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Abstract The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or13

acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of14

missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. This complicates15

the practice of precision medicine, pairing of patients with clinical trials, and development of next-generation16

inhibitors. Here, we examine the potential for alchemical free-energy calculations to predict how kinase17

mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). We18

find these calculations can achieve useful accuracy in predicting resistance for a set of eight FDA-approved19

kinase inhibitors across 144 clinically-identified point mutations, achieving a root mean square error in20

binding free energy changes of 1.11.30.9 kcal/mol (95% confidence interval) and correctly classifying mutations21

as resistant or susceptible with 889382% accuracy. Since these calculations are fast on modern GPUs, this22

benchmark establishes the potential for physical modeling to collaboratively support the rapid assessment23

and anticipation of the potential for patient mutations to affect drug potency in clinical applications.24

25

Targeted kinase inhibitors are a major therapeutic class in the treatment of cancer. A total of 38 selective26

small molecule kinase inhibitors have now been approved by the FDA [1], including 34 approved to treat27

cancer, and perhaps 50% of all current drugs in development target kinases [2]. Despite the success of28

selective inhibitors, the emergence of drug resistance remains a challenge in the treatment of cancer [3–10]29

and has motivated the development of second- and then third-generation inhibitors aimed at overcoming30

recurrent resistance mutations [11–15].31

While a number of drug resistance mechanisms have been identified in cancer (e.g., induction of splice32

variants [16], or alleviation of feedback [17]), inherent or acquired missense mutations in the kinase domain33

of the target of therapy are a major form of resistance to tyrosine kinase inhibitors (TKI) [10, 18, 19]. Oncology34

is entering a new era with major cancer centers now deep sequencing tumors to reveal genetic alterations35

that may render subclonal populations susceptible or resistant to targeted inhibitors [20], but the use of36

this information in precision medicine has lagged behind. It would be of enormous value in clinical practice37

if an oncologist could reliably ascertain whether these mutations render the target of therapy resistant or38

susceptible to available inhibitors; such tools would facilitate the enrollment of patients in mechanism-based39
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Figure 1. Relative alchemical free-energy calculations can be used to predict affinity changes of FDA-approved
selective kinase inhibitors arising from clinically-identified mutations in their targets of therapy. (a) Missense
mutation statistics derived from 10,336 patient samples subjected to MSK-IMPACT deep sequencing panel [20] show that

68.5% of missense kinase mutations in cancer patients have never been observed previously, while 87.4% have been

observed no more than ten times. (b) To compute the impact of a clinical point mutation on inhibitor binding free energy,
a thermodynamic cycle can be used to relate the free energy of the wild-type and mutant kinase in the absence (top)

and presence (bottom) of the inhibitor. (c) Summary of mutations studied in this work. Frequency of the wild-type (dark
green) and mutant (green) residues for the 144 clinically-identified Abl mutations used in this study (see Table 1 for data
sources). Also shown is the frequency of residues within 5 Å (light blue) and 8 Å (blue) of the binding pocket. The number

of wild-type Phe residues (n=45) and mutant Val residues (n=31) exceeded the limits of the y-axis.

basket trials [21, 22], help prioritize candidate compounds for clinical trials, and aid the development of40

next-generation inhibitors.41

The long tail of rare kinase mutations frustrates prediction of drug resistance42

While some cancer missense mutations are highly recurrent and have been characterized clinically or43

biochemically, a “long tail” of rare mutations collectively accounts for the majority of clinically observed44

missense mutations (Figure 1a), leaving clinicians and researchers without knowledge of whether these45

uncharacterized mutations might lead to resistance. While rules-based and machine learning schemes46

are still being assessed in oncology contexts, work in predicting drug response to microbial resistance has47

shown that rare mutations present a significant challenge to approaches that seek to predict resistance48

to therapy [23]. Clinical cancer mutations may impact drug response through a variety of mechanisms49

by altering kinase activity, ATP affinity, substrate specificities, and the ability to participate in regulatory50

interactions, compounding the difficulties associated with limited datasets that machine learning approaches51

face. In parallel with computational approaches, high-throughput experimental techniques such as MITE-52

Seq [24] have been developed to assess the impact of point mutations on drug response. However, the53

complexity of defining selection schemes that reliably correlate with in vivo drug effectiveness and long54

turn-around times might limit their ability to rapidly and reliably impact clinical decision-making.55

Alchemical free-energy methods can predict inhibitor binding affinities56

Physics-based approaches could be complementary to machine-learning and experimental techniques57

in predicting changes in TKI affinity due to mutations with few or no prior clinical observations. Modern58

atomistic molecular mechanics forcefields such as OPLS3 [25], CHARMM [26], and AMBER FF14SB [27] have59

reached a sufficient level of maturity to enable the accurate and reliable prediction of receptor-ligand binding60

free energy. Alchemical free-energy methods permit receptor-ligand binding energies to be computed61
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rigorously, including all relevant entropic and enthalpic contributions [28]. Encouragingly, kinase:inhibitor62

binding affinities have been predicted using alchemical free-energy methods with mean unsigned errors of63

1.0 kcal/mol for CDK2, JNK1, p38, and Tyk2 [29, 30]. Beyond kinases, alchemical approaches have predicted64

the binding affinity of BRD4 inhibitors with mean absolute errors of 0.6 kcal/mol [31]. Alchemical methods65

have also been observed to have good accuracy (0.6 kcal/mol mean unsigned error for Tyk2 tyrosine kinase)66

in the prediction of relative free energies for ligand transformations within a complex whose receptor67

geometry was generated using a homology model [32].68

Alchemical approaches can predict the impact of protein mutations on free energy69

Alchemical free-energy calculations have also been used to predict the impact of mutations on protein-70

protein binding [33] and protein thermostabilities [34]. Recent work has found that protein mutations can71

be predicted to be stabilizing or destabilizing with a classification accuracy of 71% across ten proteins and 6272

mutations [35]. The impact of Gly to D-Ala mutations on protein stability was predicted using an alchemical73

approach with a similar level of accuracy [36]. Recently, one study has hinted at the potential utility of74

alchemical free-energy calculations in oncology by predicting the impact of a single clinical mutation on the75

binding free energies of the TKIs dasatinib and RL45 [37].76

Assessing the potential for physical modeling to predict resistance to FDA-approved TKIs77

Here, we ask whether physical modeling techniques may be useful in predicting whether clinically-identified78

kinase mutations lead to drug resistance or drug sensitivity. We perform state-of-the-art relative alchemical79

free-energy calculations using FEP+ [29], recently demonstrated to achieve sufficiently good accuracy to drive80

the design of small-molecule inhibitors for a broad range of targets during lead optimization [28–30, 38]. We81

compare this approach against a fast but approximate physical modeling method implemented in Prime [39]82

(an MM-GBSA approach) in which an implicit solvent model is used to assess the change in minimized83

interaction energy of the ligand with the mutant and wild-type kinase. We consider whether these methods84

can predict a ten-fold reduction in inhibitor affinity (corresponding to a binding free energy change of 1.3685

kcal/mol) to assess baseline utility. As a benchmark, we compile a set of reliable inhibitor ΔpIC50 data for 14486

clinically-identified mutants of the human kinase Abl, an important oncology target dysregulated in cancers87

like chronic myelogenous leukemia (CML), for which six [1] FDA-approved TKIs are available. While ΔpIC5088

can approximate a dissociation constant ΔKD, other processes contributing to changes in cell viability might89

affect IC50 in ways that are not accounted for by a traditional binding experiment, motivating a quantitative90

comparison between ΔpIC50 and ΔKD. The results of this benchmark demonstrate the potential for FEP+ to91

predict the impact that mutations in Abl kinase have on drug binding, and a classification accuracy of 889382%92

(for all statistical metrics reported in this paper, the 95% confidence intervals (CI) is shown in the form of93

(xupperlower)), an RMSE of 1.07
1.26
0.89 kcal/mol, and an MUE of 0.79

0.92
0.67 kcal/mol was achieved.94

Results95

Free energy calculations can recapitulate the impact of clinical mutations on TKI affinity96

Alchemical free-energy calculations utilize a physics-based approach to estimate the free energy of transform-97

ing one chemical species into another, incorporating all enthalpic and entropic contributions in a physically98

consistent manner [28, 40–42]. While relative alchemical free-energy calculations have typically been em-99

ployed in optimizing small molecules for increased potency or selectivity [29, 38, 42, 43], a complementary100

alchemical approach can be used to compute the impact of point mutations on ligand binding affinities.101

Figure 1b depicts the thermodynamic cycle that illustrates how we used relative free energy calculations to102

compute the change in ligand binding free energy in response to the introduction of a point mutation in the103

kinase. In the bound leg of the cycle, the wild-type protein:ligand complex is transformed into the mutant104

protein:ligand complex. In the unbound leg of the cycle, the apo protein is transformed from wild-type into105

mutant. To achieve reliable predictions with short relative free-energy calculations, a reliable receptor:ligand106

complex structure is required with the assumption that the binding mode of wild-type and mutant are107

similar. In this work, high-resolution co-crystal structures of wild-type Abl bound to an inhibitor were utilized108

when available. To assess the potential for using docked inhibitor poses, we also examined two systems for109
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Table 1. Public ΔpIC50 datasets for 144 Abl kinase mutations and eight tyrosine kinase inhibitors (TKIs) with
corresponding wild-type co-crystal structures used in this study.

(kcal/mol) (kcal/mol)

TKI Nmut R S PDB |ΔGmax − ΔGmin| Source ΔGWT
axitinib 26 0 26 4wa9 2.05 [44] −8.35
bosutinib 21 4 17 3ue4 2.79 [45] −9.81
dasatinib 21 5 16 4xey 5.08 [45] −11.94
imatinib 21 5 16 1opj 2.16 [45] −9.19
nilotinib 21 4 17 3cs9 3.88 [45] −10.74
ponatinib 21 0 21 3oxz 1.00 [45] −11.70
subtotal 131 18 113
erlotinib 7 1 6 Dock to 3ue4 1.73 [46] −9.77
gefitinib 6 0 6 Dock to 3ue4 1.79 [46] −8.84
total 144 19 125
Nmut : Total number of mutants for which ΔpIC50 data was available.
Number of Resistant, Susceptical mutants using 10-fold affinity change threshold.
PDB: Source PDB ID, or Dock to 3ue4, which used 3ue4 as the receptor for Glide-SP docking inhibitors without co-crystal
structure.

ΔGWT: Binding free energy of inhibitor to wild-type Abl, as estimated from IC50 data.

which co-crystal structures were not available (Abl:erlotinib and Abl:gefitinib) and used docking to generate110

initial coordinates.111

Compiled ΔpIC50 data provides a benchmark for predicting mutational resistance112

To construct a benchmark evaluation dataset, we compiled a total of 144 ΔpIC50 measurements of Abl:TKI113

affinities, summarized in Table 1, taking care to ensure all measurements for an individual TKI were reported114

in the same study from experiments run under identical conditions. 131ΔpIC50measurements were available115

across the six TKIs with available co-crystal structures with wild-type Abl—26 for axitinib and 21 for bosutinib,116

dasatinib, imatinib, nilotinib, and ponatinib. 13 ΔpIC50 measurements were available for the two TKIs for117

which docking was necessary to generate Abl:TKI structures—7 for erlotinib and 6 for gefitinib. For added118

diversity, this set includes TKIs for which Abl is not the primary target—axitinib, erlotinib, and gefitinib. All119

mutations in this benchmark dataset have been clinically-observed (Table S1). Due to the change in bond120

topology required by mutations involving proline, which is not currently supported by the FEP+ technology for121

protein residue mutations, the three mutations H396P (axitinib, gefitinib, erlotinib) were excluded from our122

assessment. As single point mutations were highly represented in the IMPACT study analyzed in Figure 1a,123

we excluded double mutations from this work. However, the impact of mutations from multiple sites can124

potentially be modeled by sequentially mutating each site and this will be addressed in future work.125

Experimental ΔpIC50 measurements for wild-type and mutant Abl were converted to ΔΔG in order126

to make direct comparisons between physics-based models and experiment. However, computation127

of experimental uncertainties were required to understand the degree to which differences between128

predictions and experimental data were significant. Since experimental error estimates for measured IC50s129

were not available for the data in Table 1, we compared that data to other sources that have published130

IC50s for the same mutations in the presence of the same TKIs (Figure 2a,b,c). Cross-comparison of 97131

experimentally measured ΔΔGs derived from cell viability assay IC50 data led to an estimate of experimental132

variability of 0.320.360.28 kcal/mol root-mean square error (RMSE) that described the expected repeatability of the133

measurements. Because multiple factors influence the IC50 aside from direct effects on the binding affinity—134

the focus of this study—we also compared ΔΔGs derived from ΔpIC50s with those derived from binding135

affinity measurements (ΔKd ) for which data for a limited set of 27 mutations was available (Figure 2d);136

the larger computed RMSE of 0.811.040.59 kcal/mol represents an estimate of the lower bound of the RMSE to137

the IC50-derived ΔΔGs that we might hope to achieve with FEP+ or Prime, which were performed using138
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N (samples) 39

RMSE (kcal/mol) 0.45 0.35
0.54

∆Kd & ∆IC50

N (samples) 27

RMSE (kcal/mol) 0.81 0.59
1.04

inter-lab ∆IC50
da b c

N (samples) 29

RMSE (kcal/mol) 0.41 0.28
0.54

N (samples) 29

RMSE (kcal/mol) 0.49 0.40
0.57

Figure 2. Cross-comparison of the experimentally measured effects that mutations in Abl kinase have on ligand
binding, performed by different labs. ΔΔG was computed from publicly available ΔpIC50 or ΔpKd measurements and
these values of ΔΔG were then plotted and the RMSE between them reported. (a) ΔpIC50 measurements (X-axis) from
[45] compared with ΔpIC50 measurements (Y-axis) from [47]. (b) ΔpIC50 measurements (X-axis) from [45] compared with
ΔpIC50 measurements (Y-axis) from [48]. (c) ΔpIC50 measurements (X-axis) from [47] compared with ΔpIC50 measurements
(Y-axis) from [48]. (d) ΔpIC50 measurements (X-axis) from [45] compared with ΔpKd measurements (Y-axis) from [46] using
non-phosphorylated Abl kinase. Scatter plot error bars in a,b,and c are ±standard error (SE) taken from the combined 97
inter-lab ΔΔGs derived from the ΔpIC50 measurements, which was 0.320.360.28; the RMSE was 0.45

0.51
0.39 kcal/mol. Scatter plot

error bars in d are the ±standard error (SE) of ΔΔGs derived from ΔpIC50 and ΔpKd from a set of 27 mutations, which is
0.58

0.74
0.42; the RMSE was 0.81

1.04
0.59 kcal/mol.

non-phosphorylated models, when comparing sample statistics directly. In comparing 31 mutations for139

which phosphorylated and non-phosphorylated ΔKds were available, we found a strong correlation between140

the ΔΔGs derived from those data (r=0.94, Supplementary Figure S1); the statistics of that comparison are141

similar to those of the inter-lab variability comparison.142

Most clinical mutations do not significantly reduce TKI potency143

The majority of mutations do not lead to resistance by our 10-fold affinity loss threshold: 86.3% of the144

co-crystal set (n=113) and 86.8% of the total set (n=125). Resistance mutations, which are likely to result in a145

failure of therapy, constitute 13.7% of the co-crystal set (n=18) and 13.2% of the total set of mutations (n=19).146

The ΔpIC50s for all 144 mutations are summarized in Table S2—Table S7 in the Supplementary Information.147

Two mutations exceeded the dynamic range of the assays (IC50 >10,000 nM); as these two mutations clearly148

raise resistance, we excluded them from quantitative analysis (RMSE and MUE) but included them in truth149

table analyses and classification metrics (accuracy, specificity, sensitivity).150

How accurately does physical modeling predict affinity changes for clinical Abl mutants?151

From prior experience with relative alchemical free-energy calculations for ligand design, good initial receptor-152

ligand geometry was critical to obtaining accurate and reliable free energy predictions [29], so we first focused153

on the 131 mutations in Abl kinase across six TKIs for which wild-type Abl:TKI co-crystal structures were154

available. Figure 3 summarizes the performance of predicted binding free-energy changes (ΔΔG) for all155

