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Abstract Acoustic sampling methods are becoming increasingly important in biological1

monitoring. Sound attenuation is one of the most important dynamics affecting the utility2

of bioacoustic data as it directly affects the probability of detection of individuals from3

bioacoustic arrays and especially the localization of acoustic signals necessary in telemetry4

studies. Therefore, models of sound attenuation are necessary to make efficient use of5

bioacoustic data in ecological monitoring and assessment applications. Models of6

attenuation in widespread use are based on Euclidean distance between source and sensor,7

which is justified under spherical attenuation of sound waves in homogeneous8

environments. In some applications there are efforts to evaluate the detection range of9

sensors in response to local environmental characteristics at the sensor or at sentinel source10

locations with known environmental characteristics. However, attenuation is a function of11

the total environment between source and sensor, not just their locations. In this paper I12

develop a model of signal attenuation based on a non-Euclidean cost-weighted distance13

metric which contains resistance parameters that relate to environmental heterogeneity in14

the vicinity of an array. Importantly, these parameters can be estimated by maximum15

likelihood using experimental data from an array of fixed sources, thus allowing16
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investigators who use bioacoustic methods to devise explicit models of sound attenuation17

in situ. In addition, drawing on analogy with classes of models known as spatial18

capture-recapture, I show that parameters of the non-Euclidean model of attenuation can19

be estimated when source locations are unknown. Thus, the models can be applied to real20

field studies which require localization of signals in heterogeneous environments.21

Key words: acoustic monitoring, bioacoustics, distance sampling, sound attenuation,22

spatial capture-recapture, telemetry, least-cost path models23

Running title. Modeling sound attenuation24

1 Introduction25

Acoustic sampling technology has emerged as an important method for the study of vocal26

species such as birds, anurans, marine mammals, many species of fish, and primates, or27

for species to which acoustic transponders can be implanted or affixed to. As a result,28

the deployment of automated acoustic recording devices has proliferated rapidly in both29

terrestrial (Blumstein et al. 2011; Digby et al. 2016; Brauer et al. 2016; Measey et al. 2017)30

and aquatic (Marques et al. 2009; Kessel et al. 2013; Marques et al. 2013; Cooke et al.31

2016; Crossin et al. 2017) systems.32

Bioacoustic technology is broadly relevant to the study of spatial ecology of animal popu-33

lations. Two specific uses which are the focus of this paper are the application of bioacoustics34

to density estimation using variations of spatial capture-recapture (SCR) methods (Efford35

et al. 2009; Marques et al. 2013; Stevenson et al. 2015; Kidney et al. 2016) and its use36

in acoustic telemetry (Heupel et al. 2006) for the study of movement and resource selec-37

tion. Acoustic telemetry has become widely used in aquatic environments to study fish, sea38

turtles, and marine mammals. Use of acoustic data for either SCR or telemetry requires39

localization of the observed signals obtained from acoustic data. This is essentially statisti-40
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cal triangulation which can be done when signals are obtained from an array of bioacoustic41

sensors so that potentially multiple detections of the same signal are possible (Janik et al.42

2000; McGregor et al. 1997; Bower and Clark 2005; Blumstein et al. 2011). The precision of43

source localization improves with the number of sensors in the array and the density of the44

array. Localization has been recognized as being analogous to inference about the activity45

center in SCR methods, and therefore SCR has been adapted to accommodate data obtained46

by acoustic sampling methods (Dawson and Efford 2009; Efford et al. 2009; Borchers et al.47

2015; Stevenson et al. 2015; Kidney et al. 2016).48

Localization of acoustic sources requires explicit models for sound attenuation, i.e., the49

energy loss of sound propagation through a medium. In general, attenuation depends on50

the properties of the medium (Wiley and Richards 1982), and this often is characterized51

experimentally by engineers to satisfy design objectives of acoustic systems. However, to52

date, applications of bioacoustic methods in ecology have used simplistic models of spherical53

attenuation, in which amplitude decays according to a power law with rate proportional to54

the inverse of Euclidean distance1. In practice, sound attenuation is strongly affected by the55

structure of the environment between the source origin and the receiver (Singh et al. 2009;56

