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Abstract 30 

Sea turtles are a keystone species and are highly sensitive to changes in their environment, 31 

making them excellent environmental indicators. In light of environmental and climate changes, 32 

species are increasingly threatened by pollution, changes in ocean health, habitat alteration, and 33 

plastic ingestion. There may be additional health related threats and understanding these threats is 34 

key in directing future management and conservation efforts, particularly for severely reduced 35 

sea turtle populations. Hawksbill turtles (Eretmochelys imbricata) are critically endangered, with 36 

those in the eastern Pacific Ocean (Mexico–Peru) considered one of the most threatened sea turtle 37 

populations in the world. This study establishes baseline health parameters in hematology and 38 

blood biochemistry as well as tested for heavy metals and persitent organic pollutants in eastern 39 

Pacific hawksbills at a primary nesting colony located in a mangrove estuary. Whereas 40 

hematology and biochemistry results are consistent with healthy populations of other species of 41 

sea turtles, we identified differences in packed cell volume, heterophils and lympohcyte counts, 42 

and glucose when comparing our data to other adult hawksbill analysis (1), (2), (3). Our analysis 43 

of heavy metal contamination revealed a mean blood level of 0.245 ppm of arsenic, 0.045 ppm of 44 

lead, and 0.008 ppm of mercury. Blood levels of persistent organic pollutants were below the 45 

laboratory detection limit for all turtles. Our results suggest that differences in the feeding 46 

ecology of eastern Pacific hawksbills in mangrove estuaries may make them less likely to 47 

accumulate persistent organic pollutants and heavy metals in their blood. These baseline data on 48 

blood values in hawksbills nesting within a mangrove estuary in the eastern Pacific offer 49 

important guidance for health assessments of the species in the wild and in clinical rehabilitation 50 

facilities, and underscore the importance of preventing contamination from point and non-point 51 

sources in mangrove estuaries, which represent primary habitat to hawksbills and myriad other 52 

marine species in the eastern Pacific Ocean. 53 
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Introduction 55 

Disease can cause declines in wildlife populations, especially those that are already threatened or 56 

vulnerable (4) (5) (6) (7). Baseline hematology and biochemistry blood parameters are useful 57 

indicators for the assessment of the health status of wild nesting sea turtle populations (8) and are 58 

especially helpful in clinical rehabilitation facilities (9). However, reference ranges for 59 

hematology and blood biochemistry are not widely available, with many reported values derived 60 

from captive animals that may not be representative of wild individuals. Additionally, data from 61 

one population of a species often are used as references for other populations, despite potential 62 

within-species variation (10) (11) (12) (13). 63 

Hawksbill turtles (Eretmochelys imbricata) exemplify a species whose life history may 64 

vary widely among populations in distinct ocean basins (14) (15). In the Atlantic and Indo-65 

Pacific, adult hawksbills primarily inhabit coral reef ecosystems (16) (17) (18) and can embark 66 

on long-distance (>2,000 km), offshore migrations between nesting and foraging areas (e.g., (19)  67 

(20). Hawksbills in the eastern Pacific, however, often associate with mangrove ecosystems (21) 68 

(14) (22) (15) and undertake particularly short (<300 km) and neritic (<5 km) post-nesting 69 

migrations (23) (24). The marked difference in life history among hawksbills in these ocean 70 

basins could greatly influence general health parameters, which are largely unknown for adult 71 

hawksbills (3) and which have never been analyzed for individuals inhabititing mangrove 72 

estuaries. The availability of reference ranges is paramount for different populations of the same 73 

species and even subspecies, as values may even vary amongst a small population depending on 74 

diet and ecological variables (25). 75 

Hawksbills are critically endangered globally according to the International Union for the 76 

Conservation of Nature’s (IUCN) Red List (26) and the population in the eastern Pacific is 77 

among the most endangered Regional Management Units (27) for sea turtles worldwide (28). 78 
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Fewer than 700 adult female hawksbills are estimated to remain in the entire eastern Pacific 79 

Ocean (29) (15), where >80% of these individuals nest on beaches in mangrove estuaries of El 80 

