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Summary 
 
Spike count correlations (SCCs) are ubiquitous in sensory cortices, are characterized by 
rich structure and arise from structured internal interactions. Yet, most theories of visual 
perception focus exclusively on the mean responses of individual neurons. Here, we 
argue that feedback interactions in primary visual cortex (V1) establish the context in 
which individual neurons process complex stimuli and that changes in visual context 
give rise to stimulus-dependent SCCs. Measuring V1 population responses to natural 
scenes in behaving macaques, we show that the fine structure of SCCs is stimulus-
specific and variations in response correlations across-stimuli are independent of 
variations in response means. Moreover, we demonstrate that stimulus-specificity of 
SCCs in V1 can be directly manipulated by controlling the high-order structure of 
synthetic stimuli. We propose that stimulus-specificity of SCCs is a natural consequence 
of hierarchical inference where inferences on the presence of high-level image features 
modulate inferences on the presence of low-level features.  
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Introduction 
Spike-count correlations (SCCs), covariation of neuronal responses across multiple 
presentations of the same stimulus, are ubiquitous in sensory cortices and span different 
modalities (Downer et al., 2015; Petersen et al., 2001; Romo et al., 2003) and processing 
stages (Cohen and Maunsell, 2009; Nienborg and Cumming, 2006; Ponce-Alvarez et al., 2013; 
Zohary et al., 1994). In the visual system, SCCs, also termed noise correlations, have 
traditionally been considered to be independent of the stimulus and hence to impede stimulus 
encoding (Averbeck et al., 2006). Studies on stimulus-independent aspects of SCCs in the 
primary visual cortex (V1) sought to capture correlation patterns that were solely accounted for 
by differences in receptive field structure (Ecker et al., 2010; Gutnisky and Dragoi, 2008). Initial 
investigations of stimulus-dependence of SCCs focussed on the mean of SCCs (Cohen and 
Kohn, 2011; Kohn and M. A. Smith, 2005) but stimulus-dependent changes in the mean are 
modest in awake animals (Ecker et al., 2010; Rikhye and Sur, 2015). However, recent studies 
using calcium imaging of V1 in awake mice revealed a dependence of the fine structure of 
correlations on stimulus-statistics (Hofer et al., 2011; Rikhye and Sur, 2015), suggesting that not 
only mean responses (first order statistics) but response correlations (second order statistics) 
too, could carry useful stimulus-specific information. 
 
SCCs reflect the internal dynamics of the network and specific feedback interactions were 
shown to contribute to their emergence in a number of ways (Ecker et al., 2016; Lin et al., 2015; 
Rabinowitz et al., 2015; Rosenbaum et al., 2016). In V1, feedback interactions comprise both 
lateral connections from the local circuitry and top-down connections from higher level areas 
(Harris and Mrsic-Flogel, 2013). Investigations into the organization of feedback revealed that 
characteristic regularities present in the visual environment are reflected in the structure of both 
lateral (Kaschube, 2014; Löwel and Singer, 1992; McGuire et al., 1991; Schmidt et al., 1997; G. 
B. Smith et al., 2015) and top-down (Klink et al., 2017; Lee and Nguyen, 2001) interactions. 
These feedback interactions could thus establish dependencies between the responses of 
neurons whose receptive fields are sensitive to stimulus features that have high probability to 
co-occur in the visual environment and support perceptual grouping, such as the vicinity, 
continuity, collinearity, color and direction of motion of composing scene elements. Structured 
feedback interactions are expected to introduce correlated variability in neuronal responses. 
Indeed, patterns in lateral connections that reflect receptive field similarity of neurons (Cossell et 
al., 2015) were shown to capture the stimulus-independent patterns in SCC structure 
(Rosenbaum et al., 2016). Importantly, this intricate feedback circuitry seems to distort the 
sensory information carried by bottom-up pathways, which is also reflected in the recurrence of 
activity patterns of spontaneous activity during activity evoked by visual stimulation (Arieli et al., 
1996; Berkes et al., 2011; Fiser et al., 2004). The observation that the structure of correlations 
reflects the structure of feedback and that the structure of feedback reflects the statistics of 
environmental stimuli raises the intriguing prospect that correlations and their modulations can 
provide important insights into the computations performed by coordinated populations during 
visual perception.   
 
Natural visual stimuli are complex and provide insufficient information for unambiguous 
interpretation. Evidence suggests that the visual system represents an internal model of the 
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environment, which serves the integration of information about the current stimulus with 
previously acquired knowledge of natural scene statistics (Berkes et al., 2011; Fiser et al., 2010; 
Frégnac and Bathellier, 2015; Weiss et al., 2002; Yuille and Kersten, 2006). In the process of 
perceptual inference, the internal model contributes information about the expected activation 
and coactivation structure of neurons (Orbán et al., 2016) and provides a context for the 
interpretation of sensory input (Coen-Cagli et al., 2015; Yuille and Kersten, 2006). Crucially, 
when interpreting complex stimuli, the context plays an essential role: the likelihood of the 
presence or absence of a particular visual feature is dependent on the presence or absence of a 
large number of contextual features. Indeed, on a pebbly beach we expect different co-
occurrence patterns of elementary edges, characteristic to V1 simple cell receptive fields, than 
on a wheat field. Furthermore, given that the visual cortex processes visual information in a 
series of hierarchical processing stages, contextual information from the higher levels of the 
processing hierarchy can inform and constrain the activity at lower levels of processing through 
feedback (Gilbert and Sigman, 2007; Klink et al., 2017; Lee and Mumford, 2003). For instance, 
merging information from an extended area in the visual field will inform low-level stages of the 
processing hierarchy that we are on a beach and the expected textures are characterized by 
specific spatial frequencies and lines are characterized by specific curvatures. Thus, we predict 
that in the primary visual cortex, where neurons are sensitive to simple features like oriented 
edges, high-level visual context constrains the internal dynamics though specific feedback, and 
ultimately results in stimulus-specific SCC structure. 
 