Kessel et al. 2013; Rek and Kwiatkowska 2016; Selby et al. 2016). When the environment57

is highly heterogeneous Euclidean distance models may be inadequate. For example in bird58

monitoring problems there may be substantial variability in vegetation density or height in59

the vicinity of a sensor or array of sensors. In acoustic telemetry studies, the attenuation of60

the signal can depend on depth, substrate, surface conditions and many other factors (Selby61

et al. 2016). This has led to considerable recent attention to the problem of “range testing” to62

determine effective detection range given environmental heterogeneity for acoustic telemetry63

applications (Marques et al. 2009; Kessel et al. 2013; Selby et al. 2016). For example,64

Selby et al. (2016) model attenuation as a function of source and sensor specific covariates65

(e.g., depth). However, attenuation of signals depends on the total environment between the66

1e.g., see https://en.wikipedia.org/wiki/Acoustic_attenuation accessed 12/20/2016.
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signal and the source and therefore more general models of attenuation are needed.67

Ideally, the end use of bioacoustic data in monitoring and assessment of biological pop-68

ulations should integrate explicit models of sound attenuation with parameters that are69

themselves estimated in situ along with biological parameters of interest such as density,70

position of sources, occupancy, or other ecological state variables. In this paper I sug-71

gest flexible classes of models for modeling attenuation in heterogeneous environments using72

cost-weighted distance in which effective distance is defined by a cost function that involves73

spatially explicit structure describing a heterogeneous landscape. This non-Euclidean dis-74

tance model is widely used in least-cost path model analysis (Adriaensen et al. 2003) of75

landscape connectivity. Inference under this model has been formalized in the context of76

spatial capture-recapture studies (Royle et al. 2013; Sutherland et al. 2015; Fuller et al.77

2016) as a model to describe movements of individuals about their home range, and also as78

a model for dispersal of individuals (Graves et al. 2014).79

2 Data structure and model80

Consider an idealized acoustic sampling array shown in Figure 1, which suppose is a 600 m81

x 600 m block of forest for which lidar measurements are available and aggregated to 20 m2
82

resolution showing a standardized form of average vertical vegetation density at each point83

(color-coded in Fig. 1). Within this landscape an array of 9 bioacoustic sensors is situated84

in a regular grid, and among the sensor array are located 16 experimental sources producing85

vocalizations that may or may not be detected at each sensor. In practice one might imagine86

more attenuation between a source and sensor when dense habitat (green) predominates and87

less attenuation in open habitats such as gaps in the forest canopy (white).88

The data from a field experiment of this sort are power or signal strength measurements,

Sij, at each sensor having location xj, from each source i = 1, 2, . . . , n (n = 16 in this case)

having location si. The model for these observations can be formulated in terms of other
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Figure 1: Idealized system showing an array of 9 sensors and an array of 16 experimental
sources (e.g., speakers producing vocalizations of a species). Habitat structure is illustrated
here as a standardize variable of vegetation density with high vertical density (green) repre-
senting dense vegetation and low vertical density (white) representing open areas.
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signal characteristics such as time of arrival (Stevenson et al. 2015) but here for clarity

I adhere to a formulation in terms of signal strength alone, although the basic ideas are

the same. Following Efford et al. (2009) assume a transformation of signal strength that

declines with distance d from the source, and assume the transformation produces a normally

distributed variable such that attenuation is well approximated by the model

Sij = α0 + α1d(xj, si) + εij (1)

where εij ∼ Normal(0, σ2) is noise. When the signal strength takes on positive values then the89

log-transformation would normally be satisfactory, and furthermore this is the natural scale90

when power is measured in decibels (dB). Sounds are detected when S exceeds a threshold91

c (Dawson and Efford 2009) which is somewhat arbitrary but should be set above the mean92

level of ambient noise of the system so that detections are certain to be real. The signal93

to noise ratio can be directly characterized from observed data (Dawson and Efford 2009).94

