9
8−
5p

hs
a−
m
iR
−1
28
7−
5p

hs
a−
m
iR
−1
51
a−
3p

hs
a−
m
iR
−3
30
−5
p

hs
a−
m
iR
−3
30
−3
p

hs
a−
m
iR
−3
31
−3
p

hs
a−
m
iR
−4
25
−3
p

hs
a−
m
iR
−9
40

hs
a−
m
iR
−1
28
−3
p

hs
a−
m
iR
−3
39
−3
p

hs
a−
m
iR
−5
05
−3
p

hs
a−
m
iR
−1
30
b−
3p

hs
a−
m
iR
−1
29
6−
5p

hs
a−
m
iR
−5
90
−5
p

hs
a−
m
iR
−7
44
−3
p

hs
a−
m
iR
−7
44
−5
p

cg17083429
Nonsense_Mutation
Frame_Shift_Del
hsa−miR−708−5p
cg17489897
cg09528884
cg09550257
cg13528847
cg01354923
cg19358349
cg18384060
cg08960754
cg04707787
cg18953873
cg27299538
cg18819818
hsa−miR−193a−3p
hsa−miR−2355−5p
hsa−miR−18a−5p
hsa−miR−3065−3p
hsa−miR−149−5p
hsa−miR−30b−5p
hsa−miR−1468−5p
hsa−miR−576−5p
hsa−miR−3677−3p
hsa−miR−374a−5p
hsa−miR−450b−5p
hsa−miR−98−5p
hsa−miR−1287−5p
hsa−miR−151a−3p
hsa−miR−330−5p
hsa−miR−330−3p
hsa−miR−331−3p
hsa−miR−425−3p
hsa−miR−940
hsa−miR−128−3p
hsa−miR−339−3p
hsa−miR−505−3p
hsa−miR−130b−3p
hsa−miR−1296−5p
hsa−miR−590−5p
hsa−miR−744−3p
hsa−miR−744−5p

Autocorrelation−PTEN neg. regulators
BLCA

−1 −0.5 0 0.5 1
Value

0
20
0

40
0

60
0

80
0

E.g. PTEN negative regulators  
Autocorrelation in BLCA

a

b

Figure 4. The approach used to determine the exclusivity of each mode of gene regulation on expression
for the TSG considered. (a) Depiction of the autocorrelation heatmap for the expression of the various
negative regulators of the tumour suppressor gene, and the variables considered and their meaning, as
depicted. (b) Plots depicting the spread of the percentiles on the empiric CDF for the distributions for the
pairwise differences of the variables identified in (a) through a bootstrapping-based analysis, as described
in the Methods section.

nistically across the hallmarks of cancer; including 4543

of the top 5 most common miRNA families identi-544

fied by our analysis (miR-25 family, miR-17 family,545

miR-15abc family, and let-7 family). This challenges546

the biological hypothesis of miRNA families acting547

in a generally coordinated fashion across multiple548

phenotypic states, and highlights the context depen-549

dent behaviour of individual miRNA themselves,550

regardless of grouping by family [20,28,29]. Further551

strengthening the argument for context-dependent552

actions of miRNA is the observation that we have553

made for the gene signature network reconstructed554

from 6 tissue types with samples of adjacent normal, 555

non-tumour tissue. While a significant proportion 556

(54%) of miRNA found to be associated with the 557

gene signatures are the same as for the tumour tissues, 558

the analysis of the targets of these miRNA reveals 559

that they do not show enrichment for TSG in their 560

targets, despite being concordant to the findings in 561

tumour tissue, again highlighting the context depen- 562

dency in miRNA-mediated gene regulation. 563

As might be expected, given the complexity of 564

the action of non-coding RNA, we show in this 565

work that for a given phenotype, single miRNA- 566
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target interactions do not account for the observed567