Feedback modulation of higher order statistics of responses, including variance (Goris et al., 
2014) and correlations (Ecker et al., 2014) in V1 were shown to contribute to multiplicative 
effects in activity fluctuations. Indeed, patterns in V1 SCCs in response to periodic grating 
stimuli were shown to be aligned with a simple phenomenological model of V1 responses which 
only considers stimulus dependence of neuronal responses in terms of tuning curves and 
assumes that joint modulations are stimulus-independent (Lin et al., 2015). This model, 
however, does not aim to account for stimulus-dependent modulations in feedback and 
therefore does not predict stimulus-specificity of SCCs. Similarly, a functional account of V1 
which links (co)variability of neuronal responses to perceptual uncertainty but lacks a 
representation of higher-order stimulus features fails to predict stimulus-specificity in the 
correlation structure (Orbán et al., 2016). Modulations of the fine structure of correlations have 
been predicted by functional models of attention (Haefner et al., 2016), which related changes in 
correlation structure to changes in task variables. Indeed, attentional modulations have long 
been considered as a major source of top-down influences (Gilbert and Sigman, 2007; 
Reynolds and Heeger, 2009), which affect not only the mean of neuronal responses, but the 
correlations as well (Cohen and Maunsell, 2009; Rabinowitz et al., 2015; Ruff and Cohen, 
2014). Here we go beyond these accounts and argue that hierarchical perceptual inference has 
a direct predictable effect on the structure of spike count correlations in V1, that is independent 
from task or attentional influences. We hypothesize that, for stimuli with high-order structure, 
inferences on the presence of high-level visual features modulate inferences on the presence of 
low-level features through specific feedback to V1 neurons, leading to stimulus-specificity in 
SCC patterns. Conversely, without high-level structure stimulus-specificity of correlation 
patterns is expected to dwindle.  
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To test this hypothesis, we designed an experiment in which we can characterize the full 
correlation matrix, the so called partial correlations (Yatsenko et al., 2015). First, we established 
that correlation patterns in response to natural images are stimulus-specific. We developed the 
contrastive rate matching method to identify modulations in correlation structure that are 
independent of changes in the mean of the responses. Next, we designed synthetic image 
families with low-level or high-level structure. These image families are distinguished by the 
level of processing hierarchy where samples from the family elicit selective responses from 
individual neurons. Importantly, in a hierarchical model of visual perception, high-level synthetic 
images, but not low-level synthetic images, are expected to elicit stimulus-specific feedback 
structure and consequently stimulus-specific correlations. We confirm these predictions and 
demonstrate that the stimulus specificity of SCCs is dependent on stimulus-structure: synthetic 
stimuli characterized solely by low-level structure elicit correlation patterns with reduced 
stimulus-specificity, while synthetic stimuli characterized by high-level structure restore stimulus-
specificity of correlations.  

Results 
In order to phrase predictions on the effect of stimulus-specific feedback interactions on SCCs, 
we introduce a hierarchical model of visual processing in the ventral stream. The model 
naturally extends earlier probabilistic models of V1 activity (Coen-Cagli et al., 2012; Olshausen 
and Field, 1996; Orbán et al., 2016; Schwartz and Simoncelli, 2001) by assuming an additional 
layer of processing. The additional layer is analogous to higher processing layers in the ventral 
stream and, for simplicity, we identify it with the secondary visual cortex (V2). V2 neurons are 
assumed to be selective to texture like patterns (Freeman et al., 2013) that emerge from 
combinations of elementary features (i.e. Gabor filters). Probabilistic models of perceptual 
inference, similar to the one proposed here, have been motivated by the fundamentally noisy 
and ambiguous nature of environmental stimuli, which gained extensive experimental support 
from behavioral studies (Kersten et al., 2004; Schwartz et al., 2009; Weiss et al., 2002). 
Importantly, probabilistic computations suggest that uncertainties about the inferred 
environmental features need to be maintained by an efficient system and therefore we consider 
neural representations which can represent such uncertainties (Hoyer and Hyvarinen, 2003; Lee 
and Mumford, 2003; Orbán et al., 2016).  
 
Assuming a hierarchical internal model for the representation of natural images in the visual 
cortex (Fig 1A), probabilistic inference in the model corresponds to stimulus perception 
(Helmholtz, 1962). In this context, activities of neurons correspond to activation of variables, and 
selectivities of neurons correspond to filter properties of variables. In this model, the activity 
level of a neuron is assumed to represent the inferred intensity of its preferred visual feature and  
at different levels of the hierarchy, neurons are sensitive to features of different complexity. In a 
widely used approximation, the receptive fields of V1 neurons can be characterized by Gabor 
filters, while the receptive fields of V2 neurons can be characterized by texture-like filters 
(Freeman et al., 2013). When stimuli are noisy or ambiguous, the model incorporates 
knowledge about the uncertainty associated with inference at different levels of the visual 
hierarchy in the form of a posterior distribution. Upon the presentation of a particular image, x, 
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the posterior distribution for the activations of V1 neurons, y, conveys detailed information about 
the uncertainty of the features represented by V1 receptive fields, including the specification of 
not only mean activations but variances and covariances as well (see also Supplementary Note 
for detailed derivation):  
 

P(y | x) =  ∫ P(y | x, z) P(z | x) dz 

  
The first term of the integral is the probability distribution of the joint activations of V1 neurons 
given a particular image and a particular set of activations, z, at a hierarchical level beyond V1 
(Fig. 1B). The second term establishes weights for averaging over possible high-level 
activations. This equation highlights three important points: 1, Activations at the lower level of 
the hierarchy, V1, depend on high-level activations, i.e. specific predictions can be obtained for 
top-down interactions; 2, Activations at V1 can be correlated, i.e. if a high-level feature 
represented in V2 assigns high probability to particular combinations of features then variability 
in z will induce correlations in y (Figs. 1B); 3, Since the probability of different combinations of 
high-level activations, P(z | x), changes with changes in the stimulus, correlations in V1 will be 
stimulus-dependent. As a consequence, hierarchical statistical inference predicts stimulus-
dependent correlations for structured stimuli, e.g. for natural images, thus reflecting top-down 
influences (Fig. 1C). However, in the absence of  high-level structure stimuli will not be 
informative with respect to high-level inferences and therefore will result in unspecific top-down 
influences and hence, unspecific correlations (Fig. 1D). Anatomical connections that contribute 
to the implementation of probabilistic computations in the hierarchical internal model are 
expected to involve not only bottom-up and top-down projections but lateral connections as well. 
These connections are essential for implementing the local interaction patterns between V1 
neurons, thus contributing to the nonlinear interaction patterns of receptive fields (Kaschube, 
2014; Schmidt et al., 1997; G. B. Smith et al., 2015). 
 

Stimulus-dependence of spike count correlations 

Parallel multielectrode recordings (32 channels) were obtained from area V1 of two awake 
behaving monkeys (macaca mulatta). The receptive fields of the recorded units were located 
approximately at 3° (Monkey A) and 5° (Monkey I) from the fixation spot. Monkeys were trained 
to perform an attention task in which, after initiating fixation (Fig. 2A), they were presented with 
a pair of natural images at two locations, left and right from the fixation spot, one of which 
overlapped with the RFs of the recorded units. After 700 ms, a change in fixation spot color 
cued the monkeys to report an incoming change in either the left or right image. The task was 
used to ensure the engagement of the animal and our analysis was constrained to neural 
responses evoked by stimulus presentation before appearance of the cue signal (see details of 
the task in the Experimental Procedures). The initial transient responses after stimulus onset 
were omitted from the analysis to reduce stimulus locked correlations, leaving a window of 400 
ms to assess response statistics (Fig. 2A). Reliable estimation of the full spike count correlation 
matrix between recorded channels required a large number of repetitions, therefore the number 
of different images was limited to 6 or 8 images per session, providing a range of 65-180 
repetitions per image. Mean response, as characterized by the firing rate, was selective for 
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stimulus identity (Fig. 2A), which is captured by a high level of dissimilarity of firing rate patterns 
in response to a range of different natural images compared to lower dissimilarity of responses 
to identical stimulus presentations (Fig. 2B). 
  