For an experimental setting where the acoustic sources are known and only detection and95

signal strength at each receiver are random variables, the observed data are (yij, Sij) where96

yij = 1 if a signal from source i was detected at receiver j and yij = 0 if the signal was not97

detected, and Sij > c is the observed signal strength (transformed as noted above). Thus,98

the probability of detection is pij = Pr(Sij > c) which can be computed from the normal99

cumulative distribution function. When the observed signal strength is ≤ c it is regarded as100

a missing value with probability 1− pij.101

Equation 1 is a basic model of sound attenuation where the attenuation of sound in-102

tensity is governed by a single parameter α1, and relates only to the Euclidean distance103

between source and sensor, d(xj, si). Importantly, the form of this attenuation model is104

stationary (does not vary in space) and isotropic (it’s two-dimensional contours are circular105

and symmetric). Intuitively, then, this model for signal strength is probably only suitable106

for homogeneous environments. In what follows I propose to generalize this model by allow-107

ing for the distance d(x, s) to be both nonstationary and anisotropic using a non-Euclidean108
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distance metric that, in general, depends not only on the locations of sources and sensors109

but also on the composition of the landscape between them.110

2.1 Cost-weighted distance models111

An intuitively appealing model for sound attenuation in heterogeneous environments is the

cost-weighted distance (CWD) model in which attenuation is governed not by Euclidean

distance but by a cost-weighted distance metric which depends on the habitat structure in

the vicinity of the sensor. The cost-weighted distance can be computed for a path P =

{(v1, v2), (v2, v3), . . . , (vm, vm+1)} consisting of m segments between any two points v1 and

vm+1 on the landscape and it is defined by

dcwd(v1,vm+1) =
∑
g

cost(vg,vg+1) ∗ dist(vg,vg+1) (2)

where cost(vg,vg+1) is a parametric function describing the cost of movement between pixels112

vg and vg+1, which must be prescribed (see below) and dist(vg,vg+1) is the Euclidean distance113

between pixels. The cost-weighted distance then is the sum over all pixels along a given path114

connecting v1 and vm+1. The least-cost path (LCP) (Adriaenson et al. 2003) is the path115

which has minimum CWD among all possible paths connecting the points v1 and vm+1. In116

practice the cost-weighted distance between any two points and the least-cost path can be117

computed using the R package gdistance (van Etten 2017). Either the cost-weighted distance118

between points or the least-cost path can serve as an effective distance metric in models of119

sound attenuation, where parameter(s) of the cost function are estimated explicitly from120

data (see below).121

The relevance of this distance metric to inference about sound attenuation arises when

the cost function is parameterized in terms of the landscape structure. For example, if a

covariate z(v) exists then one sensible function describing the cost of passing from pixel vg
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to pixel vg+1 is

cost(vg,vg+1) =
exp(α2z(vg)) + exp(α2z(vg+1))

2
(3)

The parameter α2 represents the resistance of the covariate z(v) (higher values incur higher

cost of transmission and vice versa), and it should be estimated from observed data on signal

strength or time of arrival. I provide an estimation framework based on maximum likelihood

below. To acknowledge this new distance metric in the model for sound attenuation, and

that it depends on an unknown parameter α2, express the model as

Sij = α0 + α1dcwd(xj, si;α2) + εij (4)

In general attenuation is frequency dependent (Wiley and Richards 1982) and thus param-122

eters α1 and α2 should depend on species.123

Obviously any number of covariates can be included in the cost function Eq. 3. Note that124

if α2 = 0 then the cost of transmission between any two pixels on the landscape is 1.0, and125

the cost-weighted distance reduces to Euclidean distance. As a practical matter we should126

scale any covariate z(v) to be in [0, 1] so that α2 can be any real number. Negative numbers127

imply that increasing values of the covariate facilitate sound transmission and positive values128

imply that increasing values of the covariate impede sound transmission. The cost-weighted129

distance is conveniently computed in the R package gdistance using the accCost function, and130

the least-cost path between any two points can be computed using the function costDistance.131

To see the effect of cost weighted distance on “effective distance” Fig. 2 shows contours132

of effective distance (in this case the least-cost path) for different values of the resistance133

parameter from Eq. 3. These effective distance contours become closer together in areas of134

density vegetation (green) as the resistance parameter α2 increases. The basis of this as a135

model for sound attenuation is clear: individuals vocalizing from a location with high densi-136

ties of vegetation (or other structure) between that location and the sensor should produce137

reduced signal strength and lowered detection probability due to sound deflection, absorp-138
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tion and other mechanisms. In what follows I describe the model formally and demonstrate139

that the actual parameters governing attenuation of the sound can be explicitly estimated140

from experimental data on such an array.141

In practice, this model could be applied in situations where relatively fine scale habitat142

structure data are available. For example, in a study of birds on a landscape it might be143

possible to obtain such data from auxiliary surveys of vegetation structure but most likely144

fine-scale remotely sensed data from aerial imagery, lidar or similar platforms would be145

ideal for this purpose. In aquatic environments attenuation is most affected by depth and146

sub-surface structure and in most studies of aquatic systems detailed data exist for these147

attributes (and others).148

Figure 2: Effective distance to a sensor (shown by +) placed at (3,3) under the least-
cost path model with parameter α2 = 0.4 (left), α2 = 1.4 (center) and α2 = 2.4 (right).
As resistance increases, effective distance contours get closer together in response to dense
structure (green).