131 mutants in this set for both a fast MM-GBSA physics-based method that only captures interaction156

energies for a single structure (Prime) and rigorous alchemical free-energy calculations (FEP+). Scatter plots157

compare experimental and predicted free-energy changes (ΔΔG) and characterize the ability of these two158

techniques to predict experimental measurements. Statistical uncertainty in the predictions and experiment-159

to-experiment variability in the experimental values are shown as ellipse height and widths respectively.160

The value for experimental variability was 0.32 kcal/mol, which was the standard error computed from the161

cross-comparison in Figure 2. For FEP+, the uncertainty was taken to be the standard error of the average162

from three independent runs for a particular mutation, while Prime results are deterministic and are not163

contaminated by statistical uncertainty (see Methods).164

To better assess whether discrepancies between experimental and computed ΔΔGs simply arise for165

known forcefield limitations or might indicate more significant effects, we incorporated an additional error166
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model in which the forcefield error was taken to be a random error �FF ≈ 0.9 kcal/mol, a value established167

form previous benchmarks on small molecules absent conformational sampling or protonation state168

issues [25]. Thin error bars in Figure 2 represent the overall estimated error due to both this forcefield error169

and experimental variability or statistical uncertainty.170

To assess overall quantitative accuracy, we computed both root-mean-squared error (RMSE)—which is171

rather sensitive to outliers, and mean unsigned error (MUE). For Prime, the MUE was 1.16
1.37
0.96 kcal/mol and172

the RMSE was 1.72
2.00
1.41 kcal/mol. FEP+, the alchemical free-energy approach, achieved a significantly higher173

level of quantitative accuracy with an MUE of 0.82
0.95
0.69 kcal/mol and an RMSE of 1.11

1.30
0.91 kcal/mol. Notably,174

alchemical free energy calculations come substantially closer than MMGBSA approach to the minimum175

achievable RMSE of 0.811.040.59 kcal/mol (due to experimental error; Figure 2) for this dataset.176

How accurately can physical modeling classify mutations as susceptible or resistant?177

While quantitative accuracy (MUE, RMSE) is a principle metric of model performance, an application of178

potential interest is the ability to classify mutations as causing resistance to a specific TKI. To characterize the179

accuracy with which Prime and FEP+ classified mutations in a manner that might be therapeutically relevant,180

we classified mutations by their experimental impact on the binding affinity as susceptible (affinity for mutant181

is diminished by no more than 10-fold, ΔΔG ≤ 1.36 kcal/mol) or as resistant (affinity for mutant is diminished182

by least 10-fold, ΔΔG > 1.36 kcal/mol). Summary statistics of experimental and computational predictions of183

these classes are shown in Figure 2 (bottom) as truth tables (also known as confusion matrices).184

The simple minimum-energy scoring method Prime correctly classified 9 of the 18 resistance mutations185

in the dataset while merely 85 of the 113 susceptible mutations were correctly classified (28 false positives).186

In comparison, the alchemical free-energy method FEP+, which includes entropic and enthalpic contributions187

as well as explicit representation of solvent, correctly classified 9 of the 18 resistance mutations while a188

vast majority, 105, of the susceptible mutations were correctly classified (merely 8 false positives). Prime189

achieved a classification accuracy of 0.72
0.79
0.64, while FEP+ achieved an accuracy that is significantly higher (both190

in a statistical sense and in overall magnitude), achieving an accuracy of 0.87
0.92
0.81. Sensitivity (also called true191

positive rate) and specificity (true negative rate) are also informative statistics in assessing the performance of192

a binary classification scheme. For Prime, the sensitivity was 0.50
0.73
0.25, while the specificity was 0.75

0.83
0.67. To193

put this in perspective, a CML patient bearing a resistance mutation in the kinase domain of Abl has an194

equal chance of Prime correctly predicting this mutation would be resistant to one of the TKIs considered195

here, while if the mutation was susceptible, the chance of correct prediction would be ∼75%. By contrast,196

the classification specificity of FEP+ was substantially better. For FEP+, the sensitivity was 0.50
0.74
0.29 while the197

specificity was 0.93
0.97
0.88. There is a very high probability that FEP+ will correctly predict that one of the eight198

TKIs studied here will remain effective for a patient bearing a susceptible mutation.199

How sensitive are classification results to choice of cutoff?200

Previous work by O’Hare et al. utilized TKI-specific thresholds for dasatinib, imatinib, and nilotinib [49], which201

were ∼2 kcal/mol. Supplementary Figure S2 shows that when our classification threshold was increased202

to a 20-fold change in binding (1.77 kcal/mol), FEP+ correctly classified 8 of the 13 resistant mutations203

and with a threshold of 100-fold change in binding (2.72 kcal/mol), FEP+ correctly classified the only two204

resistant mutations (T315I/dasatinib and T315I/nilotinib). With the extant multilayered and multinodal205

decision-making algorithms used by experienced oncologists to manage their patients’ treatment, or by206

medicinal chemists to propose candidate compounds for clinical trials, the resistant or susceptible cutoffs207

could be selected with more nuance than the simple 10-fold affinity threshold we consider here. With a larger208

affinity change cutoff, for example, the accuracy with which physical models predict resistance mutations209

increases beyond 90% (Supplementary Figure S2). For the alchemical approach, the two-class accuracy was210

0.920.960.87 when an affinity change cutoff of 20-fold was used while using an affinity change cutoff of 100-fold211

further improved the two-class accuracy to 0.981.000.96.212

Bayesian analysis can estimate the true error213

The statistical metrics—MUE, RMSE, accuracy, specificity, and sensitivity—discussed above are based on214

analysis of the apparent performance of the observed modeling results compared with the observed215
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0.76 0.89 0.86

0.92

Specificity 0.74 0.72
0.77 0.91 0.89

0.94

Sensitivity 0.57 0.36
0.77 0.69 0.46

1.00

Figure 3. Comparison of experimentally-measured binding free-energy changes (ΔΔG) for 131 clinically observed
mutations and 6 selective kinase inhibitors for which co-crystal structures of wild-type kinase with inhibitor are
available. Top panel: Abl:TKI co-crystal structures used in this study with locations of clinical mutants for each inhibitor
highlighted (colored from blue to red for residues nearest to farthest from ligand) in relation to TKI (green sticks) on

the corresponding Abl:TKI wild-type crystal structure. Middle panel: Scatter plots show Prime and FEP+ computed ΔΔG
compared to experiment, with ellipse widths and heights (±�) for experiment and FEP+ respectively. The red diagonal
line indicates when prediction equals experiment, while the yellow shaded region indicates area in which predicted

ΔΔG is within 1.36 kcal/mol of experiment (corresponding to a ten-fold error in predicted affinity change). ΔΔG < 0
denotes the mutation increases the susceptibility of the kinase to the inhibitor, while ΔΔG > 0 denotes the mutation
increases the resistance of the kinase to the inhibitor. The two mutations that were beyond the concentration limit of the

assay (T315I/dasatinib, L248R/imatinib) were not plotted; 129 points were plotted. Truth tables of classification accuracy,

sensitivity and specificity using two-classes. Bottom panel: Truth tables and classification results include T315I/dasatinib
and L248R/imatinib; 131 points were used. For MUE, RMSE, and truth table performance statistics, sub/superscripts

denote 95 % CIs. Variability in the experimental data is shown as ellipse widths and uncertainty in our calculations is shown

as ellipse heights. Experimental variability was computed as the standard error between IC50-derived ΔΔG measurements
made by different labs, 0.32 kcal/mol. The statistical uncertainty in the Prime calculations was zero because the method

is deterministic (�cal = 0), while the uncertainty in the FEP+ calculations was reported as the standard error, �cal, of the
mean of the predicted ΔΔGs from three independent runs. To better highlight true outliers unlikely to simply result
from expected forcefield error, we presume forcefield error (�FF ≈ 0.9 kcal/mol [25]) also behaves as a random error,
and represent the total estimated statistical and forcefield error (

√

�2FF + �
2
exp∕cal) as vertical error bars. The horizontal

error bars for the experiment (�exp) was computed as the standard error between ΔpIC50 and ΔKd measurements, 0.58
kcal/mol. For Prime, *MUE highlights that the Bayesian model yields a value for MUE that is noticeably larger than MUE
for observed data due to the non-Gaussian error distribution of Prime.
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experimental data via sample statistics. However, this analysis considers a limited number of mutants,216

and both measurements and computed values are contaminated with experimental or statistical error.217

To obtain an estimate of the intrinsic performance of our physical modeling approaches, accounting for218

known properties of the experimental variability and statistical uncertainties, we used a hierarchical Bayesian219

model (detailed in the Methods) to infer posterior predictive distributions from which expectations and 95%220

predictive intervals could be obtained. The results of this analysis are presented in Figure 3 (central tables).221

FEP+ is significantly better than Prime at predicting the impact of mutations on TKI binding affinities, as the222

apparent performance (using the original observations) as well as the intrinsic performance (where Bayesian223

analysis was used to correct for statistical uncertainty or experimental variation) were well-separated outside224

their 95% confidence intervals in nearly all metrics. Applying the Bayesian model, the MUE and RMSE for225

FEP+ was 0.790.920.68 kcal/mol and 0.99
1.15
0.85 kcal/mol respectively (N=129). For the classification metrics accuracy,226

specificity, and sensitivity, the model yields 0.890.920.86, 0.91
0.94
0.89, and 0.69

1.00
0.46 respectively (N=131). The intrinsic227

RMSE and MUE of Prime was 1.762.011.55 kcal/mol and 1.40
1.60
1.24 kcal/mol (N=129) respectively, and the classification228

accuracy, specificity, and sensitivity was 0.730.760.70, 0.74
0.77
0.72, and 0.57

0.77
0.36 respectively (N=131). The intrinsic MUE of229

Prime obtained by this analysis is larger than the observed MUE reflecting the non-Gaussian, fat-tailed error230

distributions of Prime results.231

Is the impact of point mutations on drug binding equally well-predicted for the six TKIs?232

The impact of point mutations on drug binding are not equally well predicted for the six TKIs. Figure 4233

expands the results in Figure 3 on a TKI-by-TKI basis to dissect the particular mutations in the presence of234

a specific TKI. Prime and FEP+ correctly predicted that most mutations in this dataset (N=26) do not raise235

resistance to axitinib, though FEP+ predicted 4 false positives compared with 3 false positives by Prime. The236

MUE and RMSE of FEP+ was excellent for this inhibitor, 0.700.930.50 kcal/mol and 0.91
1.14
0.64 kcal/mol respectively.237

While the classification results for bosutinib (N=21) were equally well predicted by Prime as by FEP+, FEP+ was238

still able to achieve superior, but not highly significant, predictive performance for the quantitative metrics239

MUE and RMSE, which were 0.961.420.55 kcal/mol and 1.41
1.97
0.77 kcal/mol respectively (FEP+) and 1.13

1.83
0.60 kcal/mol and240

1.802.620.92 kcal/mol respectively (Prime). For dasatinib, FEP+ achieved an MUE and RMSE of 0.76
1.13
0.49 kcal/mol and241

1.071.570.59 kcal/mol respectively whereas the results were, as expected, less quantitatively predictive for Prime242

(N=20). The results for imatinib were similar to those of dasatinib above, where the MUE and RMSE for FEP+243

were 0.821.150.53 kcal/mol and 1.09
1.43
0.69 kcal/mol respectively (N=20). Nilotinib, a derivative of imatinib, led to nearly244

identical quantitative performance results for FEP+ with an MUE and RMSE of 0.821.120.57 kcal/mol and 1.06
1.39
0.69245

kcal/mol respectively (N=21). Similar to axitinib, ponatinib presented an interesting case because there were246

no mutations in this dataset that raised resistance to it. Despite the wide dynamic range in the computed247

values of ΔΔG for other inhibitors, FEP+ correctly predicted a very narrow range of ΔΔGs for this drug. This248

is reflected in the MUE and RMSE of 0.871.160.62 kcal/mol and 1.09
1.46
0.70 kcal/mol respectively, which are in-line with249

the MUEs and RMSEs for the other TKIs.250

Understanding the origin of mispredictions251

Resistance mutations that are mispredicted as susceptible (false negatives) are particularly critical because252

they might mislead the clinician or drug designer into believing the inhibitor will remain effective against253

the target. Which resistance mutations did FEP+ mispredict as susceptible? Nine mutations were classified254

by FEP+ to be susceptible when experimentally measured ΔpIC50 data indicate the mutations should have255

increased resistance according to our 10-fold affinity cutoff for resistance. Notably, the 95% confidence256

intervals for five of these mutations spanned the 1.36 kcal/mol threshold, indicating these misclassifications257

are not statistical significant when the experimental error and statistical uncertainty in FEP+ are accounted for:258

bosutinib/L248R (ΔΔGFEP+=1.321.940.70 kcal/mol), imatinib/E255K (ΔΔGFEP+=0.43
3.05
−2.19 kcal/mol), imatinib/Y253F259

(ΔΔGFEP+=0.951.640.26 kcal/mol), and nilotinib/Y253F (ΔΔGFEP+=0.89
1.69
0.09 kcal/mol). The bosutinib/V299L mutation260

was also not significant because the experimental ΔΔG, 1.702.331.08 kcal/mol, included the 1.36 kcal/mol cutoff;261

the value of ΔΔG predicted by FEP+ for this mutation was 0.911.020.79 kcal/mol, the upper bound of the predicted262

value was within 0.06 kcal/mol of the lower bound of the experimental value.263

Four mutations, however, were misclassified to a degree that is statistically significant given their 95% con-264
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fidence intervals: dasatinib/T315A, bosutinib/T315I, imatinib/E255V, and nilotinib/E255V. For dasatinib/T315A,265

although the T315A mutations for bosutinib, imatinib, nilotinib, and ponatinib were correctly classified as266

susceptible, the predicted free energy changes for these four TKIs were consistently much more negative267

than the corresponding experimental measurements, just as for dasatinib/T315A, indicating there might be a268

generic driving force contributing to the errors in T315A mutations for these five TKIs. Abl is known to be able269

to adopt many different conformations (including DFG-in and DFG-out), and it is very likely that the T315A270

mutation will induce conformational changes in the apo protein [50], which was not adequately sampled in271

the relatively short simulations, leading to the errors for T315A mutations for these TKIs. By comparison,272

the T315Imutations for axitinib, bosutinib, imatinib, nilotinib, and ponatinib were all accurately predicted273

with the exception of bosutinib/T315I being the only misprediction, suggesting an issue specific to bosutinib.274

The complex electrostatic interactions between the 2,4-dichloro-5-methoxyphenyl ring in bosutinib and the275

adjacent positively charged amine of the catalytic Lys271 may not be accurately captured by the fixed-charge276

OPLS3 force field, leading to the misprediction for bosutinib/T315Imutation.277

Insufficient sampling might also belie the imatinib/E255V and nilotinib/E255V mispredictions because278

they reside in the highly flexible P-loop. Since E255V was a charge change mutation, we utilized a workflow279

that included a transmutable explicit ion (see Methods). The distribution of these ions in the simulation box280

around the solute might not have converged to their equilibrium state on the relatively short timescale of281

our simulations (5 ns), and the insufficient sampling of ion distributions coupled with P-loop motions might282

lead to misprediction of these two mutations.283

How accurately can the impact of mutations be predicted for docked TKIs?284

To assess the potential for utilizing physics-based approaches in the absence of a high-resolution experimen-285

tal structure, we generated models of Abl bound to two TKIs—erlotinib and gefinitib—for which co-crystal286

structures with wild-type kinase are not currently available. In Figure 5, we show the Abl:erlotinib and287

Abl:gefitinib complexes that were generated using a docking approach (Glide-SP, see Methods). These two288

structures were aligned against the co-crystal structures of EGFR:erlotinib and EGFR:gefinitib to highlight the289

structural similarities between the binding pockets of Abl and EGFR and the TKI binding mode in Abl versus290

EGFR. As an additional test of the sensitivity of FEP+ to system preparation, a second set of Abl:erlotinib and291

Abl:gefitinib complexes was generated in which crystallographic water coordinates were transferred to the292

docked inhibitor structures (see Methods).293

Alchemical free-energy simulations were performed on 13 mutations between the two complexes; 7294

mutations for erlotinib and 6 mutations for gefitinib. The quantitative accuracy of FEP+ in predicting the295

value of ΔΔG was excellent—MUE and RMSE of 0.580.860.33 kcal/mol and 0.80
1.09
0.44 kcal/mol respectively if crystal296

waters are omitted, and 0.500.780.26 kcal/mol and 0.69
0.97
0.35 kcal/mol if crystal waters were restored after docking.297