First, our goal was to establish the stimulus-specificity of the fine correlation patterns in 
population responses to natural image patches. For each stimulus, we calculated a spike count 
correlation matrix, by extracting correlations between the activities of any two neurons across 
repeated presentations of the same stimulus (Fig. 3A). We analyzed the stimulus-specificity of 
the structure of SCC matrices by comparing the difference between the correlation matrices 
extracted in two different conditions: 1, from two independent subsets of data in response to the 
same stimulus (within-stimulus); 2, from the responses of neurons to different stimuli (across-
stimuli, Fig. 3B and Fig. S1B). This treatment goes beyond traditional approaches that only 
characterize the population mean of the distribution of correlations (Fig. 3C). Measurement of 
SCCs from a finite number of trials is noisy and therefore estimates of the SCC matrix are 
variable (Fig. 3A). As a consequence, the within-stimulus difference of SCC matrices is finite 
and this difference can be used to establish a baseline for the estimates of stimulus-specificity 
of SCCs. This baseline shrinks with increasing number of trials (set size). To establish the 
number of trials needed for a reliable estimate of spike count correlations, we assessed 
dissimilarity as a function of set size (Fig. 3D). There is a steep drop in dissimilarity at low trial 
counts due to high variance of correlation estimates. We balanced the trade-off between the 
number of repetitions and the size of the stimulus set in an experimental session by aiming for 
approximately 80 repetitions per stimulus.  
 
We checked whether stimulus-specificity of SCCs can be established based on the mean of the 
correlation distribution. Comparison of changes in the mean was not conclusive since the 
dissimilarity of the mean correlation across stimuli was not significantly higher than that within 
stimulus (t-test, p=0.12, t=-1.59, df=82, Fig. 3E). Comparison of SCC matrices instead of the 
mean of SCC distributions is sensitive to changes in the patterns of correlations and therefore 
provides a more detailed information on the stimulus-dependence of population responses (Fig. 
3F). Dissimilarity of SCC matrices was significantly higher across stimuli than within stimulus (t-
test, p=5.6e-14, t=-7.53, df=12258). We also determined that the significance of the difference 
in dissimilarities is not merely the result of a larger sample size due to the large number of 
elements of correlation matrices. To this end we constructed a measure that matches the 
sample size of the population mean of correlations. We calculated a single dissimilarity value for 
a particular pair of stimuli and compared this measure across conditions (t-test, p=3.7e-4, t=-
3.71, df=82; Fig. S1C). Comparison of correlation matrices implicitly establishes a comparison 
between two multivariate normal distributions. A widely used measure to assess the dissimilarity 
of probability distributions is the Kullback-Leibler (KL) divergence, which can be calculated 
analytically for Normal distributions and can be used to assess the dissimilarity of the correlation 
structures. We found a similar pattern in the difference in dissimilarities with KL divergence as 
with other measures (t-test, p=1.52e-3, t=-3.28, df=82, Fig. S1D). Taken together, these 
analyses indicate that fine patterns in spike count correlations are specific to natural stimuli. 
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Contrastive rate matching 

Firing rate has a major effect on spike count correlations estimated from spiking activity (de La 
Rocha et al., 2007) and is one of the major factors that affect our analyses (Schulz et al., 2015) 
(see also Experimental Procedures). As a consequence, firing rate changes could constitute a 
confound for establishing stimulus-specificity of spike count correlations. To eliminate this 
potential confound we designed a method, contrastive rate matching, to control for the effect of 
firing rate changes on spike count correlation estimates (Experimental Procedures, Fig. 4). 
Briefly, in a given condition the distributions of changes in firing rate and correlation were 
calculated (Fig. 4A). In the two-dimensional distribution every data point represents a pair of 
channels: the magnitude of mean firing rate difference is plotted against the magnitude of 
change in spike count correlation. A similar distribution of firing rate and correlation differences 
was constructed for the condition with which correlation changes are contrasted (Fig. 4B). To 
eliminate the dependence of the estimate of correlation change on firing rate changes, the 
marginal distribution of firing rate changes is matched across the two conditions by subsampling 
the data points. On these subsampled distributions of firing rate and correlation differences, the 
magnitude of firing rate changes will be equal in the two conditions and the residual condition-
dependence of correlations can be assessed. 
  
To demonstrate the power of contrastive rate matching we used synthetic data in which the two 
conditions can be fully controlled (Fig. S2). A network of 40 neurons was simulated in which 
membrane potential correlations and firing rates were set for each condition and the simulation 
matched the experimental conditions in terms of the amount of data used. In each experiment 
the first condition assessed had identical firing rate and spike count correlation profiles in every 
trial (Fig. S2A). We investigated three different scenarios for the second condition. First, 
dissimilarity of spike count correlation matrices was assessed across trials with identical spike 
count correlation patterns but different mean activations (Fig. S2B). Under these conditions we 
expect that due to firing rate differences, spike count correlations will vary across trials with 
different firing rates. Indeed, dissimilarity of correlation matrices is higher in the condition where 
firing rate differences are present even though the membrane potential correlations are identical 
(Fig. S2E). However, contrastive rate matching eliminates this difference. Second, dissimilarity 
of spike count correlation matrices was assessed across trials with identical mean activations 
but different spike count correlation patterns (Fig. S2C). As expected, dissimilarity of 
correlations remained significant in both the non-matched and in the matched cases (Fig. S2F). 
The last analysis tested the scenario where both firing rates and correlations show differences 
across trials  (Fig. S2D). Residual differences in correlation dissimilarity after contrastive rate 
matching demonstrated that differences in membrane potential correlations can be identified in 
spike count correlations (Fig. S2G). 
  
We assessed within-stimulus and across-stimuli dissimilarity of spike count correlation matrices 
using contrastive rate matching on data recorded from V1 (Fig. 4C).  As expected, contrastive 
rate matching eliminates the condition-dependence of firing rate dissimilarity (t-test, p=0.95, t=-
0.06, df=9918). Also, the analysis confirmed that differences in correlation dissimilarity are 
significant even after contrastive rate matching (t-test, p=3.5e-9, t=-5.91, df=9918), therefore 
stimulus-specificity of the fine structure of SCC is not a result of changes in firing rates.  
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Stimulus-structure dependence of spike count correlations 

We argued that higher-order structure in stimuli elicits differential responses at the network level 
both in V1 and at higher levels of processing. We identified stimulus-specific correlation 
structure in V1 activity as a result of differential feedback from higher levels of processing to V1 
neurons. This prediction, however, is not an exclusive consequence of hierarchical inference 
since it can be accounted for by other models. Therefore we designed an experiment which 
exploits the selectivities of neurons at different levels of the processing hierarchy to control 
stimulus-specificity of SCCs and formulated a more specific prediction: if stimulus-specificity is a 
consequence of stimulus-specific feedback from higher levels of processing then removing 
higher-order structure from images should reduce stimulus-specificity of correlations.  
 
We tested this hypothesis explicitly by recording additional electrophysiological data in two 
monkeys, performing the same task. In these experiments, we interleaved natural images with 
synthetic images, composed of independent Gabor filters, that retained the low-level structure  
prefered by individual V1 simple cells but contained no further dependencies (low level (LL)-
synthetic stimuli, see also Experimental Procedures). We calculated the average dissimilarity of 
firing rates and spike count correlation matrices across natural images and compared them to 
the average dissimilarity of firing rates and correlations across LL-synthetic stimuli (Fig. 5A). We 
found that both firing rate dissimilarity and correlation dissimilarity was significantly higher for 
natural images than for LL-synthetic stimuli (Fig. 5B, t-test, p=7.4e-286, t=37.29, df=10474 and 
p=1.46e-21, t=9.56, df=10474 for firing rate and correlation, respectively). 
 