Salvador and Nicaragua (30) (31) (15). These same mangrove ecosystems also provide important 81 

developmental habitat for juvenile and sub-adult hawksbills (14) (32). Known threats to this 82 

species in the region include incidental capture in coastal fisheries, human consumption of eggs, 83 

and alteration of nesting habitat (29) (31). An additional, albeit understudied potential threat to 84 

hawksbills inhabiting mangrove estuaries, is contamination by chemicals used in aquacultural 85 

and agricultural operations, including persistent pesticide residues from shrimp ponds (33) and 86 

toxic compounds dicharged by surrounding rivers (34). These contaminants have been 87 

documented as negatively influencing myriad species, including estuarine fish species (35) 88 

mollusks (36) and marine turtles (37). If these contaminants are present in mangrove estuaries, 89 

reliance on such habitats could have direct impacts on health of hawksbills. 90 

In this study, we measured blood biochemistry, hematology, and toxicological parameters 91 

in wild adult female hawksbills nesting in the Bahía de Jiquilisco mangrove estuary complex in 92 

El Salvador to establish baseline health data for one of the most important hawksbill nesting 93 

areas in the eastern Pacific. This information will establish a baseline for these parameters and 94 

aid in long-term evaluation of the health status of this severely depleted population and serve to 95 

guide future management and conservation efforts, as well as to facilitate comparisons among 96 

hawksbill populations in other oceanic basins. 97 

 98 
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 99 

Materials and Methods 100 

Study site 101 

Bahía de Jiquilisco (13°13′N, 88°32′W) is located in the Department of Usulután on the south-102 

central coast of El Salvador (Fig. 1), and is a National Conservation Area, RAMSAR wetland, 103 

and UNESCO Biosphere Reserve. It contains the largest mangrove forest in El Salvador (635 104 

km2), and includes numerous islands, channels, and estuaries, with moderate development at 105 

some nesting beaches (31). Bahía de Jiquilisco has 42.1 km of hawksbill nesting habitat that 106 

includes eight discernable fine grained sand beaches with fragmented second growth coastal 107 

forest and fruit tree plantations adjacent to the high water line (15) which host ~40% of hawksbill 108 

nesting activity in the eastern Pacific (29) (31) (38).  109 

 110 

Fig. 1. Locations of hawksbill nesting beaches with patrolled shoreline (black lines) at Bahía de 111 

Jiquilisco, El Salvador, 2013–2014. 112 

 113 

Beach Monitoring and Turtle Measurements 114 

Hawksbill nesting occurs primarily between April and October, with a peak in June–July. We 115 

conducted beach patrols from 1 April to 15 October 2013–2014 at Bahía de Jiquilisco, where 116 

project personnel and an extensive network of >100 trained local egg collectors monitored 117 

nesting habitat from 18:00 to 06:00 daily by foot and boat in search of female hawksbills. We 118 

identified turtles by Inconel tags (Style 681, National Brand & Tag, Newport, KY, USA) located 119 

on the second proximal scale of both front flippers and internal passive integrated transponders 120 

(PIT tags; Biomark, Boise, ID, USA) in the right front flipper; Inconel and PIT tags were either 121 

present from application during previous tagging seasons or were applied after egg laying was 122 
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completed (15). For each female hawksbill encountered, we measured curved carapace length 123 

(nuchal notch to posterior-most tip of marginal scutes; CCL) and in 2013 we performed a 124 

complete visual and physical examination, noting all epi-biota on the turtle and body condition. 125 

 126 

Sample Collection and Analyses 127 

We collected up to 12 ml of blood from the dorsal cervical sinus using a 10 ml syringe and 18 128 

gauge 1.5 inch needle and immediately transferred the sample into a red-top glass serum 129 

separator tube and sodium heparin vacutainer tubes. They were not refrigerated prior to 130 

processing. Blood smears were made in our field base camp from sodium heparin-treated blood 131 

and were fixed with 99% methanol on glass slides and air dried.  132 

We initially processed the blood in the field within 6–8 hours of blood collection. Packed 133 

cell volumes were performed using a tabletop centrifuge and whole blood in sodium heparin 134 

tubes was transferred to 1 ml cryotubes and frozen in liquid nitrogen for heavy metal analysis. 135 