Encouragingly, these results indicate that our initial models of Abl bound to erlotinib and gefitinib were298

reliable because the accuracy and dependability of our FEP+ calculations were not sensitive to crystallographic299

waters. Our secondary concern was the accuracy with which the approach classified mutations as resistant300

or susceptible.301

While the results presented in (Figure 5) indicate that FEP+ is capable of achieving good quantitative302

accuracy when a co-crystal structure is unavailable, it is important to understand why a mutation was303

predicted to be susceptible but was determined experimentally to be resistant. F317I was the one mutation304

that increased resistance to erlotinib (or gefitinib) because it destabilized binding bymore than 1.36 kcal/mol—305

1.351.671.03 kcal/mol (gefitinib) and 1.58
1.90
1.26 kcal/mol (erlotinib), but the magnitude of the experimental uncertainty306

means we are unable to confidently discern whether this mutation induces more than 10-fold resistance307

to either TKI. Therefore, the one misclassification by FEP+ in Figure 5 is not statistically significant and the308

classification metrics presented there underestimate the nominal performance of this alchemical free-energy309

method.310

Discussion311
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Sensitivity 0.25
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Figure 4. Physical modeling accuracy in computing the impact of clinical Abl mutations on selective inhibitor
binding. Ligand interaction diagrams for six selective FDA-approved tyrosine kinase inhibitors (TKIs) for which co-crystal
structures with Abl were available (left). Comparisons for clinically-observed mutations are shown for FEP+ (right) and

Prime (left). For each ligand, computed vs. experimental binding free energies (ΔΔG) are plotted with MUE and RMSE (units
of kcal/mol) depicted below. Truth tables are shown to the right. Rows denote true susceptible (S, ΔΔG ≤ 1.36 kcal/mol) or
resistant (R, ΔΔG > 1.36 kcal/mol) experimental classes using a 1.36 kcal/mol (10-fold change) threshold; columns denote
predicted susceptible (s, ΔΔG ≤ 1.36 kcal/mol) or resistant (r, ΔΔG > 1.36 kcal/mol). Correct predictions populate diagonal
elements (orange text), incorrect predictions populate off-diagonals. Accuracy, specificity, and sensitivity for two-class

classification are shown below the truth table. Elliptical point sizes and error bars in the scatter plots depict estimated

uncertainty/variability and error respectively (±�) of FEP+ values (vertical size) and experimental values (horizontal size).
Note: The sensitivity for axitinib and ponatinib is NA, because there is no resistant mutation for these two drugs.
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Abl:erlotinib (Glide)

Prediction

Ex
pe

rim
en

t s r
S 10 2
R 0 1

MUE (kcal/mol) 0.91 
RMSE (kcal/mol) 1.45 

Accuracy 0.85 
Specificity 0.83 
Sensitivity 1.00 

Prediction

Ex
pe

rim
en

t s r
S 12 0
R 1 0

MUE (kcal/mol) 0.50 
RMSE (kcal/mol) 0.69 

Prime FEP+

Accuracy 0.92 
Specificity 1.00 
Sensitivity 0.00 

Glide docking

ge
fit

in
ib

er
lo

tin
ib

F317I-e

F317I-g

Figure 5. Predicting resistancemutations using FEP+ for inhibitors for which co-crystal structures with wild-type
kinase are not available. The docked pose of Abl:erlotinib is superimposed on the co-crystal structure of EGFR:erlotinib;
erlotinib docked to Abl (light gray) is depicted in green and erlotinib bound to EGFR (dark gray) is depicted in blue. The

docked pose of Abl:gefitinib is superimposed on the co-crystal structure of EGFR:gefitinib; gefitinib docked to Abl (light

gray) is depicted in green and gefitinib bound to EGFR (dark gray) is depicted in blue. The locations of clinical mutants for

each inhibitor are highlighted (red spheres). The overall RMSEs and MUEs for Prime (center) and FEP+ (right) and two-class

accuracies are also shown in the figure. Computed free energy changes due to the F317Imutation for erlotinib (-e) and

gefitinib (-g) are highlighted in the scatter plot. FEP+ results are based on the docked models prepared with crystal waters

added back while the Prime (an implicit solvent model) results are based on models without crystallographic water.
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Physics-based modeling can reliably predict when a mutation elicits resistance to therapy312

The results presented in this work are summarized in Table 2. The performance metrics summarized in313

Table 2 indicates that the set of 131 mutations for the six TKIs in which co-crystal structures were available is314

on par with the complete set (144 mutations), which included results based on Abl:TKI complexes generated315

from docking models. The performance results for the 13 mutations for the two TKIs (erlotinib and gefitinib)316

in which co-crystal structures were unavailable exhibited good quantitative accuracy (MUE and RMSE) and317

good classification power.318

Overall (N=144), the MM-GBSA approach Prime classified mutations with good accuracy (0.730.800.66) and319

specificity (0.760.840.69) while the alchemical approach FEP+ was a significant improvement in classification320

accuracy (0.880.930.82) and specificity (0.94
0.98
0.89). The quantitative accuracy with which Prime was able to predict the321

experimentally measured change in Abl:TKI binding (N=142) characterized by RMSE and MUE was 1.701.981.40322

kcal/mol and 1.141.350.93 kcal/mol respectively. In stark contrast, the quantitative accuracy of FEP+ was statistically323

superior to Prime with an RMSE and an MUE of 1.071.260.89 kcal/mol and 0.79
0.92
0.67 kcal/mol respectively.324

From the perspective of a clinician, classification rate would be an important metric to measure the325

predictive power of technologies such as Prime and FEP+. To test the hypothesis that reducing the large326

spread in Prime predictions could improve its classification rate, we scaled the computed relative free327

energies (by 1/2, 1/3, and by 0.23, which was the optimal factor that gives lowest RMSE) and recalculated328

the classification metrics (Table S8). As expected, the MUE and RMSE were improved but the specificity of329

Prime was drastically diminished; as MUE and RMSE improved, it became increasingly unable to identify330

resistance mutations. Scaling FEP+ eliminated its sensitivity and a naïve model (where all free energies were331

set to 0.00 kcal/mol) had zero sensitivity. Lastly, we constructed a consensus model in which free energies332

were a weighted average of scaled Prime and FEP+. However, this model also had no sensitivity. It appears333

difficult to improve upon the predictive power of FEP+ by statistical operations.334

To address the impact of picking a cutoff to classify predicted free energies as resistant or sensitizing, we335

computed ROC curves for the various predicted datasets: Prime (scaled and non-scaled), FEP+ (scaled and336

non-scaled), naïve model, and consensus model (constructed from scaled Prime and scaled FEP+, see above).337

ROC curves are independent of a linear transformation on the predicted dataset. Therefore, ROC curves338

and ROC-AUCs for scaled and non-scaled Prime were identical, as well as scaled and non-scaled FEP+. ROC339

curves for these six sets of predictions are presented in Supplementary Figure S3. ROC-AUC for FEP+ was340

0.750.900.61 (n=144); ROC-AUC for Prime was 0.66
0.81
0.52 (n=144); ROC-AUCs for the naïve model and consensus model341

were 0.500.500.50 (n=144) and 0.78
0.90
0.67 (n=144) respectively. These results show that Prime apparently has poor342

discriminatory power (ROC-AUC in [0.6,0.7]) while FEP+ apparently has fair discriminatory power (ROC-AUC343

in [0.7,0.8]).344

Hierarchical Bayesian model estimates global performance (N=144)345

A hierarchical Bayesian approach was developed to estimate the intrinsic accuracy of the models when the346

noise in the experimental and predicted values of ΔΔG was accounted for. Utilizing this approach, the MUE347

and RMSE for Prime was found to be 1.391.581.23 kcal/mol and 1.75
1.98
1.55 kcal/mol (N=142) respectively. The accuracy,348

specificity, and sensitivity of Prime was found using this method to be 0.740.760.71, 0.75
0.77
0.73, and 0.59

0.78
0.40 (N=144)349

respectively. The MUE and RMSE of FEP+ was found to be 0.760.870.66 kcal/mol and 0.95
1.09
0.82 kcal/mol (N=142)350

respectively, which is significantly better than Prime. Likewise, a clearer picture of the true classification351

accuracy, specificity, and sensitivity of FEP+ was found—0.900.930.86, 0.92
0.95
0.90, and 0.68

1.00
0.46 respectively.352

Examining the physical and chemical features of outliers353

Current alchemical approaches neglect effects that will continue to improve accuracy354

The high accuracy of FEP+ is very encouraging, and the accuracy can be further improved with more accurate355

modeling of a number of physical chemical effects not currently considered by the method. While highly356

optimized, the fixed-charged OPLS3 [25] force field can be further improved by explicit consideration of357

polarizability effects [51], as hinted by some small-scale benchmarks [52]. These features could be especially358

important for bosutinib, whose 2,4-dichloro-5-methoxyphenyl ring is adjacent to the positively charged amine359

of the catalytic Lys271. Many simulation programs also utilize a long-range isotropic analytical dispersion360
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Table 2. Summary of FEP+ and Prime statistics in predictingmutational resistance or sensitivity to FDA-approved
TKIs.

Dataset Method Nquant MUE RMSE Nclass Accuracy Specificity Sensitivity

(kcal/mol) (kcal/mol)

all FEP+ 142 0.790.920.67 1.071.260.89 144 0.880.930.82 0.940.980.89 0.470.690.25
all Prime 142 1.141.350.93 1.701.981.40 144 0.730.800.66 0.760.840.69 0.530.760.30
xtals FEP+ 129 0.820.950.69 1.111.300.91 131 0.870.920.81 0.930.970.88 0.500.740.29
xtals Prime 129 1.161.370.96 1.722.001.41 131 0.720.790.64 0.750.830.67 0.500.730.25
axitinib FEP+ 26 0.700.930.50 0.911.140.64 26 0.850.960.69 0.850.960.69 NA
axitinib Prime 26 1.051.710.53 1.852.610.96 26 0.881.000.73 0.881.000.73 NA
bosutinib FEP+ 21 0.961.420.55 1.411.970.77 21 0.760.950.57 0.881.000.71 0.251.000.00
bosutinib Prime 21 1.131.830.60 1.802.620.92 21 0.810.950.62 0.821.000.62 0.751.000.00
dasatinib FEP+ 20 0.761.130.49 1.071.570.59 21 0.901.000.76 0.941.000.79 0.801.000.33
dasatinib Prime 20 1.051.540.61 1.481.920.95 21 0.861.000.71 0.881.000.69 0.801.000.33
imatinib FEP+ 20 0.821.150.53 1.091.430.69 21 0.861.000.71 1.001.001.00 0.400.830.00
imatinib Prime 20 1.321.810.91 1.692.261.15 21 0.430.670.24 0.500.750.25 0.200.670.00
nilotinib FEP+ 21 0.821.120.57 1.061.390.69 21 0.861.000.67 0.941.000.80 0.501.000.00
nilotinib Prime 21 1.501.971.06 1.862.251.43 21 0.480.670.24 0.530.750.29 0.251.000.00
ponatinib FEP+ 21 0.871.160.62 1.091.460.70 21 1.001.001.00 1.001.001.00 NA
ponatinib Prime 21 0.941.540.50 1.572.440.69 21 0.810.950.62 0.810.950.62 NA
Glide FEP+ 13 0.500.780.26 0.690.970.35 13 0.921.000.77 1.001.001.00 0.000.000.00
Glide Prime 13 0.911.560.39 1.452.220.54 13 0.851.000.62 0.831.000.58 1.001.000.00

Nquant : Number of mutations for which quantitative metrics were evaluated; Nclass: Number mutations for which classifica-

tion metrics were evaluated; All: All mutations; xtals: All mutations for which co-crystal structures were available; Glide:

erlotinib and gefitinib

Accuracy, specificity, and sensitivity were computed to assess two-class prediction performance:

resistant (ΔΔG > 1.36 kcal/mol) or susceptible (ΔΔG ≤ 1.36 kcal/mol).
95% CIs (sub-/superscripts) were estimated from 1000 bootstrap replicates. Note: The sensitivity for axitinib and ponatinib

is NA, because there is no resistant mutation for these two drugs.

correction intended to correct for the truncation of dispersion interactions at finite cutoff, which can induce361

an error in protein-ligand binding free energies that depends on the number of ligand heavy atoms being362

modified [53]; recently, efficient Lennard-Jones PME methods [54, 55] and perturbation schemes [53] have363

been developed that can eliminate the errors associated with this truncation. While the currently employed364

methodology for alchemical transformations involving a change in system charge (see Methods) reduces365

artifacts that depend on the simulation box size and periodic boundary conditions, the explicit ions that were366

included in these simulations may not have sufficiently converged to their equilibrium distributions in these367

relatively short simulations. Kinases and their inhibitors are known to possess multiple titratable sites with368

either intrinsic or effective pKas near physiological pH, while the simulations here treat protonation states369

and proton tautomers fixed throughout the bound and unbound states; the accuracy of the model can be370

further improved with the protonation states or tautomers shift upon binding ormutation considered [56, 57].371

Similarly, some systems display significant salt concentration dependence [58], while the simulations for372

some systems reported here did not rigorously mimic all aspects of the experimental conditions of the cell373

viability assays.374

Experimentally observed IC50 changes can be caused by other physical mechanisms375

While we have shown that predicting the direct impact of mutations on the binding affinity of ATP-competitive376

tyrosine kinase inhibitors for a single kinase conformation has useful predictive capacity, many additional377

physical effects that can contribute to cell viability are not currently captured by examining only the predicted378

change in inhibitor binding affinity. For example, kinase missense mutations can also shift the populations379
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of kinase conformations (which may affect ATP and inhibitor affinities differentially), modulate ATP affinity,380

modulate affinity for protein substrate, or modulate the ability of the kinase to be regulated or bounded381

by scaffolding proteins. These physical mechanisms might affect the IC50s of cell viability assays but not382

necessarily the binding affinity of the inhibitors. While many of these effects are in principle tractable by383

physical modeling in general (and alchemical free energy methods in particular), it is valuable to examine our384

mispredictions and outliers to identify whether any of these cases is likely to induce resistance (as observed385

by ΔpIC50 shifts) by one of these alternative mechanisms.386

Other physical mechanisms of resistance are likely similarly computable.387

A simple threshold of 10-fold TKI affinity change is a crude metric for classifying resistance or susceptibility388

due to the myriad biological factors that contribute to the efficacy of a drug in a person. Except for affecting389

the binding affinity of inhibitors, missense mutations can also cause drug resistance through other physical390

mechanisms including induction of splice variants or alleviation of feedback. While the current study only391

focused on the effect of mutation on drug binding affinity, resistance from these other physical mechanisms392

could be similarly computed using physical modeling. For example, some mutations are known to activate393

the kinase by increasing affinity to ATP, which could be computed using the same thermodynamic cycle394

utilized here for inhibitors.395

Conclusion396

Revolutionary changes in computing power—especially the arrival of inexpensive graphics processors397

(GPUs)—and software automation have enabled alchemical free-energy calculations to impact drug discovery398

and life sciences projects in previously unforeseen ways. In this communication, we tested the hypothesis399

that FEP+, a fully-automated relative-alchemical free-energy workflow, had reached the point where it can400

accurately and reliably predict how clinically-observed mutations in Abl kinase alter the binding affinity of401

eight FDA-approved TKIs. To establish the potential predictive impact of current-generation alchemical free402

energy calculations—which incorporate entropic and enthalpic effects and the discrete nature of aqueous403

solvation—compared to a simpler physics-based approach that also uses modern forcefields but scores a404

single minimized conformation, we employed a second physics-based approach (Prime). This simpler physics-405

based model, which uses an implicit model of solvation to score the energetic changes in interaction energy406

that arise from the mutation, was able to capture a useful amount of information to achieve substantial407

predictiveness with an MUE of 1.141.350.93 kcal/mol (N=142), RMSE of 1.70
1.98
1.40 kcal/mol respectively (N=142), and408

classification accuracy of 0.730.800.66 (N=144). Surpassing these good results, we went on to demonstrate that409