The limited number of available repetitions establishes a lower bound on the dissimilarity 
measures (Fig. 5D). To directly obtain a lower bound for this experiment, data would be required 
to be split into two halves and within-stimulus dissimilarities should be computed across the split 
data. Such a manipulation, however, would result in higher variance in our primary measure of 
interest, the across-stimuli dissimilarity. Therefore we obtained the lower bound indirectly, by 
extrapolating within-stimulus dissimilarity from dissimilarities calculated for lower numbers of 
repetitions (by subsampling the available data, see also Experimental Procedures). 
  
Altering stimulus content induces variations in firing rates and these variations can in turn affect 
correlation measures. If stimulus specificity of firing rates were higher in V1 for natural than 
synthetic images correlation dissimilarity would be affected by firing rate changes. Therefore we 
determined stimulus-statistics specificity of correlation dissimilarity using contrastive rate 
matching (Fig. 5C) which eliminates differences between spike count correlations caused by 
firing rate dissimilarity (t-test, p=0.99, t=0.015, df=7468). After this correction (removal of 
confound) residual spike count correlation dissimilarity was still much higher for natural than for 
LL-synthetic stimuli and highly significant (t-test p=4.17e-10, t=6.26, df=7468). 
  
Since our measurements are based on a finite population, firing rate has an effect on the 
variability of measured correlations: higher firing rates can result in a lower number of possible 
binary combinations formed from spikes. To control for this possible confound we constructed 
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surrogate data from a phenomenological model of population activity, the raster marginal model 
(RMM, Experimental Procedures). The RMM provided a distribution of correlation matrices for 
every single image. Correlation dissimilarities were calculated from 1000 correlation matrices 
obtained from each distribution. The histogram of correlation dissimilarities determines how 
likely it is that the dissimilarity measured on the data can be traced back to changes in basic 
firing statistics. Histograms obtained for the two conditions did not show significant differences 
in their mean (t-test, p=0.12, t=1.54, df=1998) but the histogram for natural images revealed that 
the dissimilarity obtained from the data was in the tail of the distributions of possible 
dissimilarities (p<0.001, while for synthetic images p=0.076; Fig. 5D). Analysis of all recorded 
sessions reveals that in all cases the activity evoked by natural images is highly unlikely under a 
simple RMM account. However, spiking responses to the LL-synthetic stimulus set were 
significantly different from an RMM account only in five out of nine trials at the p<0.05 level. 
Taken together, comparison of the results obtained with natural and LL-synthetic data, excludes 
the possibility that observed dissimilarities were merely resulting from changes that an RMM 
model can account for. 
  

Higher-order structure over elementary features induces stimulus-specific correlation patterns 

Hierarchical inference predicts that stimulus-specificity of SCCs is a consequence of specific 
feedback, and it is the  inference on the presence of high-level image features which modulates 
inference on the presence of low-level features. Neurons responsible for high-level inferences 
are sensitive to combinations of elementary features (Nassi and Callaway, 2009). In particular, 
neurons in V2 were shown to be selective to parameters that define texture-like patterns 
(Freeman et al., 2013). Motivated by these findings, we generated, a novel set of synthetic 
stimuli that combined Gabor filters into texture-like patterns, thus introducing the kind of higher-
level structure, which is expected to elicit differential responses in V2. 
 
In novel recordings, we interleaved synthetic images characterized by low-level structure (LL-
synthetic stimuli) with texture-like synthetic images characterized by high-level structure (HL-
synthetic stimuli). Both firing rates and spike count correlations showed higher specificity for HL-
synthetic stimuli than for LL-synthetic stimuli (Fig. 6B, t-test, p=2.6e-180, t=29.3, df=8998 and 
p=5.56e-16, t=8.11, df=8998 for firing rates and correlations, respectively). Contrastive rate 
matching was applied to eliminate differences caused by firing rate dissimilarity (Fig. 6C, t-test, 
p=0.94, t=0.076, df=6794). This manipulation did not alter the conclusion on stimulus-specificity 
of SCCs: the difference between the correlation dissimilarity remained significant (t-test, 
p=8.55e-09, t=5.76, df=6794).  
 
Taken together, these results demonstrate that SCCs are stimulus-specific but this stimulus-
specificity hinges upon the higher-order structure of stimuli: removing high-level structure 
reduces stimulus-specificity, while reintroducing such a structure in controlled synthetic images 
restores the stimulus-specificity of SCCs.  These differential effects of stimulus statistics cannot 
be accounted for by stimulus specific variations in spike counts. 
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Discussion 
We recorded population responses from area V1 of awake, task-engaged monkeys, and 
investigated how the correlation structure of V1 activity depends on stimulus content. Crucially, 
our analysis established that upon presentation of natural scenes the fine structure of 
correlations was specific to the presented stimulus. Furthermore, by designing synthetic image 
patches in which the statistical structure could be controlled, we demonstrated that the stimulus-
specificity of SCCs was dependent on stimulus complexity: stimuli characterized by low-level 
structure showed reduced stimulus-specificity in SCCs, while images characterized by both low- 
and high-level structure showed increased stimulus-specificity. We argued that the stimulus-
dependence of SCCs is a natural consequence of feedback in the ventral stream:  inferences 
about high-level structure of images provide context for the interpretation of low-level structure 
through feedback influences, involving both lateral and top-down connections. We showed that 
a probabilistic hierarchical model of perceptual inference predicts the qualitative changes in 
stimulus-specificity of SCCs. 
 
Parallel recordings from multiple neurons permit the investigation of higher order statistics of 
neuronal responses. Hence, the assessment of spike count correlations, commonly addressed 
as “noise correlations”, has become a central topic in neuroscience (Cohen and Kohn, 2011; 
Froudarakis et al., 2014; Kohn and M. A. Smith, 2005; Rikhye and Sur, 2015). Although 
measurement of spike-count correlations only requires the assessment of second-order 
statistics, accurate measurement (Cohen and Kohn, 2011; Ecker et al., 2010) and interpretation 
of variations in SCCs (Bányai et al., 2017) proved to be challenging. Factors, which affect the 
outcome of measurements include experimental design (number of repetitions, stimulus 
properties, e.g. static vs. moving), behavior, state dependent variables (eye movements, 
cognitive states), fluctuations in dynamical state and response bias (undersampling and firing 
rate) (Cohen and Kohn, 2011; de La Rocha et al., 2007). In our experiments we adopted a task 
design that aimed to control for a number of these factors and we also introduced additional 
controls in the analysis to eliminate those confounds that task design could not eliminate. To 
obtain a reliable estimate of pairwise correlations, we used a paradigm that permits a large 
number of repetitions under controlled conditions. This enabled us to limit sample variance in 
our measurements. Although anesthesia can permit a larger number of repetitions and/or a 
larger stimulus set, the associated paralysis causes stereotyped relations between stimulus and 
RF locations that can introduce artificial correlation structures. Using awake and task-engaged 
monkeys eliminates this confound and ensures that collective fluctuations, which introduce 
uncontrolled factors into the measured correlations, are minimized (Ecker et al., 2014). Eye 
movements have been shown to contribute to correlations in the visual cortex (McFarland et al., 
2016). In our case monkeys were rewarded to fixate on a spot at the center of the screen during 
the presentation of off-foveal stimuli and trials in which fixation could not be maintained were 
removed from the analysis. However, during fixation, microsaccades and slow-drift eye 
movements could still occur and consequently, they could introduce collective changes in 
responses. While saccades represent voluntary motor actions and are known to be affected by 
stimulus-content (Meermeier et al., 2016), microsaccades and eye-drifts, are largely considered 
involuntary, have random (exponentially distributed) onset times and thus, are unlikely to affect 
the comparison of correlation similarity across conditions. Major other factors contributing to 
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changes in spike count correlations in V1 have recently been identified on the basis of a large 
dataset (Schulz et al., 2015). These factors are cortical distance, tuning similarity, firing rate, 
spike isolation and spike width. Of these factors, only firing rate is changing across the 
conditions that we contrasted in our experiments. Therefore this potential confound required 
special attention. We developed the contrastive rate matching procedure and demonstrated its 
power on synthetic data before applying it to physiological data. This analysis confirmed that our 
conclusions on stimulus-dependence of correlations were not a consequence of changing firing 
rates. 
 