behaviour; rather it is subtle changes by a network of568

miRNAs, interacting with a set of targets in a coordi-569

nated manner, that serve to tune the transcriptome570

to achieve the complex phenotype. That is, because571

the targets of a given miRNA are predicted to be vari-572

able in their function, and are not all present in ev-573

ery sample at ‘repressable’ concentrations, the same574

miRNA can be associated with opposing phenotypic575

effects in different contexts, as reported by Denzler576

et al. in [14] for competing endogenous RNA. We577

show that the behaviour of miRNA is highly context578

dependent, and through the pan-cancer analysis, we579

have aimed to reduce the complexity of this context580

dependency by only selecting those interactions sig-581

nificantly occurring across cancer types. However,582

we caution that because miRNA are so context de-583

pendent, sample purity arises as an important issue584

in identifying pan-cancer miRNA signals. Further585

study into deconvolution methodologies enabling586

more accurate quantification of miRNA abundance587

from purely tumour samples will likely elucidate a588

clearer picture of miRNA-target interactions.589

As miRNA are increasingly also thought of as590

potential therapeutic agents, because miRNA effects591

are highly context dependent and miRNA act in co-592

ordinated networks, if miRNA are to have effective593

therapeutic function, a single miRNA may be an594

ineffective strategy. Rather, we pose that a cocktail595

of miRNA will be necessary to sufficiently modify596

the tune of the symphony playing within the cancer597

cell, perhaps explaining poor therapeutic efficacy598

with current single miRNA-based therapeutics. For599

miRNA therapeutics to achieve function, we pose600

that these will likely have to be based on a number601

of miRNA, given to a highly selected group of pa-602

tients with transcriptomes deemed to be responsive603

to this network perturbation, and that in patients604

without these profiles, such a cocktail would require605

modification in order to be effective. Further, by606

using more than a single miRNA as a therapeutic607

agent, the off-target effects that have significantly608

limited development in this field may be mitigated,609

by buffering for this with other miRNA in off-target610

tissues [1].611

In this work we further the knowledge of which612

miRNA are involved in creating the phenotypes 613

of cancer, across tissue types, to identify miRNA- 614

TSG targets showing exclusive miRNA-mediated 615

suppression. This suggests that a phenomenon simi- 616

lar to that of the previously described ‘BRCA-ness,’ 617

wherein a miRNA, miR-182, has been shown to 618

repress BRCA and confer sensitivity to PARP in- 619

hibitors in a subset of tumours [43], may be at work 620

within many cases, and across multiple tumour sup- 621

pressor genes. Additionally, recent work has shown 622

how ‘epimutations’ may result in aberrantly methy- 623

lated sites that can recapitulate the phenotype of a 624

mutated tumour suppressor such as DNMT3A in 625

leukaemia [27]. This raises the suggestion that there 626

are tumour suppressor genes for which a mutation 627

is not requisite for inactivation, but rather, inactiva- 628

tion is achieved through miRNA-mediated repres- 629

sion or methylation-mediated repression alone. For 630

the TSG we have identified, we have also shown (see 631

Online Materials), that the TSG mutations are oc- 632

curring independently of MYC amplification status, 633

which has been recently identified as an independent 634

regulator of miRNAs. In addition, we show that 635

such MYC amplification status is indeed associated 636

with miRNA expression for the miRNA found to 637

be negatively associated with each of the TSG in 638

a majority of cases (Supplementary Figure ??, Sec- 639

tion S12). Further, we have shown that in partic- 640

ular tumours, for PTEN, CDK12, and FAT4, this 641

miRNA or methylation-based suppression happens 642

independently of other gene regulatory factors, such 643

as mutations and copy number changes. 644

Lastly, we show how using generally validated, 645

and specifically quality-controlled, gene signatures 646

describing biologically conserved phenotypes can be 647

used to collate large datasets to derive inference about 648

miRNAs, a species whose signal has been tradition- 649

ally hard to detect. The ability of this approach to 650

capture tumour biology is highlighted through the 651

identification of tumour suppressor genes showing 652

miRNA-mediated regulation across tumour types, 653

which we have shown have a very strong association 654

to breast cancer molecular subtype. Specifically, this 655

analysis points towards the role of decreased mRNA 656

levels of ARHGEF12, SFRP4, and TGFBR2 in asso- 657

ciation with the poor-prognosis basal breast cancer 658
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subtype [2, 51]. Having identified potential nega-659