FEP+ is able to achieve superior predictive performance—MUE of 0.790.920.67 kcal/mol (N=142), RMSE of 1.07
1.26
0.89410

kcal/mol (N=142), and classification accuracy of 0.880.930.82 (N=144). While future enhancements to the workflows411

for Prime and FEP+ to account for additional physical and chemical effects are likely to improve predictive412

performance further, the present results are of sufficient quality and achievable on a sufficiently rapid413

timescale (with turnaround times ∼6 hours/calculation) to impact research projects in drug discovery and the414

life sciences. With exponential improvements in computing power, we anticipate the domains of applicability415

for alchemical free-energy methods such as FEP+ will take on increasingly integrated roles to impact projects.416

This work illustrates how the domain of applicability for alchemical free-energy methods is much larger417

than previously appreciated, and might further be found to include new areas as research progresses:418

aiding clinical decision-making in the selection of first- or second-line therapeutics guided by knowledge419

of likely subclonal resistance; identifying other selective kinase inhibitors (or combination therapies) to420

which the mutant kinase is susceptible; supporting the selection of candidate molecules to advance to421

clinical trials based on anticipated activity against likely mutations; facilitating the enrollments of patients in422

mechanism-based basket trials; and generally augmenting the armamentarium of precision oncology.423

Methods424

System preparation425

All system preparation utilized the Maestro Suite (Schrödinger) version 2016-4. Comparative modeling to add426

missing residues using a homologous template made use of the Splicer tool, while missing loops modeled427
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without a template used Prime. All tools employed default settings unless otherwise noted. The Abl wild-type428

sequence used in building all Abl kinase domain models utilized the ABL1_HUMAN Isoform IA (P00519-1)429

UniProt gene sequence spanning S229–K512. Models were prepared in non-phosphorylated form. We used430

a residue indexing convention that places the Thr gatekeeper residue at position 315 to match common431

usage; an alternate indexing convention utilized in experimental X-ray structures for Abl:imatinib (PDB: 1OPJ)432

[59] and Abl:dasatinib (PDB: 4XEY) [60] was adjusted to match our convention.433

Complexes with co-crystal structures. Chain B of the experimental structure of Abl:axitinib (PDB:434

4WA9) [44] was used, and four missing residues at the N- and C-termini were added using homology435

modeling with PDB 3IK3 [61] as the template following alignment of the respective termini of the kinase436

domain. Chain B was selected because chain A was missing an additional 3 and 4 residues at the N- and437

C-termini, respectively, in addition to 3- and 20-residue loops, both of which were resolved in chain B. All438

missing side chains were added with Prime. The co-crystal structure of Abl:bosutinib (PDB: 3UE4) [62] was439

missing 4 and 10 N- and C-terminal residues respectively in chain A that were built using homology modeling440

with 3IK3 as the template. All loops were resolved in chain A (chain B was missing two residues in the P-loop,441

Q252 and Y253). All missing side chains were added with Prime. The co-crystal structure of Abl:dasatinib442

(PDB: 4XEY) [60] was missing 2 and 9 N- and C-terminal residues, respectively, that were built via homology443

modeling using 3IK3 as the template. A 3 residue loop was absent in chain B but present in chain A; chain444

A was chosen. The co-crystal structure of Abl:imatinib (PDB: 1OPJ) [59] had no missing loops. Chain B was445

used because chain A was missing two C-terminal residues that were resolved in chain B. A serine was446

present at position 336 (index 355 in the PDB file) and was mutated to asparagine using Prime to match447

the human wild-type reference sequence (P00519-1). The co-crystal structure of Abl:nilotinib (PDB: 3CS9)448

[63] contained four chains in the asymmetric unit all of which were missing at least one loop. Chain A was449

selected because its one missing loop involved the fewest number of residues of the four chains; chain A450

was missing 4 and 12 N- and C-terminal residues, respectively, that were built using homology modeling451

with 3IK3 as the template. A 4-residue loop was missing in chain A (chain B and C were missing two loops,452

chain D was missing a five residue loop) that was built using Prime. The co-crystal structure of Abl:ponatinib453

(PDB: 3OXZ) [64] contained only one chain in the asymmetric unit. It had two missing loops, one 4 residues454

(built using Prime) and one 12 residues (built using homology modeling with 3OY3 [64] as the template).455

Serine was present at position 336 and was mutated to Asn using Prime to match the human wild-type456

reference sequence (P00519-1). Once the residue composition of the six Abl:TKI complexes were normalized457

to have the same sequence, the models were prepared using Protein Preparation Wizard. Bond orders458

were assigned using the Chemical Components Dictionary and hydrogen atoms were added. Missing side459

chain atoms were built using Prime. Termini were capped with N-acetyl (N-terminus) and N-methyl amide460

(C-terminus). If present, crystallographic water molecules were retained. Residue protonation states (e.g.461

Asp381 and Asp421) were determined using PROPKA [65] with a pH range of 5.0–9.0. Ligand protonation462

state was assigned using PROPKA with pH equal to the experimental assay. Hydrogen bonds were assigned463

by sampling the orientation of crystallographic water, Asn and Gln flips, and His protonation state. The464

positions of hydrogen atoms were minimized while constraining heavy atoms coordinates. Finally, restrained465

minimization of all atoms was performed in which a harmonic positional restraint (25.0 kcal/mol/Å2) was466

applied only to heavy atoms. Table S9 summarizes the composition of the final models used for FEP.467

Complexes without co-crystal structures. Co-crystal structures of Abl bound to erlotinib or gefitinib468

were not publicly available. To generate models of these complexes, Glide-SP [66] was utilized to dock469

these two compounds into an Abl receptor structure. Co-crystal structures of these two compounds bound470

to EGFR were publicly available and this information was used to obtain initial ligand geometries and to471

establish a reference binding mode against which our docking results could be structurally scored. The Abl472

receptor structure bound to bosutinib was used for docking because its structure was structurally similar to473

that of EGFR in the erlotinib- (PDB: 4HJO) [67] and gefitinib-bound (PDB: 4WKQ) [68] co-crystal structures.474

Abl was prepared for docking by using the Protein Preparation Wizard (PPW) with default parameters.475

Crystallographic waters were removed but their coordinates retained for a subsequent step in which they476
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were optionally reintroduced. Erlotinib and gefitinib protonation states at pH 7.0±2.0 were determined using477

Epik [69]. Docking was performed using the Glide-SP workflow. The receptor grid was centered on bosutinib.478

The backbone NH of Met318 was chosen to participate in a hydrogen bonding constraint with any hydrogen479

bond donor on the ligand. The hydroxyl of T315 was allowed to rotate in an otherwise rigid receptor. Ligand480

docking was performed with enhanced sampling; otherwise default settings were used. Epik state penalties481

were included in the scoring. The 16 highest ranked (Glide-SP score) poses were retained for subsequent482

scoring. To determine the docked pose that would be subsequently used for free energy calculations, the483

ligand heavy-atom RMSD between the 16 poses and the EGFR co-crystal structures (PDB IDs 4HJO and 4WKQ)484

was determined. The pose in which erlotinib or gefitinib most structurally resembled the EGFR co-crystal485

structure (lowest heavy-atom RMSD) was chosen as the pose for subsequent FEP+. Two sets of complex486

structures were subjected to free energy calculations to determine the effect of crystal waters: In the first487

set, without crystallographic waters, the complexes were prepared using Protein Prep Wizard as above. In488

the second set, the crystallographic waters removed prior to docking were added back, and waters in the489

binding pocket that clashed with the ligand were removed.490

Force field parameter assignment491

The OPLS3 forcefield [25] version that shipped with Schrödinger Suite release 2016-4 was used to parame-492

terize the protein and ligand. Torsion parameter coverage was checked for all ligand fragments using Force493

Field Builder. The two ligands that contained a fragment with a torsion parameter not covered by OPLS3494

were axitinib and bosutinib; Force Field Builder was used to obtain these parameters. SPC parameters [70]495

were used for water. For mutations that change the net change of the system, counterions were included to496

neutralize the system with additional Na+ and Cl- ions added to achieve 0.15 M excess to mimic the solution497

conditions of the experimental assay.498

Prime (MM-GBSA)499

Prime was used to predict the geometry of mutant side chains and to calculate relative changes in free energy500

using MM-GBSA single-point estimates [39]. VSGB [71] was used as the implicit solvent model to calculate501

the solvation free energies for the four states (complex/wild-type, complex/mutant, apo protein/wild-type,502

and apo protein/mutant) and ΔΔG calculated using the thermodynamic cycle depicted in Figure 1b. Unlike503

FEP (see below), which simulates the horizontal legs of the thermodynamic cycle, MM-GBSA models the504

vertical legs by computing the interaction energy between the ligand and protein in both wild-type and505

mutant states, subtracting these to obtain the ΔΔG of mutation on the binding free energy.506

Alchemical free energy perturbation calculations using FEP+507

Alchemical free energy calculations were performed using the FEP+ tool in the Schrödinger Suite version508

2016-4, which offers a fully automated workflow requiring only an input structure (wild-type complex) and509

specification of the desired mutation. The default protocol was used throughout: It assigns protein and510

ligand force field parameters (as above), generates a dual-topology [72] alchemical system for transforming511

wild-type into mutant protein (whose initial structure is modeled using Prime), generates the solvent-leg512

endpoints (wild-type and mutant apo protein), and constructs intermediate windows spanning wild-type513

and mutant states. Simulations of the apo protein were setup by removing the ligand from the prepared514

complex (see System Preparation) followed by an identical simulation protocol as that used for the complex.515

Charge-conserving mutations utilized 12 � windows (24 systems) while charge-changing mutations utilized 24516

� windows (48 systems). Each system was solvated in an orthogonal box of explicit solvent (SPC water [70])517

with box size determined to ensure that solute atoms were no less than 5 Å (complex leg) or 10 Å (solvent leg)518

from an edge of the box. For mutations that change the net charge of the system, counterions were included519

to neutralize the charge of the system, and additional Na+ and Cl- ions added to achieve 0.15 M excess520

NaCl to mimic the solution conditions of the experimental assay. The artifact in electrostatic interactions for521

charge change perturbations due to periodic boundary conditions in MD simulations are corrected based on522

the method proposed by Rocklin et al. [73].523

System equilibration was automated. It followed the default 5-stage Desmond protocol: (i) 100 ps with524

1 fs time steps of Brownian dynamics with positional restraints of solute heavy atoms to their initial geometry525
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using a restraint force constant of 50 kcal/mol/Å2; this Brownian dynamics integrator corresponds to a526

Langevin integrator in the limit when � →0, modified to stabilize equilibration of starting configurations527

with high potential energies; particle and piston velocities were clipped so that particle displacements were528

limited to 0.1 Å, in any direction. (ii) 12 ps MD simulations with 1 fs time step using Langevin thermostat at529

10 K with constant volume, using the same restraints; (iii) 12 ps MD simulations with 1 fs time step using530

Langevin thermostat and barostat [74] at 10 K and constant pressure of 1 atmosphere, using the same531

restraints; (iv) 12 ps MD simulations with 1 fs time step using Langevin thermostat and barostat at 300 K532

and constant pressure of 1 atmosphere, using the same restraints; (v) a final unrestrained equilibration533

MD simulation of 240 ps with 2 fs time step using Langevin thermostat and barostat at 300 K and constant534

pressure of 1 atmosphere. Electrostatic interactions were computed with particle-mesh Ewald (PME) [75]535

and a 9 Å cutoff distance was used for van de Waals interactions. The production MD simulation was536

performed in the NPT ensemble using the MTK method [76] with integration time steps of 4 fs, 4 fs, and 8 fs537

respectively for the bonded, near, and far interactions following the RESPA method [77] through hydrogen538

mass repartitioning [78]. Production FEP+ calculations utilized Hamiltonian replica exchange with solute539

tempering (REST) [79], with automated definition of the REST region. Dynamics were performed with540

constant pressure of 1 atmosphere and constant temperature of 300 K for 5 ns in which exchanges between541

windows was attempted every 1.2 ps.542

Because cycle closure could not be used to reduce statistical errors via path redundancy [79], we543

instead performed mutational free energy calculations in triplicate by initializing dynamics with different544

random seeds. The relative free energies for each mutation in each independent run were calculated using545

BAR [80, 81] The reported ΔΔG was computed as the mean of the computed ΔΔG from three independent546

simulations. Triplicate simulations were performed in parallel using four NIVIDA Pascal Architecture GPUs547

per alchemical free-energy simulation (12 GPUs in total), requiring ∼6 hours in total to compute ΔΔG.548

Obtaining ΔΔG from ΔpIC50 benchmark set data549

Reference relative free energies were obtained from three publicly available sources of ΔpIC50 data (Table 1).550

Under the assumption of Michaelis-Menten binding kinetics (pseudo first-order, but relative free energies are551

likely consistent), the inhibitor is competitive with ATP (Equation 1). This assumption has been successfully552

used to estimate relative free energies [37, 82–84] using the relationship between IC50 and competitive553

inhibitor affinity Ki,554

IC50 =
Ki

1 + [S0]
KM

. (1)

If the Michaelis constant for ATP (KM ) is much larger than the initial ATP concentration S0, the relation in555

Equation 1 will tend towards the equality IC50 = Ki. The relative change in binding free energy of Abl:TKI556

binding due to protein mutation is simply,557

ΔΔG = −RT ln
IC50,W T

IC50,mut
(2)

where IC50,W T is the IC50 value for the TKI binding to the wild-type protein and IC50,mut is the IC50 value for the558

mutant protein. R is the ideal gas constant and T is taken to be room temperature (300 K).559

As alluded to above, relating ΔpIC50s to ΔΔGs assumes that the Michaelis constant for ATP is much larger560

than the initial concentration of ATP, and that the experimentally observed ΔpIC50 change is solely from561

changes in kinase:TKI binding affinity. In practice, not all of these assumptions may hold. For example, the562

experimentally observed ΔpIC50 might depend on the metabolism of drugs, and for drugs with different563

mechanisms of action than directly binding to the kinase binding pocket (e.g., binding to the transition564

structures of kinases, target gene amplification, up-/down-regulation of positive-/negative-feedback effectors,565

diminished synergism of pro-apoptotic machinery, decoupling of the target from cell survival circuits) [85, 86],566

their inhibition ability might not correlate well with binding affinity. However, the comparison between567

ΔpIC50 and ΔKD is presented in Figure 2d, and this comparison indicates the assumptions we used to relate568

ΔpIC50 to ΔΔG are reasonable for the dataset we studied.569
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Assessing prediction performance570

Quantitative accuracy metrics571

Mean unsigned error (MUE) was calculated by taking the average absolute difference between predicted and572

experimental estimates of ΔΔG. Root-mean square error (RMSE) was calculated by taking the square root573

of the average squared difference between predicted and experimental estimates of ΔΔG. MUE depends574

linearly on errors such that large and small errors contribute equally to the average value, while RMSE575

depends quadratically on errors, magnifying their effect on the average value.576

Truth tables577

Two-class truth tables were constructed to characterize the ability of Prime and FEP+ to correctly classify578

mutations as susceptible (ΔΔG ≤ 1.36 kcal/mol) or resistant (ΔΔG > 1.36 kcal/mol), where the 1.36 kcal/mol579

threshold represents a 10-fold change in affinity. Accuracy was calculated as the fraction of all predictions580

that were correctly classified as sensitizing, neutral, or resistant. Sensitivity and specificity were calculated581

using a binary classification of resistant (ΔΔG > 1.36 kcal/mol) or susceptible (ΔΔG ≤ 1.36 kcal/mol). Specificity582

was calculated as the fraction of correctly predicted non-resistant mutations out of all truly susceptible583

mutations S. Sensitivity was calculated as the fraction of correctly predicted resistant mutations out of all584

truly resistant mutations, R. The number of susceptible mutations was 113 for axitinib, bosutinib, dasatinib,585

imatinib, nilotinib and ponatinib, and 12 for erlotinib and gefitinib; the number of resistant mutations R was586

18 for axitinib, bosutinib, dasatinib, imatinib, nilotinib, and ponatinib, and 1 for erlotinib and gefitinib.587

Consensus model588

First, Prime and FEP+ (n=142) were scaled by minimizing their RMSE to experiment by optimizing slope using589

linear regression. The resulting (minimum) RMSE was used in a subsequent step to combine the scaled FEP+590

and scaled Prime free energies with inverse-variance weighted averaging.591

ROC592

A ROC curve was generated by computing the true positive rate (sensitivity) and the true negative rate593

(specificity) when the classification cutoff differentiating resistant from sensitizing mutations is changed for594