Recently, stimulus-dependent modulations in pairwise correlations were observed in vitro in 
retinal ganglion cells (Franke et al., 2016; Zylberberg et al., 2016). These studies demonstrated 
that the microcircuitry of the retina can introduce stimulus-specific correlations that are precisely 
tuned to enhance decodability of sensory signals. However, these in vitro preparations are 
limited to the simple circuitry of the retina and leave open the question on hierarchical 
processing of complex stimuli in the cortex. To balance extra variability in neural activity in 
awake behaving animals, instead of restricting ourselves to pairs of neurons we analyzed a 
population of neurons. Here, characterization of the full correlation matrix was central to 
adequately assess the stimulus-specificity of SCCs. Earlier studies in mice used two-photon 
calcium imaging to characterize the changes in correlation structure as a result of changes in 
stimulus statistics (Hofer et al., 2011; Rikhye and Sur, 2015). These studies assessed the 
correlated variance in the activity of pairs of neurons, as reflected by the calcium signal, across 
repeated presentations of the same stimulus. Stimuli were presented in long windows and were 
either movies or a sequence of moving or static gratings, thus responses to individual stimuli 
were not analyzed. These results extended earlier observations that stimulus-statistics affects 
higher-order single-cell response statistics (Froudarakis et al., 2014; Haider et al., 2010). While 
these results suggested that the fine structure of SCCs might be specific to stimuli, calculating 
noise correlations for stimuli that were changing during any given trial prevented the 
assessment of stimulus-specificity of correlations.  
 
Our approach can be regarded as an extension of earlier work investigating the patterns of 
mean responses in the hierarchy of the visual cortex (Freeman et al., 2013). It has been shown 
that variance in mean responses in V2 can be well predicted by variations in factors that 
determine the statistics necessary for the generation of natural textures, while variations in 
mean responses in V1 can be predicted by variations in statistics at the level of independent 
Gabor-like edge filters. Similarly, contextual modulation of V1 activity by top-down influences 
from V2 neurons was demonstrated when high-level inferences were made in artificial images 
(Klink et al., 2017; Lee and Nguyen, 2001). These results can be explained in terms of 
probabilistic inference in a hierarchical internal model of natural images, in which mean 
responses correspond to the most probable interpretation of the stimulus. Our results support a 
computational framework in which pairwise statistics of neuronal responses reveal that the 
uncertainty associated with the inferences is also represented. 
 
Probabilistic computations require the representation of probability distributions, i.e. the 
representation of the whole array of possible interpretations of a stimulus rather than only the 
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representation of the best interpretation. Representation of probability distributions was 
proposed to be achieved by stochastic sampling (Hoyer and Hyvarinen, 2003; Lee and 
Mumford, 2003), which interprets response variability as a direct consequence of perceptual 
uncertainty. The stochastic sampling framework generalizes naturally to hierarchical 
computations (Lee and Mumford, 2003). Recently, it was shown that stimulus-dependence of 
both membrane potential and spike count variability in V1 can be predicted by a model of 
natural images (Orbán et al., 2016). This model, however, lacked the hierarchical structure 
presented here and was therefore unable to account for stimulus-dependent changes in 
correlation patterns. However, it provided a simple, but important demonstration of contextual 
modulation of V1 responses: the assessment of stimulus-contrast for a complete image patch 
affected the interpretation of local image elements (Wainwright and Simoncelli, 2000). Such 
contextual modulation can be explained by an important computational component, divisive 
normalization (Carandini and Heeger, 2011; Schwartz and Simoncelli, 2001). Sampling has also 
been linked to task-related changes in spike count correlation patterns (Haefner et al., 2016; 
Lange and Haefner, 2016). Our results fit naturally in the sampling framework by assuming that 
neural activity patterns at any given time represent individual, multivariate samples from the 
probability distributions both at the level of V1 and higher-level areas, e.g. V2 (Fig. 1).  
  

Alternative interpretations  

Patterns in higher-order statistics of neuronal responses beyond the mean activity, namely 
single-cell variability and SCCs, have been observed in association with task-related modulatory 
effects, such as those driven by attention (Ecker et al., 2016; Rabinowitz et al., 2015; Ruff and 
Cohen, 2014) and in association with stimulus-related modulatory effects, such as those 
occurring during the perception of natural scenes (Froudarakis et al., 2014; Haider et al., 2010; 
Rikhye and Sur, 2015). Computations underlying both of these processes invoke high-level 
inferences: inference of task variables in the case of attention and inference of high-level 
stimulus features, e.g. object identity, in the case of perception. In both cases, inference of high-
level variables breaks the feed-forward processing hierarchy in the visual cortex and introduces 
top-down effects (Gilbert and Sigman, 2007). Such modulatory effects of top-down 
computations related to attention have been demonstrated in population responses throughout 
the visual processing hierarchy, both regarding single cell statistics (mean (Reynolds and 
Heeger, 2009) and variance (Goris et al., 2014)) and pairwise statistics (SCCs (Ecker et al., 
2016; Haefner et al., 2016; Rabinowitz et al., 2015; Ruff and Cohen, 2014)). A recent 
phenomenological model of correlations suggested that multiplicative components might reflect 
top-down influences (Lin et al., 2015). Here, the so-called affine model could account for 
patterns in correlations emerging in anesthetized animals through collective gain modulation. 
However, stimulus-dependence and  stimulus structure dependence cannot be addressed by 
this approach. Our result that correlation patterns depend on stimulus structure suggests that 
top-down influences involve processes more elaborate than simple collective gain modulations.  
 
Alternative approaches have been proposed to understand the correlational structure of evoked 
and spontaneous activity using balanced networks (Hennequin et al., 2014b; Renart et al., 
2010). Recently, it was proposed that patterns in correlations can be captured by a simple 
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phenomenological model with feed-forward and lateral connections (Rosenbaum et al., 2016). 
Such approaches are complementary to the functional approach adopted in this study. In 
functional models of the visual cortex, parameters of the models are solely determined by the 
statistics of stimuli (Orbán et al., 2016). While there are attempts to link functional models to the 
network architecture (Aitchison and Lengyel, 2016; Hennequin et al., 2014a), the way neural 
circuits implement these computations is largely unexplored. Thus, studies on balanced 
networks provide useful constraints for determining plausible architectures. 
  