3 Likelihood Analysis149

The cost-weighted distance metric described above is amenable to direct likelihood analysis

from data on observed signal strength at fixed locations and with fixed sources (e.g., as

in Fig. 1). The observed data from an experiment are the detection/signal strength pairs

(yij, Sij) for each source and each sensor. Recall that signal strength is truncated at some
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value c chosen to reflect a reasonable threshold below which signals cannot be distinguished

from ambient noise. Conditional on the J known source locations xj, the likelihood for the

data from source location si is

L(α0, α1, α2, σ) =

{
J∏

j=1

p
yij
ij (1− pij)1−yij

} ∏
yij=1

f(Sij;σ, α0, α1, α2)
yij

 (5)

where f(Sij;σ, α0, α1, α2) is the normal probability density with mean α0 +α1dcwd(xj, si;α2)150

and variance σ2 and the probability of detection pij = Pr(Sij > c) which depends on the151

parameters of the normal distribution model for Sij in Eq. 4. The likelihood can be optimized152

numerically using standard methods such as implemented in the R functions nlm or optim153

(see Appendix A).154

3.1 Unknown source locations155

The parameters of the attenuation model can be estimated from data obtained when the156

sources are unknown. Of course this would be the case in any real field application of bioa-157

coustics where animal sounds are measured. Indeed, this is precisely the situation addressed158

in spatial capture-recapture applications such as considered by Efford et al. (2009) and159

others. In this case, we have to regard the source location as a latent variable and remove160

it from the conditional-on-s likelihood (Eq. 5) by integrating over the planar state space161

(or 3-dimensional state-space in the context of aquatic systems) in the vicinity of the sensor162

array. One twist to the situation where the sources are unknown is the potential exists that163

some of the sources were not detected at all. Therefore, the likelihood has to be constructed164

either conditional on the event that an individual source was detected at least once (Borchers165

and Efford 2008) or else the possibility of n0 unobserved all-zero encounter histories must166

be accounted for, where n0 is then an additional parameter to be estimated (equivalently167

N = n0 + nobs). Indeed, n0 is the key parameter of interest in spatial capture-recapture168

applications. See Efford et al. (2009) for details on the likelihood construction. I provide an169
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implementation in R of the likelihood in terms of n0 in Appendix A.170

3.2 Computing the posterior distribution of a source171

Bayes’ rule can be used to calculate the posterior distribution of an unobserved source given

the pattern of detections, y, on the sensor array and the signal strengths, S. Note that

the likelihood given in Eq. 5 is the joint distribution of the detection/non-detection data yi

and the signal strengths Si conditional on the source location si, say Pr(yi,Si|si). Let Pr(s)

denote the prior distribution for s, then the posterior distribution of si is

Pr(si|yi,Si) =
Pr(yi,Si|si) Pr(si)∫
s
Pr(yi,Si|s) Pr(s)ds

These probability distributions depend on the model parameters as in the likelihood given

above but I omit that dependence to be concise. A standard assumption in spatial capture-

recapture is to assume no a priori information about the location of a source so that Pr(s) =

constant (Efford et al. 2009) in which case the posterior distribution is just standardized

by the integral of the likelihood over the region in the vicinity of the sensor array. More

generally, source density gradients can be accommodated by modeling explicit covariate

effects in Pr(s). For example, suppose the sound sources are birds and they are likely to

be using habitat preferentially, even the same habitat which is affecting sound attenuation,

then we might assume

Pr(v) ∝ exp(θz(v))

where z(v) is the measured habitat structure for any location v and θ is a parameter to be172

estimated.173

R code for computing the posterior distribution of detected sources is given in Appendix174

A and I show an example in the following section.175
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3.3 Data acquisition176