(only) the predicted values of ΔΔG. Cutoffs were chosen by taking the minimum and maximum value of ΔΔG595

for a data set (Prime or FEP+), and iteratively computing specificity and sensitivity in steps of 0.001 kcal/mol,596

which by this definition will be in the range [0,1]. Experimental positives and negatives were classified with597

the 1.36 kcal/mol cutoff. ROC-AUC was computed using the trapezoidal rule.598

Estimating uncertainties of physical-modeling results599

95% symmetric confidence intervals (CI, 95%) for all performance metrics were calculated using bootstrap by600

resampling all datasets with replacement, with 1000 resampling events. Confidence intervals were estimated601

for all performance metrics and reported as xxhighxlow where x is the mean statistic calculated from the complete602

dataset (e.g. RMSE), and xlow and xhigh are the values of the statistic at the 2.5tℎ and 97.5tℎ percentiles of the603

value-sorted list of the bootstrap samples. Uncertainty for ΔΔGs was computed by the standard deviation604

between three independent runs (using different random seeds to set initial velocities), where the 95% CI605

was [ΔΔG−1.96×�FEP+, ΔΔG+1.96×�FEP+] kcal/mol. 1� used in plots for FEP+ and experiment; 0� for Prime.606

Bayesian hierarchical model to estimate intrinsic error607

We used Bayesian inference to estimate the true underlying prediction error of Prime and FEP+ by making608

use of known properties of the experimental variability (characterized in Figure 2) and statistical uncertainty609

estimates generated by our calculations under weak assumptions about the character of the error.610

We presume the true free energy differences of mutation i, ΔΔGtrue
i , comes from a normal background611

distribution of unknown mean and variance,612

ΔΔGtrue
i ∼  (�mut , �2mut) i = 1,… ,M (3)
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where there areM mutations in our dataset. We assign weak priors to the mean and variance613

�mut ∼ U (−6,+6) (4)

�mut ∝ 1 (5)

where we limit � > 0.614

We presume the true computational predictions (absent statistical error) differ from the (unknown)615

true free energy difference of mutation ΔΔGtrue
i by normally-distributed errors with zero bias but standard616

deviation equal to the RMSE for either Prime or FEP+, the quantity we are focused on estimating:617

ΔΔGtrue
i,Prime ∼  (ΔΔGtrue

i ,RMSE2Prime) (6)

ΔΔGtrue
i,FEP+ ∼  (ΔΔGtrue

i ,RMSE2FEP+) (7)

In the case of Prime, since the computation is deterministic, we actually calculate ΔΔGtrue
Prime for each618

mutant. For FEP+, however, the computed free energy changes are corrupted by statistical error, which we619

also presume to be normally distributed with standard deviation �calc,i,620

ΔΔGi,FEP+ ∼  (ΔΔGi,FEP+, �
2
i,FEP+) (8)

where ΔΔGi,FEP+ is the free energy computed for mutant i by FEP+, and �i,FEP+ is the corresponding statistical621

error estimate.622

The experimental data we observe is also corrupted by error, which we presume to be normally dis-623

tributed with standard deviation �exp:624

ΔΔGi,exp ∼  (ΔΔGi, �
2
exp) (9)

Here, we used an estimate of Kd- and IC50-derived ΔΔG variation derived from the empirical RMSE of 0.81625

kcal/mol, where we took �exp ≈ 0.81∕
√

2 = 0.57 kcal/mol to ensure the difference between two random626

measurements of the same mutant would have an empirical RMSE of 0.81 kcal/mol.627

Under the assumption that the true ΔΔG is normally distributed and the calculated value differs from628

the true value via a normal error model, it can easily be shown that the MUE is related to the RMSE via629

MUE = ∫ dxtrue p(xtrue)∫ dxcalc p(xcalc|xtrue) |xcalc − xtrue| (10)

= ∫ dxtrue
1

√

2��2true
e
− (xtrue−�true)

2

2�2true
∫ dxcalc

1
√

2��2calc
e
− (xcalc−�true)

2

2�2calc
|xcalc − xtrue| (11)

=
√

2
�
RMSE (12)

The model was implemented using PyMC3 [87], observable quantities were set to their computed or630

experimental values, and 5000 samples drawn from the posterior (after discarding an initial 500 samples to631

burn-in) using the default NUTS sampler. Expectations and posterior predictive intervals were computed632

from the marginal distributions obtained from the resulting traces.633

Data availability634

Compiled experimental datasets, input files for Prime and FEP+ and computational results can be found at635

the following URL: https://goo.gl/6cC8Bu636

Code availability637

Scripts used for statistics analysis (including the Bayesian inference model) can be found at the following638

URL: https://goo.gl/6cC8Bu639

19 of 37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/239012doi: bioRxiv preprint 

https://goo.gl/6cC8Bu
https://goo.gl/6cC8Bu
https://doi.org/10.1101/239012
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission—March 30, 2018

Acknowledgments640

We thank Daniel Robinson (Schrödinger), Sonya M. Hanson (MSKCC), and Gregory A. Ross (MSKCC) for helpful641

discussions. JDC acknowledges support from NIH National Cancer Institute Cancer Center Core Grant P30642

CA008748; JDC and SKA acknowledge support from the Sloan Kettering Institute, Cycle for Survival, and NIH643

grant R01 GM121505. KH acknowledges help from Wei Chen (Schrödinger) and Anthony Clark (Schrödinger)644

for instructions on running mutations changing the net charge of the system, and Simon Gao (Schrödinger)645

for assistance in computational resources.646

Disclosures647

JDC is a member of the Scientific Advisory Board for Schrödinger Inc.648

Author Contributions649

KH, JDC, CN, RA, and LW designed the research; KH, SA, TS, and LW identified experimental datasets; KH and650

LW performed the simulations; KH, CN, SKA, SR, TS, RA, JDC, and LW analyzed the data; KH, JDC, SKA, and LW651

wrote the paper.652

References653

[1] Robert Roskoski Jr. USFDA Approved Protein Kinase Inhibitors. . 2017; http://www.brimr.org/PKI/PKIs.htm, updated654

3 May 2017.655

[2] Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI,656

Overington JP. A Comprehensive Map of Molecular Drug Targets. Nat Rev Drug Discov. 2016 Dec; 16(1):19–34. doi:657

10.1038/nrd.2016.230.658

[3] Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL. Multiple BCR-ABL Kinase Domain659

Mutations Confer Polyclonal Resistance to the Tyrosine Kinase Inhibitor Imatinib (STI571) in Chronic Phase and Blast660

Crisis Chronic Myeloid Leukemia. Cancer Cell. 2002 Aug; 2(2):117–125.661

[4] Buczek M, Escudier B, Bartnik E, Szczylik C, Czarnecka A. Resistance to tyrosine kinase inhibitors in clear cell662

renal cell carcinoma: From the patient’s bed to molecular mechanisms. Biochimica et Biophysica Acta (BBA) -663

Reviews on Cancer. 2014; 1845(1):31 – 41. http://www.sciencedirect.com/science/article/pii/S0304419X13000437, doi:664

https://doi.org/10.1016/j.bbcan.2013.10.001.665

[5] Huang L, Fu L. Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors. Acta Pharm Sin B. 2015; 5(5):390–401.666

[6] Meyer SC, Levine RL. Molecular Pathways: Molecular Basis for Sensitivity and Resistance to JAK Kinase Inhibitors.667

Clin Cancer Res. 2014; 20(8):2051–2059. doi: 10.1158/1078-0432.CCR-13-0279.668

[7] Davare MA, Vellore NA, Wagner JP, Eide CA, Goodman JR, Drilon A, Deininger MW, O?Hare T, Druker BJ. Struc-669

tural Insight into Selectivity and Resistance Profiles of ROS1 Tyrosine Kinase Inhibitors. Proc Natl Acad Sci. 2015;670

112(39):E5381–E5390. doi: 10.1073/pnas.1515281112.671

[8] Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, Place CS, Taylor-Weiner A, Whittaker S,672

Kryukov GV, Hodis E, Rosenberg M, McKenna A, Cibulskis K, Farlow D, Zimmer L, Hillen U, Gutzmer R, Goldinger SM,673

Ugurel S, et al. The Genetic Landscape of Clinical Resistance to RAF Inhibition in Metastatic Melanoma. Cancer Discov.674

2014; 4(1):94–109. doi: 10.1158/2159-8290.CD-13-0617.675

[9] Rani S, Corcoran C, Shiels L, Germano S, Breslin S, Madden S, McDermott MS, Browne BC, OtextquoterightDonovan676

N, Crown J, Gogarty M, Byrne AT, OtextquoterightDriscoll L. Neuromedin U: A Candidate Biomarker and Therapeutic677

Target to Predict and Overcome Resistance to HER-Tyrosine Kinase Inhibitors. Cancer Res. 2014; 74(14):3821–3833.678

doi: 10.1158/0008-5472.CAN-13-2053.679

[10] Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer Drug Resistance: An Evolving Paradigm. Nat Rev680

Cancer. 2013 Sep; 13(10):714–726. doi: 10.1038/nrc3599.681

[11] Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second Generation Inhibitors of BCR-ABL for682

the Treatment of Imatinib-Resistant Chronic Myeloid Leukaemia. Nat Rev Cancer. 2007 May; 7(5):345–356. doi:683

10.1038/nrc2126.684

[12] Y Lu X, Cai Q, Ding K. Recent Developments in the Third Generation Inhibitors of Bcr-Abl for Overriding T315I685

Mutation. Curr Med Chem. 2011 May; 18(14):2146–2157. doi: 10.2174/092986711795656135.686

20 of 37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/239012doi: bioRxiv preprint 

http://www.brimr.org/PKI/PKIs.htm
10.1038/nrd.2016.230
10.1038/nrd.2016.230
10.1038/nrd.2016.230
http://www.sciencedirect.com/science/article/pii/S0304419X13000437
https://doi.org/10.1016/j.bbcan.2013.10.001
https://doi.org/10.1016/j.bbcan.2013.10.001
https://doi.org/10.1016/j.bbcan.2013.10.001
10.1158/1078-0432.CCR-13-0279
10.1073/pnas.1515281112
10.1158/2159-8290.CD-13-0617
10.1158/0008-5472.CAN-13-2053
https://doi.org/10.1101/239012
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission—March 30, 2018

[13] Juchum M, Günther M, Laufer SA. Fighting Cancer Drug Resistance: Opportunities and Challenges for Mutation-687

Specific EGFR Inhibitors. Drug Resist Updat. 2015 May; 20:12–28. doi: 10.1016/j.drup.2015.05.002.688

[14] Song Z, Wang M, Zhang A. Alectinib: A Novel Second Generation Anaplastic Lymphoma Kinase (ALK) Inhibitor for689

Overcoming Clinically-Acquired Resistance. Acta Pharm Sin B. 2015 Jan; 5(1):34–37. doi: 10.1016/j.apsb.2014.12.007.690

[15] Neel DS, Bivona TG. Resistance Is Futile: Overcoming Resistance to Targeted Therapies in Lung Adenocarcinoma.691

Npj Precis Oncol. 2017 Dec; 1(1). doi: 10.1038/s41698-017-0007-0.692

[16] Gruber F, Hjorth-Hansen H, Mikkola I, Stenke L, TA J. A Novel BCR-ABL Splice Isoform Is Associated with the L248V693

Mutation in CML Patients with Acquired Resistance to Imatinib. Leuk Off J Leuk Soc Am Leuk Res Fund UK. 2006 Dec;694

20:2057–60.695

[17] Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J,696

Rosen N. AKT Inhibition Relieves Feedback Suppression of Receptor Tyrosine Kinase Expression and Activity. Cancer697

Cell. 2011 Jan; 19(1):58–71. doi: 10.1016/j.ccr.2010.10.031.698

[18] Knight ZA, Lin H, Shokat KM. Targeting the Cancer Kinome through Polypharmacology. Nat Rev Cancer. 2010;699

10(2):130.700

[19] Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Drug Resistance in Cancer: An701

Overview. Cancers. 2014 Sep; 6(3):1769–1792. doi: 10.3390/cancers6031769.702

[20] Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, Hellmann MD,703

Barron DA, Schram AM, Hameed M, Dogan S, Ross DS, Hechtman JF, DeLair DF, Yao J, Mandelker DL, et al. Mutational704

Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients. Nat Med. 2017705

May; 23(6):703–713. doi: 10.1038/nm.4333.706

[21] Redig AJ, Jänne PA. Basket Trials and the Evolution of Clinical Trial Design in an Era of Genomic Medicine. American707

Society of Clinical Oncology; 2015.708

[22] Hyman DM, Taylor BS, Baselga J. Implementing Genome-Driven Oncology. Cell. 2017 Feb; 168(4):584–599. doi:709

10.1016/j.cell.2016.12.015.710

[23] Pesesky MW, Hussain T, Wallace M, Patel S, Andleeb S, Burnham CAD, Dantas G. Evaluation of Machine Learning711

and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-Negative Bacilli from Whole712

Genome Sequence Data. Front Microbiol. 2016 Nov; 7. doi: 10.3389/fmicb.2016.01887.713

[24] Melnikov A, Rogov P, Wang L, Gnirke A, Mikkelsen TS. Comprehensive Mutational Scanning of a Kinase in Vivo Reveals714

Substrate-Dependent Fitness Landscapes. Nucleic Acids Res. 2014 Aug; 42(14):e112–e112. doi: 10.1093/nar/gku511.715

[25] Harder E, DammW, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti716

DS, Krilov G, Jorgensen WL, Abel R, Friesner RA. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small717

Molecules and Proteins. J Chem Theory Comput. 2016 Jan; 12(1):281–296. doi: 10.1021/acs.jctc.5b00864.718

[26] Huang J, MacKerell AD. CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR719

Data. J Comput Chem. 2013 Sep; 34(25):2135–2145. doi: 10.1002/jcc.23354.720

[27] Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the Accuracy of721

Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput. 2015 Aug; 11(8):3696–3713. doi:722

10.1021/acs.jctc.5b00255.723

[28] Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS. Alchemical Free Energy Methods for Drug724

Discovery: Progress and Challenges. Curr Opin Struct Biol. 2011 Apr; 21(2):150–160. doi: 10.1016/j.sbi.2011.01.011.725

[29] Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse726

C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, et al. Accurate and727

Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy728

Calculation Protocol and Force Field. J Am Chem Soc. 2015 Feb; 137(7):2695–2703. doi: 10.1021/ja512751q.729

[30] Abel R, Mondal S, Masse C, Greenwood J, Harriman G, Ashwell MA, Bhat S, Wester R, Frye L, Kapeller R, et al.730

Accelerating drug discovery through tight integration of expert molecular design and predictive scoring. Current731

opinion in structural biology. 2017; 43:38–44.732

[31] Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC. Accurate Calculation of the Absolute Free Energy of Binding for733

Drug Molecules. Chem Sci. 2016; 7(1):207–218. doi: 10.1039/C5SC02678D.734

21 of 37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/239012doi: bioRxiv preprint 

10.1016/j.drup.2015.05.002
10.1016/j.apsb.2014.12.007
10.1016/j.ccr.2010.10.031
10.1038/nm.4333
10.1016/j.cell.2016.12.015
10.1016/j.cell.2016.12.015
10.1016/j.cell.2016.12.015
10.3389/fmicb.2016.01887
10.1021/acs.jctc.5b00864
10.1002/jcc.23354
10.1021/acs.jctc.5b00255
10.1021/acs.jctc.5b00255
10.1021/acs.jctc.5b00255
10.1016/j.sbi.2011.01.011
https://doi.org/10.1101/239012
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission—March 30, 2018

[32] Cappel D, Hall ML, Lenselink EB, Beuming T, Qi J, Bradner J, Sherman W. Relative Binding Free Energy Calculations735

Applied to Protein Homology Models. J Chem Inf Model. 2016; 56(12):2388–2400. doi: 10.1021/acs.jcim.6b00362.736

[33] Clark AJ, Gindin T, Zhang B, Wang L, Abel R, Murret CS, Xu F, Bao A, Lu NJ, Zhou T, et al. Free Energy Perturbation737

Calculation of Relative Binding Free Energy between Broadly Neutralizing Antibodies and the gp120 Glycoprotein of738

HIV-1. Journal of molecular biology. 2017; 429(7):930–947.739

[34] Steinbrecher T, Zhu C, Wang L, Abel R, Negron C, Pearlman D, Feyfant E, Duan J, Sherman W. Predicting the Effect of740

Amino Acid Single-Point Mutations on Protein Stability—Large-Scale Validation of MD-Based Relative Free Energy741