Deep networks, which are characteristically hierarchical architectures for image processing, 
have become vastly successful in recent years, closing the gap between human and machine 
performance in complex visual tasks (LeCun et al., 2015). Prowess of deep learning 
architectures in tasks that humans excel inspired investigations into the parallels between 
biological visual systems and deep architectures (Kriegeskorte, 2015). These studies revealed 
structural similarities of the sensitivities of hierarchically organized neurons in the biological 
system and those in the deep learning model (Khaligh-Razavi and Kriegeskorte, 2014; Yamins 
and DiCarlo, 2016) and could also account for much of the variation in mean responses of 
inferotemporal units (Khaligh-Razavi and Kriegeskorte, 2014). The predominantly feed-forward 
architecture of these models shows impressive performance in a range of tasks but is still at 
odds with the biological system. Top-down influences of higher-level layers as well as recurrent 
connections within the same layer have no computational role in these models. In addition, 
these models do not feature an inherent representation of perceptual uncertainty.  Thus, higher-
order response statistics (including correlations) of neural responses are hard to reconcile with 
the working of classification-oriented deep networks. Congruent with the above observations, it 
has recently been shown that some of the discrepancies between performance of deep 
networks and humans in visual tasks seem to result from top-down interactions (Kar, K., 
Kubilius, J., Issa, E., Schmidt, K., and DiCarlo, J: Evidence that feedback is required for object 
identity inferences computed by the ventral stream. COSYNE 2017, Salt Lake City, Utah). 
These conclusions together with our results highlight the importance of understanding the 
function of feedback in shaping neuronal population responses and its role in behavior. 
 

Experimental procedures 
Electrophysiological recordings 
This study was conducted on two adult rhesus macaques (Macaca mulatta; Monkey A, male 8y 
and Monkey I, female, 12y). All experimental procedures were approved by the local authorities 
(Regierungspräsidium, Hessen, Darmstadt) and were in accordance with the animal welfare 
guidelines of the “European Union’s Directive 2010/63/EU”. We recorded extracellular signals 
(local field potentials (LFPs) and multi-unit activity (MUA)) from V1 using a chronically implanted 
microdrive containing 32 independently movable glass coated Tungsten electrodes with 
impedance between 0.7-1.5 MΩ and 1.5 mm inter-electrode distance (SC32, Gray Matter 
Research; Markovitz et al. 2011). The recording chamber was positioned based on stereotactic 
coordinates derived from MRI and CT scans following Paxinos et al., 2008. Signals were 
amplified (TDT, PZ2 preamplifier) digitized at a rate of 25 kHz and band-pass filtered between 
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0.1 and 300 Hz for LFP analysis and 300 – 4000 Hz for MUA recordings.  For MUA analysis a 
threshold was set at 4 SD above noise level to extract spiking activity.  
 
Behavioral paradigm 
Animals were seated in a custom made primate chair at a distance of 64 cm in front of a 
477x298 mm monitor (Samsung SyncMaster 2233RZ, 120 Hz refresh rate). Eye-tracking was 
performed using an infrared-camera eye-control system (ET-49, Thomas Recording). At the 
beginning of each recording week, the receptive field locations and orientation preferences of 
the recorded units were mapped with a moving light bar drifting in a randomized sequence in 8 
different directions. The two monkeys performed an attention-modulated change detection task. 
To initiate the trials, the monkey had to maintain fixation on a white spot (0.1° visual angle) 
presented in the center of a black screen and press a lever. After 500 ms, two visual stimuli 
appeared in an aperture of 2.8-5.1° at a distance of 2.3-3.2° from the fixation point. One of the 
stimuli covered the receptive fields of the recorded units, the other was placed at the mirror 
symmetric site in the other hemifield. After an additional 700 ms, the color of the fixation spot 
changed, cuing the monkey to direct its covert attention to one of the two stimuli. When the cued 
image was rotated (20°), the monkey had to release a lever within a fixed time window (600 ms 
for monkey A, 900 ms for monkey I) in order to receive a reward. A break in fixation (fixation 
window 1.5° diameter) or an early lever release resulted in the abortion of the trial, which was 
announced by a tone signal. The number of completed trials varied between 524-1110 per 
recording session. No more than one session was recorded on a given day. In order to obtain a 
balance between the reliable estimation of spike count correlations (Fig. 3D) and the number of 
comparisons between stimulus pairs, we used 6 or 8 different stimuli per session, resulting in 
65-180 repetitions (124 on average) per stimulus. The order of stimulus presentations was 
randomized. The number of good channels varied between 15 and 23 per session. Trials in 
which the signals were contaminated by clear electrical artifacts, were discarded from the 
analysis. The maximum number of trials discarded from a recording session was 3 (0.8 on 
average). 
  
Visual stimulus design 
Stimuli were either black and white natural images or synthetic images generated from an 
image model. Stimuli were presented in a square or circular aperture. We generated synthetic 
control stimuli that matched the low-level statistical properties of the natural images, but lacked 
any high-level statistical structure. As neurons in V1 are sensitive to oriented edges, we 
designed a set of 3000 Gabor filters adapted to the receptive field characteristics of the 
recorded neurons and these filters were linearly combined to obtain a synthetic image patch. 
For each control stimulus, we sampled the activations of 500-3000 Gabor filters from the 
empirical distribution of filter responses to the corresponding natural image. The pixel 
distributions of control images were then matched to the corresponding natural ones in terms of 
mean (luminance) and variance (contrast). For a second set of experiments, we reintroduced 
higher-level statistical structure to synthetic images by calculating the responses of the filter set 
on photos of natural texture patterns, then setting up a correlation matrix for filter activations in 
such a way that two filters were more strongly correlated if their responses to the texture photo 
were more similar. Sampling from this correlated filter activation distribution resulted in texture-
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like synthetic patterns corresponding to the statistical structures typically represented in V2. In 
each recording session, half of the stimuli were synthetic images with statistical structure 
corresponding to the representation in V1 (LL- synthetic stimuli), and the other half consisted of 
natural and synthetic images with structures corresponding to representations in V2 (HL-
synthetic stimuli), in the first and second set of experiments, respectively. 
  
Dissimilarity of population responses 
In each recording session, evoked responses on each of the D electrodes and in each trial were 
characterized by a spike count calculated in a 400 ms window 360 ms after stimulus 
presentation. The delay was introduced in order to eliminate transients in neuronal responses 
that distort measurements of spike rate correlations due to stimulus locking. V1 population 
responses to a particular stimulus were characterized by (i) a firing rate vector of dimension D, 
obtained as the normalized mean spike count of each channel over the set of trials presenting 
the given stimulus, (ii) a spike count correlation matrix of dimension DxD, calculated between 
the z-scored spike counts over the same trial set. The dissimilarity between the population 
responses to two specific stimuli can thus be calculated in terms of firing rates and correlations. 
For firing rates, we used the L2 distance between the firing rate vectors. For correlations, we 
used the averaged absolute difference between specific pairwise correlation values. This kind of 
dissimilarity measure was selected over distance measures calculated between whole matrices, 
such as the KL divergence, in order to allow for the control of correlation dissimilarities caused 
by  firing rate dissimilarities. The KL divergence quantifies the dissimilarity between two zero-
mean, equal-variance Gaussian distributions, with covariance matrices equal to the measured 
correlation matrices. For all statistical comparisons and assertions of significance, unpaired t-
tests were used. 
  