The remaining blood was spun for 10 minutes at 2000 RPMs and the serum separated and frozen 136 

in cryotubes in liquid nitrogen in the field, which were subsequently stored in −20° C freezers at 137 

the University of El Salvador. Samples collected in 2013 were shipped in dry ice to the United 138 

States for hematology, serum biochemistry, heavy metal, and toxicology analyses, whereas in 139 

2014, plasma biochemistry analyses were conducted at Centro Scan (San Salvador, El Salvador). 140 

The results were pooled for determining biochemistry reference ranges after determining that 141 

there was no statistical difference between the two sample sets.  142 

For hematology, blood films were stained at the Minnesota Zoo with DipQuick stain 143 

(Jorgenson Laboratories, Loveland, CO,  USA) for manual differential accounts of circulating 144 

white blood cells and for hemo-parasite identification. Total white blood cell counts were 145 

estimated. Samples for serum biochemistry were shipped on dry ice for processeing at Marshfield 146 
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Laboratories (Marshfield, WI, USA). The biochemical panel included alanine aminotransferase 147 

(ALT), aspartate aminotransferase (AST), alkaline phosphatase, cholesterol, CO2, creatine kinase 148 

(CK), glucose, lactate dehydrogenase (LDH), calcium, phosphorous, potassium, sodium, 149 

chloride, bicarbonate, total protein, anion gap and uric acid (UA). Reference intervals for 150 

biochemistry and hematology variables were computed using the package referenceIntervals for 151 

R (39) Parametric 95% reference intervals were computed, and the one-sample Kolmogorov-152 

Smirnoff test (40) was used to assess the distributional assumption.  For variables with a 153 

Kolmogorov-Smirnoff p-value less than 0.01, a non-parametric 95% reference interval was 154 

determined instead, with endpoints given by the 0.025 and 0.975 sample quantiles of the 155 

observed data.  156 

Blood samples were screened at the California Animal Health and Food Safety 157 

Laboratory (San Bernadino, CA, USA) for heavy metals (arsenic [detection limit = 0.010 ppm], 158 

lead [0.050], and mercury [0.010]) and persistent organic pollutants (POP), including 159 

organochlorine insecticides (aldrin [0.010], alpha-BHC [0.010], gamma-chlordane [0.010], 160 

technical chlordane [0.050], pp-DDE [0.020], pp-DDD [0.020], pp-DDT [0.020], dicofol [0.020], 161 

op-DDE [0.020], op-DDD [0.020], op-DDT [0.020], dieldrin [0.010], endosulfan I [0.010], 162 

endosulfan II [0.010], endrin [0.010], HCB [0.010], heptachlor [0.010], heptachlor epoxide 163 

[0.010], lindane [0.010], methoxychlor [0.010]), mirex [0.010], toxaphene [0.400] and 164 

polychlorinated biphenyl (Arochlor 1221, 1232, 1242, 1248, 1254, 1260, 1262 [0.200 and 165 

0.400]). Mean toxicity levels were determined, with 95% confidence intervals, for arsenic, lead, 166 

and mercury.  If observations were missing below the limit of detection, the mean and standard 167 

deviation were inferred via maximum likelihood under the assumption that the data have a log-168 

normal distribution that is left-censored below the limit of detection using the package censeReg 169 

for R (41). All data and analysis is publicly available as an annotated reproducible R code file at 170 
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https://doi.org/10.6084/m9.figshare.5702818 and 171 

https://doi.org/10.6084/m9.figshare.5702779. 172 

 173 

Results 174 

We encountered and examined 66 nesting hawksbills at Bahía de Jiquilisco in 2013–2014, which 175 

had a mean carapace length of 84.9 cm (SD 5.8, range = 71.0–96.6) and appeared in good general 176 

health. Physical exam findings in 2013 included two turtles that were covered in approximately 177 