tive regulators of these TSG, we show how these660

miRNA alone associate with breast cancer subtype,661

elevated in the basal subtype, capturing potentially662

novel biological association.663

Finally, the presented methodology may be used664

in future work encompassing both more specific sig-665

natures, as well as larger, more expansive datasets666

to derive even greater confidence in particular asso-667

ciations. This approach will enable the functional668

annotation of a greater variety of miRNAs, illumi-669

nating their critical role in post-transcriptional gene670

regulation.671

Online Methods672

Gene signatures considered673

We consider a wide variety of gene signatures, touch-674

ing upon many of the hallmarks of cancer, as de-675

scribed in the original and updated work by Hana-676

han and Weinberg [24, 25]. Signatures were selected677

through a review ofMSigDB hallmarks signatures, as678

well as through a review of the literature, and those679

used are summarised in Table 3 [34]. We note that680

while many of these signatures were derived for a681

particular tumour type, we have applied them across682

many different tumour types, but before doing so,683

we have performed an evaluation step (sigQC) to684

ensure that each signature used is applicable to ev-685

ery dataset under consideration, in Supplementary686

section S1, Figures ??- ??.687

Datasets considered688

In selecting datasets for this analysis, we initially689

aimed to select those comprising a comprehensive690

set of cancer types, with each type represented by691

a sufficient number of clinical samples, so as to re-692

duce the effects of noise. Thus, we initially began693

with a consideration of all cancer types represented694

within the Cancer Genome Atlas datasets (TCGA),695

and limited based on origin of neoplasm and num-696

ber of patients for whom miRNA-sequencing was697

carried out [55]. The RSEM normalised gene ex-698

pression, mature miRNA normalised expression699

data, copy number, mutation, and methylation700

data were accessed from the Firebrowse database at 701

http://www.firebrowse.org. In particular, we con- 702

sidered all cancer types which were epithelial or glan- 703

dular with respect to histology, and with at least 200 704

samples with miRNA-sequencing data. These two 705

filters limit the cancers considered to a total of 15 706

epithelial or glandular neoplasms, comprising a wide 707

variety of cancer types, enabling the strong detec- 708

tion of fundamental biology. Furthermore, among 709

these tumour types, there are 7,738 clinical samples, 710

for which 7,316 have miRNA-sequencing data. The 711

tumour types, along with their sample counts are 712

presented in Table 1. Details of the number of sam- 713

ples included for each data type are presented in 714

Table 2, and we note that for any analysis presented, 715

any dataset present with fewer than 9 samples was 716

excluded from analysis. This restriction excluded the 717

analysis of COAD, OV, and UCEC datasets from 718

the analysis of tumour suppressor genes, oncogenes, 719

and exclusivity of regulation. 720

miRNA family database 721

miRNA ranked across different cancer types were 722

further grouped together by microRNA family, as 723

defined by the targetscan database, implemented in 724

R as the targetscan.Hs.eg.db package [12, 33]. 725

Statistical methodology 726

Transcriptomic data 727

Data were taken from the GDAC Firebrowse TCGA 728

portal provided by the Broad Institute. miRNA 729

datasets used were log2 normalised mature miRNA 730

counts for all cancer types. mRNA datasets used 731

were normalised RSEM genes taken from data 732

through the Illumina HiSeq RNAseq v2 platform. 733

These expression data were then transformed by the 734

transformation log2(x+ 1), for x as the original ex- 735

pression value, and this was used in all further com- 736

putation for all cancer types and signatures. Where 737

not otherwise specified, signature scores are taken 738

as the median of log2-transformed expression of all 739

signature genes for each sample. Metabric datasets 740

for normalised miRNA and mRNA expression 741

were taken from the European Genome-Phenome 742
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Table 1. TCGA datasets considered and associated total clinical sample counts.
Dataset Abbreviation Clinical samples
Breast invasive carcinoma BRCA 1098
Ovarian serous cystadenocarcinoma OV 602
Lung adenocarcinoma LUAD 585
Uterine corpus endometrial carcinoma UCEC 560
Kidney renal clear cell carcinoma KIRC 537
Head and neck squamous cell carcinoma HNSC 528
Lung squamous cell carcinoma LUSC 504
Thyroid carcinoma THCA 503
Prostate adenocarcinoma PRAD 499
Colon adenocarcinoma COAD 460
Stomach adenocarcinoma STAD 443
Bladder urothelial carcinoma BLCA 412
Liver hepatocellular carcinoma LIHC 377
Kidney renal papillary cell carcinoma KIRP 323
Cervical squamous cell carcinoma and endocer-
vical adenocarcinoma