Baseline for dissimilarity 
Assessment of response statistics, including mean and correlations, requires repeated 
presentation of the same stimulus. The limited number of repetitions results in variance of the 
measures, including the measures for rate and correlation dissimilarities. A baseline for 
dissimilarity can be established by randomly splitting the trials for a given stimulus into two sets 
and comparing the measures on the two sets of samples. Evolution of self-dissimilarity can be 
assessed for different numbers of repetitions and the trend can be extrapolated to high trial 
numbers. We fitted rate and correlation dissimilarities at low trial numbers to predict those at 
high trial numbers and found that a double-exponential function fitted best the dependence of 
dissimilarity on trial number (data not shown). We used this extrapolation to establish a lower 
bound on the dissimilarity values in analyses where across-stimuli dissimilarities were 
established for both of the compared conditions. 
  
Contrastive rate matching 
Spike count correlations and firing rates are not independent due to the nonlinear mapping from 
membrane potential fluctuations to spiking activity (de La Rocha et al., 2007). Consequently, 
dissimilarities in correlations can also depend on dissimilarities in firing rates between 
responses evoked by different stimulus pairs. In order to establish the stimulus-dependence of 
correlations that is independent of changes in firing rates we constructed a measure that 
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controls for firing rate changes. First we constructed a pairwise measure of firing rate. We chose 
the geometric mean rate, GMR, as it has been shown to predict correlations well (Schulz et al., 
2015)  (we implemented the control with the arithmetic mean firing rate as well and obtained 
similar results, data not shown). Instead of model-based controls, such as inferring membrane 
potential correlations (Dorn and Ringach, 2003) or just normalizing the correlations by GMRs 
(Kohn and M. A. Smith, 2005) (we implemented the latter but it did not alter the conclusions of 
our paper, data not shown), we implemented a non-parametric control to compare correlation 
dissimilarity under two conditions. Distributions of GMR differences were matched in the two 
conditions, similar to the matching of firing rate distributions when comparing response 
variability in Churchland et al (2010) (Churchland et al., 2010). To do so, we pooled all channel 
pairs from all sessions related to one condition (e.g. natural images), and calculated both GMR 
differences and correlation differences between all stimulus pairs for all channel pairs. The two 
conditions yield two joint distributions of GMR and correlation differences. To equate GMR 
differences in the two conditions we construct a marginal distribution of GMR differences using 
identical bins for the two distributions, take the minimum of the number of samples in matching 
bins, and subsample the data points in the condition with the higher sample count. Thus, we 
obtain the same GMR difference distributions in the two conditions and correlation differences 
can be compared on the GMR difference matched data sets (see Fig. 4A for a visual description 
of the process). 
  
Controlling for finite data effects 
As spike count correlations are calculated from a finite number of trials of finite length, 
increasing the number of spikes can also increase correlations without any additional top-down 
effects. Since our predictions concern exactly these top-down effects, we want to exclude the 
possibility that bottom-up differences together with finite measurements can account for the 
observed differences. We applied the raster marginal model (RMM) to control for this confound 
(Okun et al., 2012), which can be used to define a probability distribution over spike count 
correlation matrices, and is parametrized by spike counts on individual channels, and spike 
counts in individual time bins. For both natural images and V1-level synthetic images in each 
session, we sampled 500 correlation matrices from the RMMs defined by the evoked responses 
to each stimulus in the two conditions. From the simulated correlations we calculated the 
distributions of mean dissimilarities for the two conditions. Thus, we obtained an estimate of 
how much marginal spiking statistics pre-determine the differences in dissimilarities observed in 
the data, and how much of those is attributable to effects not accounted for by the RMM. 
  
Validation of controls using simulated neural activity 
Concomitant changes in firing rates and correlations make it challenging to isolate the effects of 
the stimulus on one or the other. We therefore devised a network of neurons where the two 
variables can be manipulated separately, which enabled us to validate that controls (e.g. 
contrastive rate matching) are efficient in separating the effects of rate and true correlation 
modulation. We simulated a population of 40 neurons, for which the mean and correlation of 
membrane potential activities were sampled from Gaussian and LKJ (Lewandowski et al., 2009) 
distributions, respectively. These parameterized a multivariate Gaussian distribution that was 
used to obtain membrane potential samples in 20 ms time windows (1 ms when a full raster is 
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produced to specify a raster marginal model). Thus, variabilities of membrane potential samples 
are dependent across the population but independent across time bins. A firing rate nonlinearity 
established instantaneous firing rates for individual cells and spikes were obtained tracking the 
integer crossings of the integral of the fluctuating firing rates. This model has been shown to 
reproduce both single-cell statistics (Carandini, 2004; Dorn and Ringach, 2003) and pairwise 
statistics of V1 neurons (Bányai et al., 2017). Variability in spiking responses is dominated by 
membrane potential variance since the spiking model introduces minimal additional variability. 
This setting has two important characteristics. First, it avoids the use of a Poisson variability 
since the firing rate nonlinearity ensures a linear relationship between mean firing rate and 
variance but circumvents the washout of membrane potential covariability from spiking statistics 
by excess private variability (Bányai et al., 2017). Second, it expresses the characteristic 
relationship between mean firing rate and spike count correlation (de La Rocha et al., 2007). 
The network of neurons was used to assess the effects of firing rate and correlation modulations 
under conditions that approximated those in physiological experiments. 
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Figure legends  
 

 
 
Figure 1. Illustration of inference in a hierarchical statistical model. (A) An image, x, is assumed 
to be generated by combining features of different complexity: high-level features, zi (green and 
blue circles), determine the large-scale structure of low-level features, e.g. textures determine 
the joint statistics of edges (z0 is a bias term that represents an interpretation where no higher-
order structure is present). Low-level features, yi, capture simple regularities in images, e.g. 
darker and lighter image areas underlying edges (orange and red circles). In the visual system, 
upon presentation of a stimulus, the contribution of different features to the observed image is 
inferred: different images (left and right panels) elicit different intensity responses from the 
neurons (inset bar plots). (B) The statistical internal model establishes a joint probability 
distribution for the coactivation of low-level features upon observing a stimulus: beyond the most 
probable joint activations (black dots) a wide range of co-activations is compatible with the high-
level percept, albeit with different probabilities (colors matching those on panel A). Given the 
activation of a particular high-level feature (z1 or z2 for the left and right panels, respectively), the 
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joint distribution over activations of low-level features (contours) displays a covariance specific 
to the high-level feature. (C) The posterior distribution for low-level features is characterized 
both by the mean and covariance of the distribution (top panel). Posterior distribution for a 
distinct structured image (bottom panel) is characterized by a different mean and correlation 
structure. (D) A stimulus with no higher level structure is invoking an interpretation that low-level 
features are independent, therefore the correlation structure of images with only low-level 
structure will be identical. Arrows define conditional dependencies throughout the figure. 
 