5% of epi-biotic growth; nearly all other individuals were less than 1%. Six individuals exhibited 178 

carapace damage, including missing scutes, although all appeared to have healed from the 179 

injuries. One individual had a fairly large deformity of her distal carapace, but was mobile, in 180 

good body condition, and did not have difficulty depositing eggs. Additionally, one individual 181 

had a small tumor on the right rear flipper, but logistical limitations prevented biopsy collection. 182 

Hematologic values are presented in Table 1. No hemo-parasites were observed for the 28 183 

hawksbills evaluated in 2013. Table 2 provides the serum biochemistry reference ranges for 184 

blood collected in plain serum separator tubes in 2013 and blood plasma from sodium heparin 185 

tubes in 2014, including liver enzymes, total protein, electroyltes, and uric acid.  186 

 187 

 188 
 189 
 190 
 191 
 192 
 193 
 194 
 195 
 196 
 197 
 198 
 199 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 23, 2017. ; https://doi.org/10.1101/238956doi: bioRxiv preprint 

https://doi.org/10.1101/238956
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

Table 1. Hematology reference intervals for wild hawksbill turtles (Eretmochelys imbricata) 200 
nesting at Bahía de Jiquilisco, El Salvador, 2013 (n = 28). 201 
 202 
Parametera 95% reference interval KS p-valueb 
 Low High  

PCV (%) 23.0 33.6 0.7130 
WBC (× 103/μL) 1228.2 10,871.8 0.0528 
Heterophils (%) 43.4 93.6 0.3306 
Heterophils (× 103/μL) 0 8549.7 0.2120 
Lymphocytes (%) 41.8 42.6 0.8327 
Lymphocytes (× 103/μL) 87.5 2517.7 0.8282 
Monocytes (%) 0.3 11.8 0.1358 
Monocytes (× 103/μL) 0 748.3 0.4461 
Basophils (%) 0 7.1 0.5905 
Basophils (× 103/μL) 0 398.4 0.8808 
Eosinophils (%)c 0 5 <0.0001 
Eosinophils (× 103/μL)c 0 290 <0.0001 
aPCV, packed cell volume; WBC, white blood cells. 203 
bKS p-value, Kolmogorov-Smirnoff p-value. 204 
cIndicates non-parametric 95% reference interval. 205 
 206 

 207 

 208 
 209 
 210 
 211 
 212 
 213 
 214 
 215 
 216 
 217 
 218 
 219 
 220 
 221 
 222 
 223 
 224 
 225 
 226 
 227 
 228 
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Table 2. Serum chemistry reference intervals for wild hawksbill turtles (Eretmochelys imbricata) 229 
nesting at Bahía de Jiquilisco, El Salvador, 2013–2014 (n = 66). 230 
 231 
Parametera n 95% reference interval KS p-valueb 
  Low High  

Glucose (mg/dL) 51 57.5 142.0 0.1771 
AST (U/L) 51 18.3 74.3 0.8810 
ALT (U/L) 33 16.3 78.1 0.8429 
ALP (U/L) 51 25.7 93.6 0.4668 
CK (U/L)c 51 121 1296.2 <0.0001 
LDH (U/L)c 51 135.6 1645.7 0.0009 
Cholesterol (mg/dL) 51 107.1 366.8 0.8260 
TP (g/dL) 51 2.6 5.0 0.6850 
Phosphorus (mg/dL) 18 3.4 16.1 0.6876 
Calcium (mg/dL) 36 1.0 21.2 0.0379 
Sodium (mmol/L) 51 140.7 169.4 0.8217 
Potassium (mmol/L) 18 3.7 5.7 0.9910 
Chloride (mmol/L) 51 96.9 148.5 0.1106 
Bicarbonate (mmol/L) 18 9.8 33.5 0.9538 
Uric Acid (mg/dL) 33 1.0 1.8 0.1846 
Anion Gap (mmol/L) 18 7.6 36.8 0.2089 
aAST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; 232 