Calculations. Journal of molecular biology. 2017; 429(7):948–963.742

[35] Ford MC, Babaoglu K. Examining the Feasibility of Using Free Energy Perturbation (FEP+) in Predicting Protein743

Stability. J Chem Inf Model. 2017 Jun; 57(6):1276–1285. doi: 10.1021/acs.jcim.7b00002.744

[36] Zou J, Song B, Simmerling C, Raleigh D. Experimental and Computational Analysis of Protein Stabilization by Gly-745

to- D -Ala Substitution: A Convolution of Native State and Unfolded State Effects. J Am Chem Soc. 2016 Dec;746

138(48):15682–15689. doi: 10.1021/jacs.6b09511.747

[37] Mondal J, Tiwary P, Berne BJ. How a Kinase Inhibitor Withstands Gatekeeper Residue Mutations. J Am Chem Soc.748

2016; 138(13):4608–4615. doi: 10.1021/jacs.6b01232.749

[38] Lovering F, Aevazelis C, Chang J, Dehnhardt C, Fitz L, Han S, Janz K, Lee J, Kaila N, McDonald J, Moore W, Moretto750

A, Papaioannou N, Richard D, Ryan MS, Wan ZK, Thorarensen A. Imidazotriazines: Spleen Tyrosine Kinase751

(Syk) Inhibitors Identified by Free-Energy Perturbation (FEP). ChemMedChem. 2016 Jan; 11(2):217–233. doi:752

10.1002/cmdc.201500333.753

[39] Rapp C, Kalyanaraman C, Schiffmiller A, Schoenbrun EL, Jacobson MP. A Molecular Mechanics Approach to Modeling754

Protein–Ligand Interactions: Relative Binding Affinities in Congeneric Series. J Chem Inf Model. 2011 Sep; 51(9):2082–755

2089. doi: 10.1021/ci200033n.756

[40] Shirts MR, Mobley DL, Chodera JD. Chapter 4 Alchemical Free Energy Calculations: Ready for Prime Time? In: Annual757

Reports in Computational Chemistry, vol. 3 Elsevier; 2007.p. 41–59.758

[41] Mobley DL, Klimovich PV. Perspective: Alchemical Free Energy Calculations for Drug Discovery. J Chem Phys. 2012759

Dec; 137(23):230901. doi: 10.1063/1.4769292.760

[42] Abel R, Mondal S, Masse C, Greenwood J, Harriman G, Ashwell MA, Bhat S, Wester R, Frye L, Kapeller R, Friesner RA.761

Accelerating Drug Discovery through Tight Integration of Expert Molecular Design and Predictive Scoring. Curr Opin762

Struct Biol. 2017 Apr; 43:38–44. doi: 10.1016/j.sbi.2016.10.007.763

[43] Kuhn B, Tichý M, Wang L, Robinson S, Martin RE, Kuglstatter A, Benz J, Giroud M, Schirmeister T, Abel R, Diederich F,764

Hert J. Prospective Evaluation of Free Energy Calculations for the Prioritization of Cathepsin L Inhibitors. J Med Chem.765

2017 Mar; 60(6):2485–2497. doi: 10.1021/acs.jmedchem.6b01881.766

[44] Pemovska T, Johnson E, Kontro M, Repasky GA, Chen J, Wells P, Cronin CN, McTigue M, Kallioniemi O, Porkka K,767

Murray BW, Wennerberg K. Axitinib Effectively Inhibits BCR-ABL1(T315I) with a Distinct Binding Conformation. Nature.768

2015 Feb; 519(7541):102–105. doi: 10.1038/nature14119.769

[45] Schrock A, Chen TH, Clackson T, Rivera VM. Comprehensive Analysis Of The In Vitro Potency Of Ponatinib, and770

All Other Approved BCR-ABL Tyrosine Kinase Inhibitors (TKIs), Against a Panel Of Single and Compound BCR-ABL771

Mutants. Blood. 2013; 122(21):3992–3992.772

[46] Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP. Comprehensive773

Analysis of Kinase Inhibitor Selectivity. Nat Biotechnol. 2011 Oct; 29(11):1046–1051. doi: 10.1038/nbt.1990.774

[47] Soverini S, Colarossi S, Gnani A, Rosti G, Castagnetti F, Poerio A, Iacobucci I, Amabile M, Abruzzese E, Orlandi775

E, Radaelli F, Ciccone F, Tiribelli M, di Lorenzo R, Caracciolo C, Izzo B, Pane F, Saglio G, Baccarani M, Martinelli G.776

Contribution of ABL Kinase Domain Mutations to Imatinib Resistance in Different Subsets of Philadelphia-Positive777

Patients: By the GIMEMA Working Party on Chronic Myeloid Leukemia. Clinical Cancer Research. 2006; 12(24):7374–778

7379. http://clincancerres.aacrjournals.org/content/12/24/7374, doi: 10.1158/1078-0432.CCR-06-1516.779

[48] O’Hare T, Eide CA, Deininger MW. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for780

chronic myeloid leukemia. Blood. 2007; 110(7):2242–2249.781

[49] O’Hare T. Combined Abl Inhibitor Therapy for Minimizing Drug Resistance in Chronic Myeloid Leukemia: Src/Abl782

Inhibitors Are Compatible with Imatinib. Clin Cancer Res. 2005 Oct; 11(19):6987–6993. doi: 10.1158/1078-0432.CCR-783

05-0622.784

22 of 37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/239012doi: bioRxiv preprint 

10.1021/acs.jcim.6b00362
10.1021/acs.jcim.7b00002
10.1021/jacs.6b09511
10.1021/jacs.6b01232
10.1002/cmdc.201500333
10.1002/cmdc.201500333
10.1002/cmdc.201500333
10.1063/1.4769292
10.1016/j.sbi.2016.10.007
10.1021/acs.jmedchem.6b01881
10.1038/nbt.1990
http://clincancerres.aacrjournals.org/content/12/24/7374
10.1158/1078-0432.CCR-06-1516
10.1158/1078-0432.CCR-05-0622
10.1158/1078-0432.CCR-05-0622
10.1158/1078-0432.CCR-05-0622
https://doi.org/10.1101/239012
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission—March 30, 2018

[50] Shan Y, Seeliger MA, Eastwood MP, Frank F, Xu H, Jensen MØ, Dror RO, Kuriyan J, Shaw DE. A Conserved Protonation-785

Dependent Switch Controls Drug Binding in the Abl Kinase. Proc Natl Acad Sci. 2009; 106(1):139–144.786

[51] Demerdash O, Yap EH, Head-Gordon T. Advanced Potential Energy Surfaces for Condensed Phase Simulation. Annu787

Rev Phys Chem. 2014 Apr; 65(1):149–174. doi: 10.1146/annurev-physchem-040412-110040.788

[52] Jiao D, Golubkov PA, Darden TA, Ren P. Calculation of Protein–ligand Binding Free Energy by Using a Polarizable789

Potential. Proc Natl Acad Sci. 2008; 105(17):6290–6295.790

[53] Shirts MR, Mobley DL, Chodera JD, Pande VS. Accurate and Efficient Corrections for Missing Dispersion Interactions791

in Molecular Simulations. J Phys Chem B. 2007 Nov; 111(45):13052–13063. doi: 10.1021/jp0735987.792

[54] Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A Smooth Particle Mesh Ewald Method. J Chem793

Phys. 1995 Nov; 103(19):8577–8593. doi: 10.1063/1.470117.794

[55] Wennberg CL, Murtola T, Hess B, Lindahl E. Lennard-Jones Lattice Summation in Bilayer Simulations Has Crit-795

ical Effects on Surface Tension and Lipid Properties. J Chem Theory Comput. 2013 Aug; 9(8):3527–3537. doi:796

10.1021/ct400140n.797

[56] Onufriev AV, Alexov E. Protonation and pK Changes in Protein–ligand Binding. Q Rev Biophys. 2013 May; 46(02):181–798

209. doi: 10.1017/S0033583513000024.799

[57] Martin YC. Let’s Not Forget Tautomers. J Comput Aided Mol Des. 2009 Oct; 23(10):693–704. doi: 10.1007/s10822-800

009-9303-2.801

[58] Jensen J. Calculating pH and Salt Dependence of Protein-Protein Binding. Curr Pharm Biotechnol. 2008 Apr;802

9(2):96–102. doi: 10.2174/138920108783955146.803

[59] Nagar B, Hantschel O, YoungMA, Scheffzek K, Veach D, BornmannW, Clarkson B, Superti-Furga G, Kuriyan J. Structural804

Basis for the Autoinhibition of C-Abl Tyrosine Kinase. Cell. 2003; 112(6):859–871.805

[60] Lorenz S, Deng P, Hantschel O, Superti-Furga G, Kuriyan J. Crystal Structure of an SH2–kinase Construct of C-Abl and806

Effect of the SH2 Domain on Kinase Activity. Biochem J. 2015 Jun; 468(2):283–291. doi: 10.1042/BJ20141492.807

[61] O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, Adrian LT, Zhou T, Huang WS, Xu Q, Metcalf CA, Tyner808

JW, Loriaux MM, Corbin AS, Wardwell S, Ning Y, Keats JA, Wang Y, Sundaramoorthi R, Thomas M, et al. AP24534, a Pan-809

BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315IMutant and Overcomes Mutation-Based810

Resistance. Cancer Cell. 2009 Nov; 16(5):401–412. doi: 10.1016/j.ccr.2009.09.028.811

[62] Levinson NM, Boxer SG. Structural and Spectroscopic Analysis of the Kinase Inhibitor Bosutinib and an Isomer812

of Bosutinib Binding to the Abl Tyrosine Kinase Domain. PLoS ONE. 2012 Apr; 7(4):e29828. doi: 10.1371/jour-813

nal.pone.0029828.814

[63] Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-815

Meyers E, Kung AL, Mestan J, Daley GQ, Callahan L, Catley L, Cavazza C, Mohammed A, Neuberg D, Wright RD, Gilliland816

DG, et al. Characterization of AMN107, a Selective Inhibitor of Native and Mutant Bcr-Abl. Cancer Cell. 2005 Feb;817

7(2):129–141. doi: 10.1016/j.ccr.2005.01.007.818

[64] Zhou T, Commodore L, HuangWS, Wang Y, ThomasM, Keats J, Xu Q, Rivera VM, Shakespeare WC, Clackson T, Dalgarno819

DC, Zhu X. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming820

Kinase Inhibitor Resistance: Structural Mechanism of Ponatinib. Chem Biol Drug Des. 2011 Jan; 77(1):1–11. doi:821

10.1111/j.1747-0285.2010.01054.x.822

[65] Li H, Robertson AD, Jensen JH. Very Fast Empirical Prediction and Rationalization of Protein pKa Values. Proteins823

Struct Funct Bioinforma. 2005 Oct; 61(4):704–721. doi: 10.1002/prot.20660.824

[66] Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE,825

Francis P, Shenkin PS. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of826

Docking Accuracy. J Med Chem. 2004 Mar; 47(7):1739–1749. doi: 10.1021/jm0306430.827

[67] Park JH, Liu Y, Lemmon MA, Radhakrishnan R. Erlotinib Binds Both Inactive and Active Conformations of the EGFR828

Tyrosine Kinase Domain. Biochem J. 2012 Dec; 448(3):417–423. doi: 10.1042/BJ20121513.829

[68] Yosaatmadja Y, Squire CJ. 1.85 Angstrom Structure of EGFR Kinase Domain with Gefitinib. . 2014 Nov; doi:830

10.2210/pdb4wkq/pdb.831

23 of 37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/239012doi: bioRxiv preprint 

10.1063/1.470117
10.1016/j.ccr.2009.09.028
10.1371/journal.pone.0029828
10.1371/journal.pone.0029828
10.1371/journal.pone.0029828
10.1016/j.ccr.2005.01.007
10.1111/j.1747-0285.2010.01054.x
10.1111/j.1747-0285.2010.01054.x
10.1111/j.1747-0285.2010.01054.x
10.1002/prot.20660
https://doi.org/10.1101/239012
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission—March 30, 2018

[69] Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: A Software Program for pK a Prediction832

and Protonation State Generation for Drug-like Molecules. J Comput Aided Mol Des. 2007 Dec; 21(12):681–691. doi:833

10.1007/s10822-007-9133-z.834

[70] Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. Interaction Models for Water in Relation to Protein835

Hydration. In: Pullman B, editor. Intermolecular Forces, vol. 14 Dordrecht: Springer Netherlands; 1981.p. 331–342. doi:836

10.1007/978-94-015-7658-1_21.837

[71] Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W. Prediction of Absolute Solvation Free Energies838

Using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J Chem Theory Comput. 2010 May;839

6(5):1509–1519. doi: 10.1021/ct900587b.840

[72] Pearlman DA. A Comparison of Alternative Approaches to Free Energy Calculations. J Phys Chem. 1994 Feb;841

98(5):1487–1493. doi: 10.1021/j100056a020.842

[73] Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH. Calculating the Binding Free Energies of Charged Species Based843

on Explicit-Solvent Simulations Employing Lattice-Sum Methods: An Accurate Correction Scheme for Electrostatic844

Finite-Size Effects. J Chem Phys. 2013 Nov; 139(18):184103. doi: 10.1063/1.4826261.845

[74] Feller SE, Zhang Y, Pastor RW, Brooks BR. Constant pressure molecular dynamics simulation: The Langevin pis-846

ton method. The Journal of Chemical Physics. 1995; 103(11):4613–4621. https://doi.org/10.1063/1.470648, doi:847

10.1063/1.470648.848

[75] Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. The849

Journal of Chemical Physics. 1995; 103(19):8577–8593. https://doi.org/10.1063/1.470117, doi: 10.1063/1.470117.850

[76] Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics.851

1994; 101(5):4177–4189. https://doi.org/10.1063/1.467468, doi: 10.1063/1.467468.852

[77] Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. The Journal of Chemical853

Physics. 1992; 97(3):1990–2001. https://doi.org/10.1063/1.463137, doi: 10.1063/1.463137.854

[78] Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-Time-Step Molecular Dynamics through Hydrogen Mass855

Repartitioning. Journal of Chemical Theory and Computation. 2015; 11(4):1864–1874. http://dx.doi.org/10.1021/856

ct5010406, doi: 10.1021/ct5010406, pMID: 26574392.857

[79] Wang L, Berne BJ, Friesner RA. On Achieving High Accuracy and Reliability in the Calculation of Relative Protein-Ligand858

Binding Affinities. Proc Natl Acad Sci. 2012 Feb; 109(6):1937–1942. doi: 10.1073/pnas.1114017109.859

[80] Bennett CH. Efficient Estimation of Free Energy Differences from Monte Carlo Data. J Comput Phys. 1976; 22:245–860

268.861

[81] Shirts MR, Bair E, Hooker G, Pande VS. Equilibrium Free Energies from Nonequilibrium Measurements Using862

Maximum-Likelihood Methods. Phys Rev Lett. 2003 Oct; 91(14). doi: 10.1103/PhysRevLett.91.140601.863

[82] Price DJ, JorgensenWL. Computational Binding Studies of Human Pp60c-Src SH2 Domain with a Series of Nonpeptide,864

Phosphophenyl-Containing Ligands. Bioorg Med Chem Lett. 2000 Sep; 10(18):2067–2070. doi: 10.1016/S0960-865

894X(00)00401-7.866

[83] Luccarelli J, Michel J, Tirado-Rives J, Jorgensen WL. Effects of Water Placement on Predictions of Binding Affinities for867

P38� MAP Kinase Inhibitors. J Chem Theory Comput. 2010 Dec; 6(12):3850–3856. doi: 10.1021/ct100504h.868

[84] Michel J, Verdonk ML, Essex JW. Protein-Ligand Binding Affinity Predictions by Implicit Solvent Simulations: A Tool for869

Lead Optimization? J Med Chem. 2006 Dec; 49(25):7427–7439. doi: 10.1021/jm061021s.870

[85] Barouch-Bentov R, Sauer K. Mechanisms of drug resistance in kinases. Expert opinion on investigational drugs.871

2011 Feb; 20(2):153–208.872

[86] McDermott U, Sharma SV, Dowell L, Greninger P, Montagut C, Lamb J, Archibald H, Raudales R, Tam A, Lee D,873

Rothenberg SM, Supko JG, Sordella R, Ulkus LE, Iafrate A J, Maheswaran S, Njauw CN, Tsao H, Drew L, Hanke JH,874

et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor875

cell line profiling. Proceedings of the National Academy of Sciences of the United States of America. 2007 Dec;876

