Summary
Spike count correlations (SCCs) are ubiquitous in sensory cortices, are characterized by rich structure and arise from structured internal interactions. Yet, most theories of visual perception focus exclusively on the mean responses of individual neurons. Here, we argue that feedback interactions in primary visual cortex (V1) establish the context in which individual neurons process complex stimuli and that changes in visual context give rise to stimulus-dependent SCCs. Measuring V1 population responses to natural scenes in behaving macaques, we show that the fine structure of SCCs is stimulus-specific and variations in response correlations across-stimuli are independent of variations in response means. Moreover, we demonstrate that stimulus-specificity of SCCs in V1 can be directly manipulated by controlling the high-order structure of synthetic stimuli. We propose that stimulus-specificity of SCCs is a natural consequence of hierarchical inference where inferences on the presence of high-level image features modulate inferences on the presence of low-level features.