CK, creatine kinase; LDH, lactate dehydrogenase; TP, total protein. 233 
bKS p-value, Kolmogorov-Smirnoff p-value. 234 
cIndicates non-parametric 95% reference interval. 235 
 236 

Levels of arsenic, lead, and mercury are presented in Table 3. Arsenic had the highest level, with 237 

a mean of 0.245 ppm (95% confidence interval = (0.10, 0.39)). Arsenic was detectable in all of 238 

the samples collected (n = 28). Lead and mercury had lower mean levels of 0.045 (95% 239 

confidence interval = (0.038, 0.056)) and 0.008 (95% confidence interval = (0.004, 0.017)) 240 

respectively. Samples from all turtles tested for POPs (n = 28) were below the detectable limits. 241 

 242 
 243 
 244 
 245 
 246 
 247 
 248 
 249 
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Table 3. Heavy metal blood values for wild hawksbill turtles (Eretmochelys imbricata) nesting at 250 
Bahía de Jiquilisco, El Salvador, 2013 (n = 28). 251 
 252 
Parameter Mean 95% CI 
  Low High 

Arsenic 0.245 0.100 0.390 
Lead 0.045 0.038 0.056 
Mercury 0.008 0.004 0.017 

 253 
 254 

Discussion 255 

Our results provide the first assessment of hematology, biochemistry, heavy metal, and persistent 256 

organic pollutant levels in the blood of wild hawksbills nesting in mangrove estuaries and 257 

establish baseline values for mature female hawksbills in these habitats in the eastern Pacific 258 

Ocean. The population sampled in this study was rated overall as healthy, as nesting hawksbills 259 

were in good body condition, had minimal epibiota, and generally had normal physical exam 260 

findings.  While interpreting the parameters in this study, it is important to note that it is common 261 

that highly contaminated reptiles show no acute signs of health distress, thus our results should 262 

not be misinterpreted as confirming the species is healthy in the region.  263 

 264 

Hematology and Biochemistry 265 

The hematological and biochemistry results are generally comparable to those of other species of 266 

sea turtles sampled with healthy populations (42) (43) (44) (45) including hawksbill nesting 267 

females at open-coast beaches in Brazil (1) and for hawksbill foraging aggregations at coral reefs 268 

in the eastern Pacific (Table 4). Some differences are notable in comparing values between 269 

studies, for example glucose in the (3) study is significantly higher than that of all other studies 270 

and the Packed Cell Volume is lower in our study than in (1). Notably only eight individuals 271 

were sampled in the (3) study and the sea turtles were caught in the open water and brought on to 272 
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the beach instead of testing nesting females. The authors speculate that handling stress induced a 273 

stress hyperglycemia. This study also is the only other adult wild hawksbill study to include a 274 

white blood cell differential count, which varies from ours in numbers of heterophils and 275 

lymphocytes. The other two studies, (2) and (1) have similar values for biochemistries to our 276 

study.  277 

One female in our study had white blood cell count and heterophil count twice as high as 278 

the lowest WBC and heterophil count sampled, so occult illness in one or more individuals of our 279 

studied population may be possible (46). Biochemistry reference ranges were established (2) for 280 

juvenile hawksbills occupying a coral reef ecosystem off the Pacific coast of Colombia, with 281 

calcium, total protein, phosphorus, glucose values similar to our data, but with much wider 282 

ranges of LDH, AST, and cholesterol. Some differences were noted between several 283 

hematological and biochemistry values when compared to published data from juvenile 284 

hawksbills undergoing rehabilitation in the United Arab Emirates (47). For example, juvenile 285 

hawksbills had lower mean PCVs, lower total white blood cell counts, and higher AST, CK, and 286 

uric acid levels. Additionally, mean calcium, phosphorus, and total protein levels were lower in 287 

the rehabilitated animals when compared to our study sample. These differences may be due, at 288 

least in part, to the impaired health of animals in rehabilitation, as well as possible geographic 289 

variation in environmental variables or in the life-history characteristics of hawksbills in distinct 290 

oceanic regions. Variation in biochemistry ranges may reflect differences in physiological 291 

requirements between life stages (i.e. juvenile vs. adults) and/or behavior/habitats (nesting in 292 

mangrove estuaries vs foraging at coral reef ecosystems) of each studied hawksbill population 293 