CESC 307

Archive (EGA) under study accession numbers743

EGAD00010000434 and EGAD00010000438.744

Penalised linear regression745

The aim of the penalised linear regression method-746

ology was to determine those miRNA which most747

strongly predict (positively or negatively), the gene748

expression summary score for each signature. With749

consideration of this, the linear regression was de-750

signed such that the model utilised the expression751

levels of each individual miRNA as a covariate, in752

order to predict the signature score, taken as the me-753

dian of the log-transformed expression levels of the754

signature genes. We note that in order to facilitate755

direct comparability between distinct signatures and756

caner types, we first normalised both the scores and757

miRNA expression levels to a mean of zero and unit758

variance. This transformation ensures that the co-759

efficients and their relative values are comparable760

between cancer types and signatures.761

We used a previously developed statistical ap-762

proach [6] using combined univariate-multivariate763

penalised linear regression, with 10-fold cross val-764

idation to infer significant relationships between765

miRNA and gene signatures without overfitting our766

model. That is, the data was partitioned into 10 com-767

ponents, and on each component, a univariate model 768

was first applied to select miRNA used for penalised 769

multivariate linear regression. The penalised multi- 770

variate linear model with the least predictive error 771

was selected, and coefficients for these miRNA were 772

used for further analysis. To further clarify, an ini- 773

tial univariate filter was applied to remove miRNA 774

showing little predictive power from themultivariate 775

linear model, and only those miRNA with p < 0.2 776

significance in the univariate linear model predicting 777

signature score were considered. This permissive p- 778

value was used to assure that the multivariate linear 779

model did not contain artificially stringent associa- 780

tions, as the penalization procedure also functions as 781

a stringency filter, reducing the false discovery rate. 782

The multivariate linear regression was carried out 783

as a penalised L1/L2 regression to reduce complicat- 784

ing effects of co-correlated miRNAs as predictors 785

of the signature scores. To tune the parameters for 786

the combined L1/L2 regression, a range of values 787

(0, 0.01, 0.1, 1, 10, 100), was tested for the L2 pa- 788

rameter, while in each case the L1 parameter was 789

optimised. Following computation of all models, 790

the model with the greatest log-likelihood was cho- 791

sen. All model-fitting was done with 10-fold cross- 792

validation, and was carried out using the penalized 793

package in R [21, 22]. 794
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Table 2. Counts of common samples with miRNA, mRNA, mutation, methylation, and copy num-
ber data.

Dataset mRNA samples miRNA mRNA and miRNA
mRNA, miRNA,

mutation, methylation,
and copy number

BRCA 782 755 499 324
OV 307 461 291 0

LUAD 517 452 449 181
UCEC 177 412 174 4
KIRC 534 255 255 121
HNSC 520 486 478 244
LUSC 501 342 342 51
THCA 501 502 500 396
PRAD 497 494 493 329
COAD 286 221 221 0
STAD 415 389 370 230
BLCA 408 409 405 128
LIHC 373 374 369 186
KIRP 291 292 291 148
CESC 304 307 304 190