The model as specified here assumes that unique vocalizations can be identified and recon-177

ciled among the detectors. For example this is easily true in an experimental setting when178

a sound is played, in which case the sensors at which it is detected can be noted directly.179

Over a period of time, each individual source can be played sequentially or even replicated180

multiple times. In field settings when the source location is unknown then a specific source181

encounter history has to be reconciled in a sense manually. But in practice can be done182

unambiguously in many practical settings if the density of sources is not too high (Dawson183

and Efford 2009). In the field (sampling real birds), an individual might make many calls184

during a particular time interval and these are treated as distinct sources.185

4 Illustration186

Using the experimental sensor array shown in Fig. 1 I simulated some data under the model

for log-signal strength with α0 = 0, α1 = 1.0 and σ = 0.50. Therefore,

S = 0− 1× dij + normal(0, σ = 0.50).

I used a threshold of detection of c = −3. Moreover, the least-cost path distance model of187

attenuation was used with α2 = 2.0 to model attenuation through the heterogeneous habitat188

shown in Fig. 1. These parameter settings produce an average of 20.8 total captures of 13.8189

individuals on the array of 9 sensors. A particular realization is shown in Fig. 3 which shows190

the pattern of detections of the 16 sources. In particular, lines are connected between each191

source and the sensor(s) at which it was detected. Three of the sources were not detected at192

all, 6 were detected once, 6 were detected twice, and one source three times. The MLEs for193

the model parameters for this single realization are α̂0 = −0.155, α̂1 = 0.699, α̂2 = 2.676 and194

σ̂ = 0.417. In general, a very high level of precision is possible for this relatively low level195
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of detections in an experimental setting when the source locations are known. For example,196

100 realizations of this situation produce an MLE of α2 having mean 1.96 (recall truth =197

2.0) and standard error 0.398. The R script for simulating data and fitting the model is198

given in Appendix A.199

Figure 3: A single realization of a bioacoustic experiment to measure non-Euclidean atten-
uation in the form of the least-cost path model. For this simulated realization, detection
frequencies of the 16 sources as follows: (1, 2, 2, 1, 0, 0, 3, 2, 1, 2, 2, 0, 1, 2, 1, 1). Each source is
connected to the sensors at which it was detected.

Maximum likelihood estimation for this experimental system is much less effective when200

the source locations s are unknown, in which case the MLEs can be considerably biased (see201

Appendix A). Instead, a much larger array is required, or a denser population of sources202

is needed in order to generate sufficient encounters. This is consistent with what is known203
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in spatial capture-recapture studies; see for example Efford and Fewster (2013), Sun et al.204

(2014) and chapter 10 in Royle et al. (2014)). Nevertheless, it is possible to localize the205

unknown sources using the general likelihood formulation based on the marginal likelihood.206

For the same simulated data set shown in Fig. 3 I produced the estimated posterior distri-207

bution of the unknown source location of 4 sources (Fig. 4) captured between 1 and 3 times208

each. We see that the estimated posterior distributions are in the vicinity of the true source209

locations, modified by the observed encounter history (the data set is generated using the210

random number seed noted in Appendix A).211

5 Discussion212

With the rapid and expanding adoption of acoustic monitoring technology, the ability to213

understand sound attenuation along environmental gradients will become increasingly im-214

portant (Kessel et al. 2013). In this paper I suggested a flexible framework for modeling215

sound attenuation in heterogeneous environments. This framework has two direct appli-216

cations. First, it can lead to improved inferences about source locations (“localization”)217

which is important in many applications, especially acoustic telemetry. Second, it allows218

investigators to better understand how bioacoustic methods work under field conditions in219

heterogeneous environments by enabling in situ inference about factors that influence atten-220

uation from field data. The method is sufficiently flexible that it can be used with acoustic221

telemetry data, as well as encounter history data used in acoustic SCR applications (Efford222

et al. 2009; Stevenson et al. 2015; Kidney et al. 2016). I formulated the model here in223

terms of “signal strength” data (e.g., sound intensity measured in decibels) but the idea224

applies directly when time of arrival data are available. For such data, the localization225

model also involves a distance function (Stevenson et al. 2015) which might be replaced by226

cost-weighted or least-cost path distance with parameters to be estimated. In addition, the227