(15). 294 

  295 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 23, 2017. ; https://doi.org/10.1101/238956doi: bioRxiv preprint 

https://doi.org/10.1101/238956
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

Table 4. Available blood values for hawksbill turtles. 296 

 Wrobel Goldberg et al. 2013  Tobón-López & Amorocho Llanos 2014  Muñoz-Pérez et al. 2017  Tauer et al. this study 
Parametera Mean SD nb  Mean SD nc  Mean SD nd  Mean SD ne 
Hematology                
PCV (%) 39.4 2.9 41  – – –  – – –  28.34 7.71 28 
RBC (× 1012/L) – – –  – – –  0.35 0.09 8  – – – 
WBC (× 109/L) – – –  – – –  5.31 3.86 8  – – – 
Heterophils (%) – – –  – – –  32.3 6.9 8  65.5 12.81 28 
Lymphocytes (%) – – –  – – –  45.9 6.1 8  22.21 10.4 28 
Monocytes (%) – – –  – – –  3.6 1.9 8  6.04 2.92 28 
Basophils (%) – – –  – – –  0.1 0.2 8  2.82 2.20 28 
Eosinophils (%) – – –  – – –  18.5 4.5 8  0.36 0.99 28 

Biochemistry                
Glucose (mg/dL) 98.6 14.6 41  103.5 16.6 11  1567.6 180.2 7  99.71 21.56 51 
AST (U/L) 55.4 7.1 41  132.6 111.2 11  196 54 8  46.33 14.29 51 
ALT (U/L) 6.6 2.4 41  – – –  38 15 8  47.18 15.75 33 
ALP (U/L) 15.9 3.7 41  – – –  53 26 8  56.63 17.33 51 
LDH (U/L) – – –  136.5 78.9 11  – – –  394.41 288.12 51 
Cholesterol (mg/dL) 287 42 41  84.5 30.9 11  – – –  236.92 66.24 51 
TP (g/dL) 5.45 0.63 41  2.5 0.7 11  4.8 0.7 8  3.79 0.62 51 
Phosphorus (mg/dL) 11.3 1.4 41  6.7 2 11  – – –  9.76 3.23 18 
Calcium (mg/dL) 11.6 1.5 41  7.8 1.8 11  – – –  11.09 5.14 36 
Sodium (mmol/L) 139.6 3.5 41  – – –  157 2 7  155.04 7.33 51 
Potassium (mmol/L) 5.09 0.76 41  – – –  4.2 0.4 7  4.68 0.51 18 
Chloride (mmol/L) – – –  – – –  – – –  122.71 13.14 51 
Biocarbonate (mmol/L) – – –  – – –  – – –  21.61 6.05 18 
Uric Acid (mg/dL) 0.95 0.17 41  3.7 2.7 11  – – –  1.39 0.20 33 
Anion Gap (mmol/L) – – –  – – –  – – –  22.22 7.45 18 
aPCV, packed cell volume; RBC, red blood cells; WBC, white blood cells; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline  297 
 phosphatase; CK, creatine kinase; LDH, lactate dehydrogenase; TP, total protein. 298 
bHawksbills nesting on open-coast beaches in Brazil, Atlantic Ocean. 299 
cHawksbills foraging at coral reefs in Colombia, Pacific Ocean. 300 
dHawksbills foraging at coral reefs in Ecuador, Pacific Ocean. 301 
eHawksbills nesting on beaches within mangrove estuaries in El Salvador, Pacific Ocean.302 
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 303 