104(50):19936–19941.877

[87] Salvatier J, Wiecki TV, Fonnesbeck C. Probabilistic programming in Python using PyMC3. PeerJ Computer Science.878

2016 Apr; 2:e55. https://doi.org/10.7717/peerj-cs.55, doi: 10.7717/peerj-cs.55.879

24 of 37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/239012doi: bioRxiv preprint 

10.1063/1.4826261
https://doi.org/10.1063/1.470648
10.1063/1.470648
10.1063/1.470648
10.1063/1.470648
https://doi.org/10.1063/1.470117
10.1063/1.470117
https://doi.org/10.1063/1.467468
10.1063/1.467468
https://doi.org/10.1063/1.463137
10.1063/1.463137
http://dx.doi.org/10.1021/ct5010406
http://dx.doi.org/10.1021/ct5010406
http://dx.doi.org/10.1021/ct5010406
10.1073/pnas.1114017109
10.1103/PhysRevLett.91.140601
https://doi.org/10.7717/peerj-cs.55
10.7717/peerj-cs.55
https://doi.org/10.1101/239012
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission—March 30, 2018

[88] Gruber FX, Lundán T, Goll R, Silye A, Mikkola I, Rekvig OP, Knuutila S, Remes K, Gedde-Dahl T, Porkka K, Hjorth-Hansen880

H. BCR-ABL Isoforms Associated with Intrinsic or Acquired Resistance to Imatinib: More Heterogeneous than Just881

ABL Kinase Domain Point Mutations? Med Oncol. 2012 Mar; 29(1):219–226. doi: 10.1007/s12032-010-9781-z.882

[89] Redaelli S, Mologni L, Rostagno R, Piazza R, Magistroni V, Ceccon M, Viltadi M, Flynn D, Passerini CG. Three novel883

patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors.884

American Journal of Hematology. 2012; 87(11):E125–E128. https://onlinelibrary.wiley.com/doi/abs/10.1002/ajh.23338,885

doi: 10.1002/ajh.23338.886

[90] Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, O’Hare T, Hu S, Narasimhan NI, Rivera VM, Clackson887

T, Turner CD, Haluska FG, Druker BJ, Deininger MWN, Talpaz M. Ponatinib in Refractory Philadelphia Chromo-888

some–Positive Leukemias. N Engl J Med. 2012 Nov; 367(22):2075–2088. doi: 10.1056/NEJMoa1205127.889

[91] Branford S. High Frequency of Point Mutations Clustered within the Adenosine Triphosphate-Binding Region of890

BCR/ABL in Patients with Chronic Myeloid Leukemia or Ph-Positive Acute Lymphoblastic Leukemia Who Develop891

Imatinib (STI571) Resistance. Blood. 2002 May; 99(9):3472–3475. doi: 10.1182/blood.V99.9.3472.892

[92] Press RD, Willis SG, Laudadio J, Mauro MJ, Deininger MWN. Determining the rise in BCR-ABL RNA that optimally893

predicts a kinase domain mutation in patients with chronic myeloid leukemia on imatinib. Blood. 2009; 114(13):2598–894

2605. http://www.bloodjournal.org/content/114/13/2598, doi: 10.1182/blood-2008-08-173674.895

25 of 37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/239012doi: bioRxiv preprint 

https://onlinelibrary.wiley.com/doi/abs/10.1002/ajh.23338
10.1002/ajh.23338
10.1182/blood.V99.9.3472
http://www.bloodjournal.org/content/114/13/2598
https://doi.org/10.1101/239012
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission—March 30, 2018

Supplementary Information896

TITLE897

Predicting resistance of clinical Abl mutations to targeted kinase inhibitors using alchemical free-energy898

calculations899

AUTHORS900

Kevin Hauser1, Christopher Negron1, Steven K. Albanese3,4, Soumya Ray1, Thomas Steinbrecher4, Robert901

Abel1, John D. Chodera3, Lingle Wang1,∗902

AFFILIATIONS903

1Schrödinger, New York, NY 10036. 2Gerstner Sloan Kettering Graduate School, Memorial Sloan Kettering904

Cancer Center, New York, NY 10065. 3Computational and Systems Biology Program, Sloan Kettering Institute,905

Memorial Sloan Kettering Cancer Center, New York, NY 10065. 4Schrödinger, GmbH, Q7 23, 68161 Mannheim,906

Germany.907

CORRESPONDING AUTHOR908

∗Corresponding Author: lingle.wang@schrodinger.com (LW)909

CONTENTS910

• Figure S1: Comparison of 31 mutations for which phosphorylated and non-phosphorylated ΔKds were911

available.912

• Figure S2: Truth tables with varying classification cutoffs for each TKI.913

• Figure S3: ROC curves for non-scaled and scaled FEP+, non-scaled and scaled Prime, a consensus914

model and a naïve model.915

• Table S1: IC50 experiment-derived reference ΔΔG data.916

• Table S2: Axitinib: experimental IC50 data and alchemical free-energy ΔΔGs.917

• Table S3: Bosutinib: experimental IC50 data and alchemical free-energy ΔΔGs.918

• Table S4: Dasatinib: experimental IC50 data and alchemical free-energy ΔΔGs.919

• Table S5: Imatinib: experimental IC50 data and alchemical free-energy ΔΔGs.920

• Table S6: Nilotinib: experimental IC50 data and alchemical free-energy ΔΔGs.921

• Table S7: Ponatinib: experimental IC50 data and alchemical free-energy ΔΔGs.922

• Table S8: Summary of statistics of scaled predictions, a naïve model, and a consensus model.923

• Table S9: Summary of the preparation of the 6 Abl:TKI co-crystal structure complexes.924

26 of 37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2018. ; https://doi.org/10.1101/239012doi: bioRxiv preprint 

https://doi.org/10.1101/239012
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission—March 30, 2018

y = 0.7705x + 0.1366
R² = 0.88697

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

∆∆
G

ph
os

ph
o

(k
ca

l/m
ol

)

∆∆GNON-phospho (kcal/mol)

Slope 0.77
Intercept (kcal/mol) 0.14
Pearson's R 0.94
R2 0.89
RMSE (kcal/mol) 0.50
MUE (kcal/mol) 0.39
Accuracy 
(cut=1.36 kcal/mol) 0.94

Specificity 
(cut=1.36 kcal/mol) 0.96

Sensitivity 
(cut=1.36 kcal/mol) 0.80

TKI ddG_NON-P 
(kcal/mol)

ddG_phos 
(kcal/mol)

ax
iti

ni
b

2.05 1.85
1.37 1.32
-0.86 -0.27
0.74 1.02
-1.88 -1.89

bo
su

tin
ib

0.99 0.69
-0.05 -0.40
-0.39 0.00
-0.20 -0.23
3.08 2.47

da
sa

tin
ib

0.74 -0.07
0.06 -0.53
-0.09 0.00
0.15 0.20
6.16 4.69

im
at

in
ib

1.20 1.98
0.49 0.99
1.00 0.67
0.29 0.88
ND ND

ni
lo

tin
ib

0.35 0.87
0.11 0.04
-0.43 0.29
0.00 0.29
2.50 ND

ge
fit

in
ib

1.92 1.59
0.39 0.41
-0.78 -0.16
-0.22 -0.13
0.38 -0.15

er
lo

tin
ib

ND 1.36
0.12 0.29
-0.70 -0.03
-0.41 -0.44
ND ND

Summary Statistics Raw Data (adapted de Davis et al.)

Figure S1. Comparison of 31 mutations for which phosphorylated and non-phosphorylated ΔKds were available.
Scatter plot compares ΔΔGs (derived from the ΔKds) and contains the best-fit line with slope 0.77 and intercept 0.14.
Summary statistics for this comparison are also shown. The raw ΔΔGs used for this comparison were adapted from [46];
kino-bead data for ponatinib was not available.
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Figure S2. TKI-by-TKI truth tables with increasingly large classification cutoffs. Truth tables for the six TKIs (axitinib,
bosutinib, dasatinib, imatinib, nilotinib, and ponatinib) using Prime (left, green) and FEP+ (right, blue) with classification

cutoff values defining whether mutations are susceptible (S, experiment; s, prediction) or resistant (R, experiment; r,

prediction). A mutation is susceptible if ΔΔG ≤ cutoff or resistant if ΔΔG > cutoff.
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Figure S3. ROC curves for non-scaled and scaled FEP+, non-scaled and scaled Prime, a consensus model and a
naïve model. ROC-AUC for scaled and non-scaled FEP+ was 0.750.900.61 (n=144); ROC-AUC for scaled and non-scaled Prime

was 0.660.810.52 (n=144); ROC-AUCs for the naïve model and consensus model were 0.50
0.50
0.50 (n=144) and 0.78

0.90
0.67 (n=144)

respectively. Optimal scaling factors (a=0.34 for FEP+; a=0.23 for Prime) obtained using linear regression (m=142) were

applied to the full dataset (n=144), which was used in this ROC analysis. ROC-AUC interpretations: [0.50,0.60], failure;

[0.60,0.70], poor; [0.70,0.80], fair; [0.80,0.90], good; [0.90,1.00], excellent.
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Table S1. ΔΔG data derived from publicly available ΔpIC50 measurements and sources of mutation clinical-
observation

Mutation axitinib bosutinib dasatinib imatinib nilotinib ponatinib gefitinib erlotinib Source of

ΔΔG ΔΔG ΔΔG ΔΔG ΔΔG ΔΔG ΔΔG ΔΔG Clinical-Observation

(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

M244V -0.11 0.43 0.00 0.21 -0.13 0.00 nd nd A

L248R 0.31 1.50 0.65 2.33 2.15 0.58 nd nd B

L248V 0.32 0.56 0.55 0.64 0.33 0.17 nd nd A,C

G250E 0.27 0.11 0.41 1.01 0.60 0.30 nd nd A,C,D

Q252H 0.20 nd nd nd nd nd -0.44 -0.13 A

Y253F 0.26 -0.34 0.24 1.90 1.48 0.30 -0.17 0.00 C

Y253H 0.03 nd nd nd nd nd nd nd A,C,D

E255K 0.26 0.56 0.90 1.50 1.27 0.41 -0.11 -0.11 A,C,D

E255V 0.30 0.66 1.02 2.22 2.36 1.00 nd nd A,C

D276G 0.18 nd nd nd nd nd nd nd C

E279K -0.03 nd nd nd nd nd nd nd C

E292L 0.03 nd nd nd nd nd nd nd E

V299L -0.88 1.70 1.24 0.23 0.28 0.17 nd nd C

T315A -0.45 0.32 2.02 0.51 0.72 0.17 nd nd C

T315I -1.27 2.45 5.08 2.32 3.75 0.41 nd -0.15 C,D

T315V -1.73 nd nd nd nd nd nd nd B

F317C nd 0.50 1.86 0.28 0.04 0.00 nd nd Ag

F317I nd 0.71 1.79 0.17 0.30 0.51 1.35 1.58 C

F317L 0.23 0.09 0.96 0.72 0.20 0.17 0.29 0.40 C,D

F317R 0.27 nd nd nd nd nd nd nd B

F317V 0.28 1.72 2.36 0.97 0.33 0.72 nd nd C

M343T 0.21 nd nd nd nd nd nd nd Fℎ

M351T -0.24 0.19 0.00 0.42 0.00 0.17 0.05 -0.08 A,C,D

E355A nd 0.02 0.24 0.47 0.11 0.51 nd nd C

F359C nd -0.01 0.00 0.77 0.68 0.41 nd nd C

F359I 0.10 0.04 0.24 0.28 0.86 0.77 nd nd A

F359V 0.07 -0.11 0.00 0.32 0.60 0.17 nd nd A,C

L384M 0.06 nd nd nd nd nd nd nd Fi

H396R 0.25 -0.10 0.00 0.40 0.25 0.17 nd nd Aj

F486S 0.05 nd nd nd nd nd nd nd Ak

E459K nd 0.35 0.41 0.66 0.55 0.30 nd nd C

A: Gruber et al. ([88])
B: Redaelli et al. ([89])
C : Cortes et al. ([90])
D: Branford et al. ([91])
E: Press et al. ([92])
F : Shah et al. ([3])
g : F317C observed with Δ27-183
ℎ: M343T observed as compound mutation with H396R
i: L384M observed as compound mutation with M343T
j : H396R observed as compound mutation with F486S
k: F486S observed as compound mutation with H396R
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Table S2. Axitinib: experimental IC50 values and alchemical free-energy ΔΔGs for each mutation.

Expt. Expt. Prime FEP+Run1 FEP+Run1 FEP+Run2 FEP+Run2 FEP+Run3 FEP+Run3
IC50 ΔΔG ΔΔG ΔΔG BAR err ΔΔG BAR err ΔΔG BAR err ΔΔGAv SE

(nM) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

wild-type 823

M244V 690 -0.11 -0.10 -0.40 0.41 -0.35 0.41 -0.43 0.41 -0.39 0.02

L248R 1393 0.31 -0.06 2.13 0.43 2.42 0.45 2.46 0.43 2.34 0.10

L248V 1399 0.32 6.02 -1.32 0.41 -1.04 0.42 -1.22 0.42 -1.19 0.08

G250E 1295 0.27 0.31 -0.35 0.41 -0.71 0.41 -0.74 0.41 -0.60 0.13

Q252H 1155 0.20 -0.18 0.07 0.43 0.30 0.42 0.29 0.43 0.22 0.08

Y253F 1275 0.26 1.11 0.77 0.43 0.23 0.43 1.15 0.45 0.72 0.27

Y253H 867 0.03 4.65 1.14 0.47 0.38 0.49 -0.19 0.45 0.44 0.39

E255K 1282 0.26 0.12 1.30 0.44 0.63 0.43 1.10 0.44 1.01 0.20

E255V 1350 0.30 -0.29 0.98 0.42 1.04 0.42 1.26 0.43 1.09 0.09

D276G 1105 0.18 -0.01 0.03 0.42 0.64 0.42 0.44 0.43 0.37 0.18

E279K 778 -0.03 -0.15 0.06 0.42 -0.22 0.43 1.27 0.43 0.37 0.46

E292L 863 0.03 -0.00 0.53 0.43 0.35 0.42 0.31 0.42 0.40 0.07

V299L 188 -0.88 -5.00 -1.08 0.42 -1.39 0.42 -1.37 0.42 -1.28 0.10

T315A 389 -0.45 0.99 0.09 0.43 0.24 0.47 0.31 0.42 0.21 0.06

T315I 98 -1.27 -2.30 -1.26 0.42 -1.50 0.45 -1.39 0.43 -1.38 0.07

T315V 45 -1.73 -1.07 -1.10 0.41 -1.32 0.42 -1.15 0.48 -1.19 0.07

F317L 1220 0.23 1.29 -0.64 0.41 -0.10 0.41 -0.38 0.41 -0.37 0.16

F317R 1286 0.27 -2.46 2.64 0.46 2.27 0.51 1.38 0.47 2.10 0.37

F317V 1320 0.28 2.29 0.45 0.42 0.70 0.42 0.75 0.42 0.63 0.09

M343T 1175 0.21 -0.04 -0.26 0.54 -0.50 0.53 -0.58 0.50 -0.45 0.10

M351T 553 -0.24 -0.07 -0.25 0.41 -0.03 0.41 0.37 0.41 0.03 0.18

F359I 975 0.10 -0.04 1.89 0.41 1.60 0.42 1.78 0.41 1.76 0.08

F359V 933 0.07 -0.07 2.68 0.42 1.55 0.42 1.64 0.41 1.96 0.36

L384M 916 0.06 -0.01 -0.07 0.41 0.27 0.41 0.23 0.41 0.14 0.11

H396R 1247 0.25 -0.02 0.36 0.42 1.23 0.41 0.65 0.42 0.75 0.26

F486S 897 0.05 -0.09 0.65 0.47 1.14 0.46 0.44 0.48 0.74 0.21

BAR err: Bennett Acceptance Ratio error.
ΔΔGAv: Average of three independent FEP+ runs.
SE: Standard Error between three independent FEP+ runs.
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Table S3. Bosutinib: experimental IC50 values and alchemical free-energy ΔΔGs for each mutation.