Rank product analysis795

Once coefficients were obtained for the linear model796

via the penalised regression approach described ear-797

lier, these were collated into matrices with columns798

defined by cancer type, for each of the gene sig-799

natures considered. These coefficients were then800

fractionally-ranked both from most negative to most801

positive, and most positive to most negative in value.802

The rank product statistic, as described by Breitling803

et al., in 2004, for these fractional ranks was then con-804

sidered, and the coefficients were ranked in terms805

of their significance of rank product test statistic,806

as implemented by the RankProd R package [4, 9].807

This was used to give high-confidence rankings of808

miRNA associated both positively and negatively809

with the various signatures considered.810

Validation of miRNA-signature interactions811

In order to ensure reproducibility of the approach812

used to identify gene signature-associated miRNA,813

we repeated the linear modeling procedure across the814

independent Metabric matched miRNA and mRNA815

microarray dataset of 1293 samples [13]. We mapped816

each gene signature to corresponding Ensembl IDs, 817

and repeated the combined univariate-multivariate 818

linear modeling approach over all miRNA probes. 819

The miRNA probes identified as positive and neg- 820

ative coefficients were then identified, and mapped 821

to their corresponding mature miRNA ID. The sta- 822

tistical significance of this overlap is shown in Sup- 823

plementary Figure ??, and was calculated using the 824

Fisher exact test. Nearly all signatures show strong 825

statistical significance, and in the majority of cases 826

not reaching statistical significance, signature appli- 827

cability to the Metabric dataset may present an issue, 828

as signatures contained a high proportion of genes 829

with low variance, which presents an issue for signa- 830

ture applicability, particularly for microarray-based 831

datasets. 832

Target analysis 833

Targets were aggregated for each miRNA using the 834

miRNAtap database in R, as implemented through 835

the Bioconductor targetscan.Hs.eg.db package [46]. 836

The default settings of using all 5 possible target 837

databases: DIANA [37], Miranda [17], PicTar [32], 838

TargetScan [19], and miRDB [56], with a minimum 839
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Table 3. Gene signatures considered and associated hallmarks of cancer.
Signature name Reference Number of genes Associated hallmarks
Epithelial Mesenchymal Transi-
tion, MSigDB

MSigDB [34] 200 Activating invasion and metastasis

Invasiveness Marsan et al., 2014 [38] 16 Activating invasion and metastasis
Oxidative Phosphorylation,
MSigDB

MSigDB [34] 200 Deregulating cellular energetics

Reactive Oxygen Species Pathway,
MSigDB

MSigDB [34] 49 Deregulating cellular energetics

G2M Checkpoint, MSigDB MSigDB [34] 200 Enabling replicative immortality
PI3K-AKT-MTor Signaling,
MSigDB

MSigDB [34] 105 Evading growth suppressors

Xenobiotic Metabolism, MSigDB MSigDB [34] 200 Evading growth suppressors
DNA Repair, MSigDB MSigDB [34] 150 Genome instability and mutation,

Enabling replicative immortality
p53 Pathway, MSigDB MSigDB [34] 200 Genome instability and mutation,

Enabling replicative immortality
Hypoxia Buffa et al., 2010 [5] 51 Inducing angiogenesis
Angiogenesis, MSigDB MSigDB [34] 36 Inducing angiogenesis
Hypoxia, MSigDB MSigDB [34] 200 Inducing angiogenesis
Angiogenesis, upregulated Desmedt et al., 2008 [15] 5 Inducing angiogenesis
Angiogenesis Masiero et al., 2013 [39] 43 Inducing angiogenesis
Proliferation, upregulated Desmedt et al., 2008 [15] 140 Sustaining proliferative signaling
KRAS Signaling, Up, MSigDB MSigDB [34] 200 Sustaining proliferative signaling
Inflammatory Response, MSigDB MSigDB [34] 200 Tumour-promoting inflammation,

Avoiding immune destruction
IL2-STAT5 Signaling, MSigDB MSigDB [34] 200 Tumour-promoting inflammation,

Avoiding immune destruction
IL6-JAK-STAT3 Signaling,
MSigDB

MSigDB [34] 87 Tumour-promoting inflammation,
Avoiding immune destruction

TGFβ Signaling, MSigDB MSigDB [34] 54 Tumour-promoting inflammation,
Avoiding immune destruction

TNFα Signaling via NF-κB,
MSigDB

MSigDB [34] 200 Tumour-promoting inflammation,
Avoiding immune destruction

Immune Invasion, upregulated Desmedt et al., 2008 [15] 92 Tumour-promoting inflammation,
Avoiding immune destruction