Heavy Metals 304 

Heavy metal values appear variable amongst species and subpopultations in loggerhead (Caretta 305 

caretta), kemp’s ridley (Lepidochelys kempii), and green (Chelonia mydas) turtles (48) (49) (50), 306 

and are likely related to environmental effects, diet, age, and geography. While hawksbills are 307 

omnivorous, their diet worldwide is primarily composed of sponges (51), which are of low 308 

trophic level and may explain lower levels of contaminants than sea turtle species that eat items 309 

higher up on the food chain, such as olive ridley (Lepidochelys olivacea) and kemp’s ridley 310 

turtles (48). Adult hawksbills have been documented having relatively low concentrations of the 311 

heavy metals in their blood, although maternal transfer of heavy metals from adult hawksbills to 312 

their eggs is known to occur (43). 313 

 Higher levels of arsenic were found in adult hawksbill tissues in Japan, particularly in 314 

muscle, than compared to adult green turtles (52). Additionally, arsenic levels of marine sponges 315 

were found to range from 0.8–157 mgm/gram of dry weight, suggesting that sponges may be a 316 

significant source of arsenic in adult hawksbills. It is unclear the role that sponges may play in 317 

accumulation of other heavy metals or persistent organic pollutants, such as the low levels of lead 318 

and mercury found in our study population.. Importantly, hawksbills in our study area utilize 319 

mangrove estuaries and are believed to feed predominantly on mangrove seeds and roots (M. 320 

Liles, pers. obs.), indicating that they may feed at an even lower trophic level than populations of 321 

hawksbills in other regions. The tendency to feed at low trophic levels may enable eastern Pacific 322 

hawksbills to avoid higher levels of blood pollutants seen in conspecifics in other habitats, as 323 

well as other sea turtle species. 324 

 325 
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Persistent Organic Pollutants 326 

Organic and inorganic pollutants have been more frequently studied in loggerheads than other sea 327 

turtle species (53) (54) (55). Studies on loggerheads have found detectable POP and PCB results 328 

in which several of the individual contaminants had correlations with changes in clinical 329 

parameters such as packed cell volume (56). Further studies are needed on all sea turtle species to 330 

determine the individual and population level effects on health and reproductive outcomes in 331 

animals exposed to inorganic and organic pollutants. 332 

The trophic level of food items consumed by sea turtle species at different life stages may 333 

impact levels of POP and PCBs. For instance, green turtles consume marine invertebrates as 334 

juveniles before transitioning to primarily algae and sea grass as adults, whereas adult 335 

leatherback and hawksbills forage on jellyfish and primarily marine sponges, respectively (57). 336 

For hawksbills and leatherbacks, this may mean they tend to accumulate more polluntants. More 337 

recently, however, leatherback turtles (Dermochelys coriacea) in Gabon with evaluated levels of 338 

POP and PCB in the blood of nesting and all turtles had levels below the detectable limit (42), a  339 

recent study (58) noff the west coast of Senegal in the Cape Verde Islands comparing POP and 340 

PCB levels in juvenile green and hawksbill turtles found detectable levels in both species, 341 

although green turtles had both higher levels and a greater prevalence of contamination. Trophic 342 

levels might not reflect higher levels of POP in adult green and hawksbill turtles and viable turtle 343 

eggs (59).  344 

 345 

Conclusions 346 

Our study provides baseline health data for hawksbills nesting at a primary rookery located in a 347 

mangrove estuary in the eastern Pacific Ocean, which can provide a starting point for long-term 348 

monitoring of health status of hawksbills in the region and offer diagnostic indications for 349 
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treatment of individuals in clinical rehabilitation. Additional studies between healthy juvenile and 350 

adult hawksbills in both mangrove estuaries and other habitats should be conducted to delineate 351 

size or age related differences in biochemistry and hematologic values in this species, as apparent 352 

health status may not reflect contaminant loads. We suggest that future research determine 353 

contaminant loads of marine sponges and mangrove vegetation in the Bahía de Jiquilisco and the 354 

potential role they play in accumulation of toxins in the environment. It is possible ecosystem 355 

processes are occurring that prevent uptake of toxins in the environment to the sea turtles 356 

themselves, or through their diet, which, contrary to most hawksbill populations, includes 357 

substantially more vegetation (60). Further studies at Bahia de Jiquilisco utilizing skin, muscle, 358 

carapace, fat and liver may provide different results than those obtained in this study.  359 
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