Expt. Expt. Prime FEP+Run1 FEP+Run1 FEP+Run2 FEP+Run2 FEP+Run3 FEP+Run3
IC50 ΔΔG ΔΔG ΔΔG BAR err ΔΔG BAR err ΔΔG BAR err ΔΔGAv SE

(nM) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

wild-type 71

M244V 147 0.43 0.02 -0.28 0.41 -0.11 0.41 -0.08 0.41 -0.16 0.06

L248R 874 1.50 3.67 1.00 0.43 1.63 0.43 1.33 0.43 1.32 0.18

L248V 182 0.56 5.77 0.37 0.41 0.72 0.42 0.38 0.42 0.49 0.12

G250E 85 0.11 -0.30 0.28 0.43 0.63 0.43 -1.07 0.43 -0.05 0.52

Y253F 40 -0.34 -0.03 0.21 0.45 0.02 0.43 0.95 0.43 0.39 0.28

E255K 181 0.56 0.49 -1.01 0.43 -1.30 0.43 -1.01 0.43 -1.11 0.10

E255V 214 0.66 0.11 -0.47 0.42 -0.51 0.43 -0.91 0.43 -0.63 0.14

V299L 1228 1.70 -0.85 0.97 0.43 0.90 0.42 0.85 0.42 0.91 0.03

T315A 122 0.32 1.00 -1.61 0.41 -1.61 0.41 -1.97 0.41 -1.73 0.12

T315I 4338 2.45 3.75 -2.32 0.43 -2.21 0.42 -1.26 0.42 -1.93 0.34

F317C 165 0.50 4.83 1.04 0.41 1.27 0.41 1.22 0.42 1.18 0.07

F317I 232 0.71 1.61 0.16 0.41 0.07 0.42 0.02 0.41 0.08 0.04

F317L 82 0.09 -0.71 0.05 0.41 0.47 0.41 0.24 0.41 0.25 0.12

F317V 1280 1.72 4.12 1.98 0.42 1.50 0.42 2.25 0.42 1.91 0.22

M351T 97 0.19 0.02 0.36 0.42 0.82 0.41 0.71 0.41 0.63 0.14

E355A 74 0.02 0.13 -0.20 0.44 0.13 0.43 0.27 0.43 0.07 0.14

F359C 70 -0.01 -0.09 3.02 0.42 2.51 0.42 1.97 0.43 2.50 0.30

F359I 76 0.04 -0.06 0.66 0.41 1.74 0.41 1.43 0.42 1.28 0.32

F359V 59 -0.11 -0.06 0.98 0.43 1.69 0.41 1.91 0.42 1.53 0.28

H396R 60 -0.10 -1.07 0.62 0.42 -0.07 0.42 -0.93 0.43 -0.13 0.45

E459K 127 0.35 0.26 -0.69 0.42 0.23 0.42 -0.54 0.42 -0.33 0.28

BAR err: Bennett Acceptance Ratio error.
ΔΔGAv: Average of three independent FEP+ runs.
SE: Standard Error between three independent FEP+ runs.
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Table S4. Dasatinib: experimental IC50 values and alchemical free-energy ΔΔGs for each mutation.

Expt. Expt. Prime FEP+Run1 FEP+Run1 FEP+Run2 FEP+Run2 FEP+Run3 FEP+Run3
IC50 ΔΔG ΔΔG ΔΔG BAR err ΔΔG BAR err ΔΔG BAR err ΔΔGAv SE

(nM) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

wild-type 2

M244V 2 0.00 -0.10 0.05 0.41 -0.37 0.41 -0.43 0.41 -0.25 0.15

L248R 6 0.65 -2.13 1.40 0.42 1.50 0.43 1.51 0.42 1.47 0.04

L248V 5 0.55 2.60 0.58 0.42 0.70 0.41 0.79 0.41 0.69 0.06

G250E 4 0.41 -0.00 -0.54 0.43 -0.31 0.43 0.01 0.44 -0.28 0.16

Y253F 3 0.24 0.00 -0.21 0.43 -0.24 0.43 -0.03 0.44 -0.16 0.07

E255K 9 0.90 -0.08 -0.30 0.43 -0.17 0.44 -1.05 0.43 -0.51 0.27

E255V 11 1.02 -0.08 0.06 0.42 -0.80 0.42 -0.12 0.42 -0.29 0.26

V299L 16 1.24 0.01 0.83 0.41 0.36 0.42 0.77 0.42 0.65 0.15

T315A 59 2.02 5.09 -1.74 0.41 -1.65 0.41 -1.23 0.41 -1.54 0.16

T315I 10000 5.08 -2.69 5.63 0.43 4.69 0.44 5.50 0.43 5.27 0.29

F317C 45 1.86 4.72 2.63 0.42 2.32 0.42 2.62 0.41 2.52 0.10

F317I 40 1.79 2.38 1.94 0.41 2.04 0.41 1.94 0.41 1.97 0.03

F317L 10 0.96 1.22 1.26 0.41 1.42 0.41 1.08 0.41 1.25 0.10

F317V 104 2.36 4.08 3.12 0.42 2.84 0.42 2.68 0.42 2.88 0.13

M351T 2 0.00 0.04 0.04 0.41 0.14 0.41 0.00 0.42 0.06 0.04

E355A 3 0.24 0.00 -0.24 0.43 -0.87 0.45 -1.25 0.44 -0.79 0.29

F359C 2 0.00 -0.03 1.24 0.42 0.68 0.41 1.38 0.42 1.10 0.21

F359I 3 0.24 -0.02 -0.50 0.42 -0.33 0.42 -1.14 0.42 -0.66 0.25

F359V 2 0.00 -0.03 -0.87 0.41 0.57 0.42 -0.62 0.41 -0.31 0.44

H396R 2 0.00 2.53 -0.76 0.43 -0.09 0.43 -0.06 0.43 -0.30 0.23

E459K 4 0.41 0.00 -0.68 0.42 -0.17 0.42 -0.07 0.41 -0.31 0.19

T315I was beyond the concentration limit of the assay (10,000 nM).

BAR err: Bennett Acceptance Ratio error.
ΔΔGAv: Average of three independent FEP+ runs.
SE: Standard Error between three independent FEP+ runs.
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Table S5. Imatinib: experimental IC50 values and alchemical free-energy ΔΔGs for each mutation.

Expt. Expt. Prime FEP+Run1 FEP+Run1 FEP+Run2 FEP+Run2 FEP+Run3 FEP+Run3
IC50 ΔΔG ΔΔG ΔΔG BAR err ΔΔG BAR err ΔΔG BAR err ΔΔGAv SE

(nM) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

wild-type 201

M244V 287 0.21 -0.08 0.15 0.41 0.43 0.41 0.17 0.41 0.25 0.09

L248R 10000 2.33 1.92 1.92 0.43 2.52 0.44 2.34 0.43 2.26 0.18

L248V 586 0.64 1.89 -1.04 0.41 -1.02 0.42 -1.20 0.41 -1.09 0.06

G250E 1087 1.01 0.92 0.16 0.41 0.02 0.41 0.12 0.41 0.10 0.04

Y253F 4908 1.90 -0.02 0.87 0.43 0.65 0.42 1.34 0.44 0.95 0.20

E255K 2487 1.50 0.25 -0.12 0.44 1.95 0.44 -0.55 0.44 0.43 0.77

E255V 8322 2.22 0.24 -0.72 0.42 -0.02 0.42 -0.53 0.43 -0.42 0.21

V299L 295 0.23 -1.29 0.66 0.41 0.26 0.42 -0.37 0.42 0.18 0.30

T315A 476 0.51 5.10 -1.39 0.41 -1.86 0.41 -2.09 0.44 -1.78 0.21

T315I 9773 2.32 0.88 4.23 0.43 4.23 0.42 3.14 0.44 3.87 0.36

F317C 324 0.28 2.10 0.27 0.42 -0.18 0.41 0.45 0.42 0.18 0.19

F317I 266 0.17 0.94 0.59 0.41 0.66 0.41 0.48 0.41 0.58 0.05

F317L 675 0.72 0.74 0.58 0.41 0.53 0.41 0.38 0.41 0.50 0.06

F317V 1023 0.97 1.57 0.71 0.42 0.79 0.42 0.80 0.41 0.77 0.03

M351T 404 0.42 -0.02 1.72 0.41 1.03 0.42 1.20 0.42 1.32 0.21

E355A 441 0.47 0.29 0.13 0.43 0.08 0.44 0.14 0.43 0.12 0.02

F359C 728 0.77 2.43 0.88 0.42 0.47 0.41 0.33 0.42 0.56 0.17

F359I 324 0.28 1.95 -0.13 0.41 -0.87 0.41 0.08 0.41 -0.31 0.29

F359V 346 0.32 2.53 -0.66 0.41 0.02 0.41 -0.27 0.42 -0.30 0.20

H396R 395 0.40 2.76 -0.39 0.41 -0.38 0.42 -0.39 0.42 -0.39 0.00

E459K 612 0.66 0.24 -0.09 0.43 -0.09 0.42 -0.08 0.42 -0.09 0.00

T315I was beyond the concentration limit of the assay (10,000 nM).

BAR err: Bennett Acceptance Ratio error.
ΔΔGAv: Average of three independent FEP+ runs.
SE: Standard Error between three independent FEP+ runs.
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Table S6. Nilotinib: experimental IC50 values and alchemical free-energy ΔΔGs for each mutation.

Expt. Expt. Prime FEP+Run1 FEP+Run1 FEP+Run2 FEP+Run2 FEP+Run3 FEP+Run3
IC50 ΔΔG ΔΔG ΔΔG BAR err ΔΔG BAR err ΔΔG BAR err ΔΔGAv SE

(nM) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

wild-type 15

M244V 12 -0.13 -0.11 0.15 0.41 -0.21 0.41 0.21 0.41 0.05 0.13

L248R 549 2.15 0.48 2.05 0.43 2.12 0.47 1.93 0.43 2.03 0.06

L248V 26 0.33 3.53 -0.50 0.42 -0.39 0.41 -0.92 0.41 -0.60 0.16

G250E 41 0.60 0.05 0.06 0.41 -0.27 0.41 -0.38 0.41 -0.20 0.13

Y253F 179 1.48 -0.27 1.09 0.43 0.42 0.42 1.16 0.42 0.89 0.24

E255K 127 1.27 0.41 -2.24 0.48 -1.52 0.46 0.33 0.46 -1.14 0.77

E255V 784 2.36 -0.03 0.31 0.42 -0.25 0.43 -0.55 0.43 -0.16 0.25

V299L 24 0.28 2.94 -0.18 0.41 0.21 0.41 0.15 0.41 0.06 0.12

T315A 50 0.72 3.38 -1.33 0.41 -1.31 0.41 -1.39 0.41 -1.34 0.02

T315I 8091 3.75 4.16 4.29 0.43 5.00 0.42 4.34 0.43 4.54 0.23

F317C 16 0.04 0.90 1.34 0.41 0.88 0.41 0.60 0.41 0.94 0.22

F317I 25 0.30 -0.18 1.24 0.41 1.17 0.41 0.82 0.41 1.08 0.13

F317L 21 0.20 1.74 1.03 0.41 1.07 0.41 1.09 0.41 1.06 0.02

F317V 26 0.33 0.77 1.16 0.41 0.68 0.42 1.07 0.42 0.97 0.15

M351T 15 0.00 0.09 -0.06 0.41 -0.09 0.42 -0.46 0.42 -0.20 0.13

E355A 18 0.11 -0.06 -0.46 0.43 -1.01 0.43 -0.32 0.43 -0.60 0.21

F359C 47 0.68 3.68 1.32 0.41 1.44 0.41 1.52 0.41 1.43 0.06

F359I 64 0.86 3.70 1.05 0.41 1.13 0.41 0.74 0.41 0.97 0.12

F359V 41 0.60 3.67 1.00 0.41 1.08 0.41 1.38 0.42 1.15 0.12

H396R 23 0.25 2.58 -0.07 0.42 0.21 0.42 0.03 0.42 0.06 0.08

E459K 38 0.55 -0.00 -0.17 0.42 -0.46 0.42 -0.10 0.42 -0.24 0.11

BAR err: Bennett Acceptance Ratio error.
ΔΔGAv: Average of three independent FEP+ runs.
SE: Standard Error between three independent FEP+ runs.
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Table S7. Ponatinib: experimental IC50 values and alchemical free-energy ΔΔGs for each mutation.

Expt. Expt. Prime FEP+Run1 FEP+Run1 FEP+Run2 FEP+Run2 FEP+Run3 FEP+Run3
IC50 ΔΔG ΔΔG ΔΔG BAR err ΔΔG BAR err ΔΔG BAR err ΔΔGAv SE

(nM) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

wild-type 3

M244V 3 0.00 -0.13 0.07 0.41 -0.28 0.41 0.12 0.41 -0.03 0.13

L248R 8 0.58 2.48 1.40 0.43 0.96 0.43 1.10 0.44 1.15 0.13

L248V 4 0.17 2.48 -1.82 0.42 -1.23 0.42 -1.96 0.42 -1.67 0.22

G250E 0.021 0.30 0.17 -0.32 0.43 -0.25 0.43 -0.71 0.46 -0.43 0.14

Y253F 5 0.30 0.05 0.85 0.43 1.32 0.44 0.77 0.43 0.98 0.17

E255K 6 0.41 1.05 -0.27 0.48 -0.66 0.48 0.03 0.47 -0.30 0.20

E255V 16 1.00 -0.04 1.19 0.43 0.94 0.43 -0.41 0.43 0.57 0.50

V299L 4 0.17 -0.29 -0.56 0.41 -0.55 0.41 -1.42 0.41 -0.84 0.29

T315A 4 0.17 -0.51 -2.90 0.41 -3.15 0.41 -2.92 0.41 -2.99 0.08

T315I 6 0.41 -5.42 0.51 0.42 0.90 0.42 0.91 0.42 0.77 0.13

F317C 3 0.00 1.45 0.44 0.41 0.98 0.42 0.80 0.41 0.74 0.16

F317I 7 0.51 0.62 -0.76 0.41 -1.03 0.41 -1.02 0.41 -0.94 0.09

F317L 4 0.17 0.57 -1.08 0.41 -0.83 0.41 -0.85 0.41 -0.92 0.08

F317V 10 0.72 1.14 0.05 0.41 -0.21 0.41 0.24 0.42 0.03 0.13

M351T 4 0.17 -0.12 0.89 0.41 1.66 0.41 0.65 0.41 1.07 0.30

E355A 7 0.51 0.01 0.12 0.44 -0.52 0.44 -0.55 0.43 -0.32 0.22

F359C 6 0.41 2.12 0.25 0.42 -0.35 0.43 0.73 0.42 0.21 0.31

F359I 11 0.77 0.34 -0.66 0.41 -0.38 0.41 0.06 0.41 -0.33 0.21

F359V 4 0.17 0.74 0.11 0.41 -0.28 0.41 0.08 0.42 -0.03 0.13

H396R 4 0.17 -0.04 0.19 0.49 0.10 0.45 -1.41 0.48 -0.37 0.52

E459K 5 0.30 -0.00 -0.51 0.42 -0.78 0.42 -0.63 0.42 -0.64 0.08

BAR err: Bennett Acceptance Ratio error.
ΔΔGAv: Average of three independent FEP+ runs.
SE: Standard Error between three independent FEP+ runs.

Table S8. Summary of statistics of scaled predictions, a naïve model, and a consensus model.

Method Scaling factor MUE RMSE Accuracy Specificity Sensitivity

(kcal/mol) (kcal/mol)

[N=142] [N=142] [N=144] [N=144] [N=144]

Prime 1.00 1.141.350.94 1.701.971.40 0.730.800.65 0.760.830.68 0.530.780.29
Prime 0.50 0.640.760.53 0.911.060.77 0.840.900.78 0.900.950.84 0.420.650.20
Prime 0.33 0.530.620.44 0.760.870.63 0.870.920.81 0.960.990.92 0.260.470.08
Prime 0.23 0.490.590.40 0.730.860.60 0.860.920.81 0.991.000.97 0.000.000.00
FEP+ 1.00 0.790.910.67 1.071.270.89 0.880.930.81 0.940.980.89 0.470.720.22
FEP+ 0.34 0.550.640.47 0.780.910.65 0.880.930.83 1.001.001.00 0.110.270.00
Naive — 0.570.690.46 0.871.040.70 0.870.920.81 1.001.001.00 0.000.000.00
Consensus — 0.470.560.39 0.710.840.59 0.870.920.81 1.001.001.00 0.000.000.00
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