basic ideas apply directly to classical distance sampling methods (Buckland et al. 2001),228
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Figure 4: Estimated localizations of 4 unknown sources characterized by the estimated
posterior distribution of the source location obtained by plugging-in the MLEs obtained by
maximizing the likelihood for the observed detection/non-detection and signal strength data.
Because these are posterior distributions the sum over all pixels equals 1.0. For each of the
4 sources shown here the true location of the source is connected to the sensors at which it
was detected by lines.
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where the Euclidean distance metric in the distance sampling likelihood can be replaced by229

cost-weighted distance. In the case of distance sampling, in most applications, the model230

would provide a description of visual obstruction and not wave attenuation.231

The ability to develop explicit models of sound attenuation has important sampling de-232

sign implications. In heterogeneous environments, the detection range of sensors depends on233

environmental characteristics (Kessel et al. 2013; Selby et al. 2016) and thus this critical234

parameter is both nonstationary and anisotropic. Therefore, the optimal spacing of sensors235

in an array must be variable in response to the underlying environmental heterogeneity. The236

problem of array design is analogous to the design of camera trap studies (e.g., Royle et237

al. 2014; ch. 10), where arrays can be constructed so as to maximize the probability of238

detection, optimize criteria based on the variance of estimators of parameters of interest,239

or maximize the precision of the localization. Using the non-Euclidean model of effective240

distance suggested in this paper, one could obtain estimates of the parameter α2 from an241

experimental or observational study and then use that estimate to improve the design of bioa-242

coustic monitoring arrays. In practice, having multiple sensors in a given experimental array,243

with known source locations, such as shown in Fig. 1, is not necessary. One could obtain244

suitable estimates of model parameters with a single sensor and replicated source emissions.245

However, in field applications of localization or density estimation (such as Dawson and246

Efford 2009) multiple sensors are required. In general, estimation of model parameters is247

challenging when source locations are unknown and effective estimation might require a a248

large array of sensors and a large sample size of detections. As such, in practice, one might249

first consider experimental analysis of sound attenuation models with known sources in order250

to obtain precise estimates of parameters of the effective distance model which may then be251

treated as fixed in subsequent analyses focused on localization or density estimation.252

An obvious extension of the framework proposed here is to consider alternative non-253

Euclidean distance metrics. For example, one obvious alternative is to substitute resistance254

distance (McRae 1996) in place of cost weighted distance. Resistance distance is based on255
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an analogy between discrete landscapes (characterized by a raster of pixels) and electrical256

circuits. Resistance distance between two nodes is the effective resistance between them,257

which depends on the resistance between each node and the number of pathways in the258

circuit. I think both cost weighted distance (or least-cost path) and resistance distance offer259

useful descriptions of sound attenuation in heterogeneous landscapes.260

One limitation of the proposed approach is that the cost-weighted distance model under-261

lying least-cost path is a phenomenological model. It describes the phenomenon of attenua-262

tion in response to measurable covariates but does not explicitly embody elements of sound263

dynamics such as reverberation, absorption and reflection. Rather, it models their total ef-264

fect as measured by the apparent relative distance between points as measured by observed265

signal strength and pattern of detections. This may not be a severe limitation in biological266

applications of acoustic monitoring where interest is usually in the end use of the data for267

detection, localization or similar objectives and not directly in the processes contributing to268

sound dynamics of a particular system.269

Application of any non-Euclidean effective distance model depends on the availability of270

environmental or habitat information at a suitable scale to be relevant to sound dynamics.271

While small scale habitat data are not always collected in field studies using acoustic sampling272

or distance sampling, it seems likely that such data will be collected more frequently in the273

future with the increasing availability of lidar technology (Zolkos et al. 2013, He et al. 2015)274

and other remote sensing platforms such as drones (Martin et al. 2012, Christie et al. 2016).275
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Appendix A383