 

 
 
Figure 2. Structure of the experiment and mean neural responses. a, Time course of neural 
responses upon the presentation of two natural images (top and bottom panels). After 
presenting a fixation point for 500 ms (timeline in the middle), a pair of stimuli are presented off-
foveally at equal distances from the fixation point. One of the images (shown on the left for the 
example trial) covers the receptive fields of recorded V1 neurons. After another 700 ms the 
color of the fixation point changes, cuing the monkey which of the images it needs to focus its 
attention to. In the following 800 ms one of the images is rotated, and the monkey is asked to 
respond if the cued stimulus changes and to withhold responses to changes of the non – cued 
stimulus. Multiunit activity is recorded on multiple channels and spiking activity is obtained 
(raster plots). Stimulus onset elicits large transient responses (peaks in the channel-averaged 
activity, top trace), followed by more sustained but weaker responses. Analysis of spiking 
activity was constrained to this segment of 400 ms (gray shading). Mean activity levels differ on 
different channels in a single trial (left side raster plot) but reflect the overall pattern of activation 
levels measured across trials where the same image was presented to the neurons (right side 
raster plot). A different image (bottom panel) elicits different mean activations, as reflected by 
the individual trial and by trial-averaged responses. Ordering of the channels is preserved 
across the two panels and ordering was done according to the trial-average responses to the 
first image (top-right raster). b, Dissimilarity of patterns in average firing rates calculated across 
half of the trials are compared to average firing rates calculated for the rest of the trials for the 
same stimulus (within-stimulus) or to average firing rates measured for other stimuli (across-
stimuli). 
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Figure 3. Stimulus-dependence of spike count correlation. a, Natural images elicit responses 
that are characterized by spike count correlations. b, Fine structure of spike count correlations 
(partial correlations) can be determined for the two subsets of trials (upper and lower triangles of 
the spike count correlation matrix, with colors matching those used on a), and they can be 
compared to both sets of trials coming from responses to the same image (left column, within-
stimulus), or to different images (right column, across-stimuli). c, Histograms of spike count 
correlations calculated between channels are obtained for two equal-sized subset of trials (two 
different colors on the same plot). Means of the correlations are close to zero but the distribution 
has a large spread (tick and whisker plots with matching colors). d, Dependence of within-
stimulus dissimilarity of spike count correlation matrices on the number of trials used to estimate 
pairwise spike count correlations. e, Dissimilarity of mean spike count correlations within-
stimulus and across-stimuli. f, Dissimilarity of spike count correlation matrices within-stimulus 
and across-stimuli. 
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Figure 4. Controlling changes in firing rate distribution for the comparison of spike count 
correlation distributions. a,  Distribution of the magnitude of changes in firing rates and 
correlations upon presenting stimulus ‘i’ or ‘j’. Every point on the scatter plot represents the 
response of a pair of channels to every pair of stimuli in a given condition (grey dots). Data from 
all sessions are aggregated. Marginal distributions for firing rate differences and correlation 
differences are shown on the horizontal and vertical histograms, respectively. To calculate the 
difference in firing rates, a mean response is calculated for the two channels at the two stimuli 
(grey bars on middle panels), next geometric mean is obtained (red bars on middle panels) and 
finally the absolute value of difference is calculated. To calculate the spike count correlation 
difference of the same pair of cells, z-scored spike counts are obtained (bottom panels, 
representing individual trials), Pearson correlation is calculated for each image and finally the 
difference between correlations calculated for the two images is calculated. b, Under a different 
condition where stimuli ‘k’ and ‘l’ are presented, joint distribution of firing rate differences and 
correlation differences are calculated (grey dots). Since we want to assess correlation changes 
independent of changes in firing rates, the marginal distributions of firing rate differences in 
condition A (a) and condition B (b) are subsampled such that firing rate differences have the 
same distribution under the two conditions (green histograms). Firing rate difference-matched 
correlation differences are obtained by calculating correlation difference distributions (gold and 
purple histograms) from the subsampled joint distributions (black dots on the scatter on both a 
and b). c, Using within-stimulus comparison as condition A and across-stimuli comparison as 
condition B (left panel), dissimilarity of firing rates (top row) and correlations (bottom row) when 
firing rate differences are not equated (middle panels) or matched (right panels). Initial 
differences in firing rate dissimilarity (top row, grey bars) are eliminated by the matching 
procedure (top row, green bars). Initial differences in the dissimilarity of correlations (bottom 
row, grey bars) remain significant after matching firing rate differences (bottom row, colored 
bars, colors matching those of histograms at panels a and b). 
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Figure 5. Comparison of stimulus-specificity of correlation patterns induced by different stimulus 
structures. a, A set of natural image patches are used as a reference condition and a set of 
synthetic image patches generated from a V1 model of images is used in the second condition. 
b, Stimulus-specificity of firing rate responses (top panel) and spike count correlation patterns 
(bottom panel) in the original (unmatched) data. While correlations show higher specificity for 
natural images, specificity of firing rate responses is also higher in the reference condition. 
Shaded areas show the extrapolated estimate of within-stimulus dissimilarity for both firing rates 
and correlations (see Experimental Procedures).  c, Contrastive rate matching eliminates 
stimulus-specificity of firing rate responses, but the residual dissimilarity of spike count 
correlations is still significantly higher for natural images than for LL-synthetic stimuli. d, Raster 
marginal models (RMMs) fitted to the spike trains recorded under natural image stimulation 
condition and under LL-synthetic stimulus stimulation condition in an example session (top and 
middle, respectively). Distributions of dissimilarities are calculated between correlation matrices 
sampled from RMMs obtained from the population activities recorded for individual stimuli. Black 
triangles mark the mean dissimilarity calculated from the electrophysiological data. Bottom: 
Likelihoods of recorded dissimilarity under the RMM model in all of the sessions in the natural 
and LL-synthetic conditions (colors match those of the top and middle panels). Dissimilarity 
indices of 500 pairs of correlation matrices sampled from the RMM model were used to assess 
the likelihood of the recorded data. Stimulus-dependence of correlation matrices under natural 
image stimulation could not be explained by an RMM model in any of the recorded sessions. 
Dissimilarity determined for LL-synthetic stimuli was significantly different from the RMM model 
in five out of nine sessions. 
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Figure 6. Comparison of stimulus-specificity of correlation patterns evoked by stimuli with 
different levels of statistical structure. a, condition A, a set of synthetic image patches in which 
filter co-occurrences define a texture structure (HL-synthetic stimuli) , condition B , a set of 
synthetic image patches generated from a V1 model of images (LL-synthetic stimuli). b, 
Stimulus-specificity of firing rate responses (top panel) and spike count correlation patterns 
(bottom panel) in the original (unmatched) data. While correlations show higher specificity for 
HL-synthetic images, specificity of firing rate responses is also higher in the first condition. c, 
Firing and correlation dissimilarities after applying the contrastive rate matching procedure. 
Contrastive rate matching eliminates stimulus-specificity of firing rate responses, but the 
residual dissimilarity of spike count correlations is still significantly higher for HL-synthetic stimuli 
than that for LL-synthetic stimuli. 
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