source number of 2 were used, and the union of all840

targets found was taken as the set of targets for a841

given miRNA.842

For each of these target-miRNA pairs, the Spear-843

man correlation coefficient was calculated across ev-844

ery cancer type for miRNA versus target mRNA845

expression, partial to mutation status of the mRNA,846

and if this value reached statistical significance of847

p < 0.05, it was recorded, and otherwise was848

recorded as 0. Note that mutational status was re-849

ported as a binary variable with a value of 1 for any850

non-silent, non-intronic mutation, and 0 otherwise.851

The target-miRNA pairs with at least 5 non-zero852

entries across cancer types were kept for further anal- 853

ysis, and subsequently were analysed using the rank 854

product statistic, to identify those pairs with con- 855

sistently negative correlations, across cancer types, 856

with respect to all other hallmarks-miRNA pairs. 857

Partial correlations were done in R using the ppcor 858

package [30]. 859

Furthermore, in the global analysis of all TSG- 860

miRNA pairs, we considered every TSG-miRNA 861

predicted target pair, and again considered the Spear- 862

man correlation partial to mutation status, collaps- 863

ing the value to 0 if significance p < 0.05. The rank 864

product statistic was again considered on those pairs 865
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with at least 5 non-zero values across cancer types,866

thereby identifying those TSG-miRNA pairs con-867

sistently negatively correlated across cancer types,868

significantly with respect to all other TSG. Lists869

of known oncogenes and tumour suppressor genes870

were taken from the COSMIC database [18]. Be-871

cause MYC amplification is a possible confounder to872

the miRNA identified as associated with TSG across873

cancer types, we checked to ensure that mutation874

of the 8 TSG identified, across cancer types, does875

not co-occur significantly with MYC amplification.876

Of the 96 TSG-cancer type pairs (8 TSG over 12877

cancer types), none showed significance in the over-878

enrichment by a one-sided Fisher exact test for MYC879

amplification and TSG mutation after correcting for880

multiple testing.881

Analysis of TSG regulation882

In analysing the regulation of the TSG identified as883

related to the hallmarks of cancer and potentially884

amenable to miRNA regulation, we first limited the885

samples under consideration to those where copy886

number data, gene expression data, miRNA expres-887

sion, mutation data, and methylation data were all888

present. Mutation data was again taken as a bi-889

nary variable, but as opposed to the partial correla-890

tion analysis, mutations were stratified into their re-891

ported types (e.g. missense mutations are all grouped892

together, etc.). That is, the missense mutation vari-893

able would only contain a value of 1 if the sample894

had a missense mutation in the gene of interest, and895

0 otherwise. All variables considered in the linear896

regression were standardised to a mean of 0, and a897

standard deviation of 1.898

L1/2 penalty-based penalised linear regression899

was then performed, in the same manner as above,900

for the linear model described in Figure 3a. Sub-901

sequently, coefficients were aggregated across the902

various cancer types and after the rank product test903

was applied, those predictors showing statistically904

consistent positive or negative coefficients were iden-905

tified. Following this, the autocorrelation of each906

of these predictor variables was considered, for each907

of the TSG in each cancer type, as depicted by the908

heatmap in Figure 4a.909

Analysis of the exclusivity of gene regulation 910

To determine the exclusivity of gene regulation, we 911

calculated the empiric distributions of the variables 912

Πρk as defined graphically in Figure 4. These repre- 913

sent the proportion of miRNA-miRNA or miRNA- 914

methylation or methylation probe-methylation 915

probe pairs that show significant positive Spear- 916

man co-correlation (p < 0.05). For the bootstrap- 917

ping analysis, we resampled the datasets, choosing 918

miRNA and methylation probes in the same num- 919

ber as the heatmap in question, and then considered 920

the distributions of the pairwise differences in the 921

variables Πρk . From these distributions for the pair- 922

wise differences, we were able to infer the percentile 923

on the empirically constructed CDF that the true 924

case represented, the results of which are depicted in 925

Figure 4b, showing, for each gene and cancer type, 926

the percentile on the pairwise difference empiric 927

distribution for the observed heatmap. 928

The calculations for the analysis of TSG regula- 929

tion and analysis for the exclusivity of gene regula- 930

tion were repeated for an idependent dataset com- 931

prising matched mRNA, miRNA, CNV, mutation, 932

and methylation data for 93 patients with ovarian 933

cancer, from theOV-AU project from the ICGC data 934

portal [58]. Results of this analysis are highlighted 935

in Supplementary Section S9, Figure ??. 936
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