# This block of code simulates a habitat landscape in the vicinity of a sensor array384

385

B = 3386

lambda = B/3 # correlation range for habitat map387

library(raster)388

library(scrbook)389

set.seed(1234)390

# raster grid391

delta <- (2 * B - 0)/30392

grx <- seq(delta/2, 2 * B - delta/2, delta)393

gr <- expand.grid(grx, grx, KEEP.OUT.ATTRS = FALSE)394

395

V <- exp(-e2dist(gr, gr)/lambda)396

x <- t(chol(V)) %*% rnorm(900)397

398

# png("system.png")399

op <- par(mar = c(3, 3, 3, 6))400

on.exit(par(op))401

habrast<-rasterFromXYZ(cbind(as.matrix(gr), x))402

# Standardize the covariate to be in [0,1]403

vv<- values(habrast)404

vv<- vv-min(vv)405

vv<- vv/max(vv)406

values(habrast) <- vv407

image(habrast, col=rev(terrain.colors(20)), asp = 1, bty = "n")408

409

rect(0, 0, 2 * B, 2 * B)410

# Define array of sensors411
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sensors<- as.matrix(expand.grid(seq(1,5,2),seq(1,5,2)))412

points(sensors, pch = "+", cex = 3)413

image.scale(vv, col=rev(terrain.colors(20)) )414

415

# Define some sources (speakers playing recorded calls)416

X<- as.matrix(expand.grid(seq(0.5, 5.5,,4), seq(0.5, 5.5,,4) ) )417

points(X,pch=3, cex=3,col="red", lwd=3)418

# dev.off()419

420

421

# Define some parameter values for the signal strength model. Supposes a suitable422

# transformation of signal strength is normal423

alpha0<- -2424

# thinking about alpha1 being related to the range parameter of a half-normal in order to define alpha1425

alpha1<- -(1/(2*1*1))426

D<- e2dist(X, sensors)427

S<- matrix(NA,nrow=nrow(D),ncol=ncol(D))428

for(i in 1:nrow(S)){429

S[i,]<- rnorm(ncol(D),alpha0 + alpha1*D, 0.5) # sigma = 0.5 here430

}431

# Detection occurs if signal strength > - 3 . Threshold is arbitary, more or less.432

y<- (S> -3)433

y434

sum(y)435

436

vv<- values(habrast)437

vv<- vv-min(vv)438

vv<- vv/max(vv)439

values(habrast)<- vv440

plot(habrast)441

image(habrast, col=rev(terrain.colors(20)))442

image.scale(values(habrast), col=rev(terrain.colors(20)))443

title("Vegetation density")444

points(3.1,3.1, pch = "+", cex = 2)445

gr<-coordinates(habrast) ######################446

447

#448

# Next block of code computes the effective distance matrix for some value449

# of alpha2 which is specified in the for loop initation. This is done450

# so that the Figure in the manuscript can be produced if a vector of451

# values is specified452

#453

library(gdistance)454
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#png("3rasters.png",width=720,height=240)455

par(mfrow=c(1,3) )456

# pick values of alpha2 here to evaluate the effective distance. I’m using 2 but the457

# figure from the manuscript uses c(0.4, 1.4, 2.4)458

for(alpha2 in c( 2) ){459

cost<- exp( alpha2*habrast ) # lots of attenuation through dense cover460

tr1<-transition(cost,transitionFunction=function(x) 1/mean(x),directions=16)461

tr1CorrC <-geoCorrection(tr1,type="c",multpl=FALSE,scl=FALSE)462

dcost <-costDistance(tr1CorrC, X, sensors)463

dcost.rast<- costDistance(tr1CorrC, as.matrix(gr), sensors)464

# could use accCost for EACH sensor location and then pull out the465

# values needed.... This is a bit tedious so just use least-cost path.466

# r1<- accCost(tr1CorrC, sensors[1,])467

# incell<- rep(NA,nrow(sensors))468

# for(j in 1:nrow(sensors)){469

# dd<- e2dist(sensors,coordinates(r1))470

# dd2<- apply(dd,1,min)471

# incell[j]<- (1:ncol(dd))[dd[j,]==dd2[j]]472

#}473

r<- cost474

values(r)<- dcost.rast[,5] # column 5 corresponds to the center sensor475

image(habrast, col=rev(terrain.colors(20)),xlab=" ",ylab=" ")476

title(paste("resistance parameter = ",theta,sep=""),cex=6)477

478

points(3.1,3.1, pch = "+", cex = 2)479

contour(r, levels= c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), add=TRUE, lwd=2)480

}481

482

#dev.off()483

484

# Example of simulating the attenuated signal485

D<- dcost486

# D<- e2dist(X,sensors) # Could use Euclidean distance here487

alpha0<- -0.5488

alpha1<- 1489

Sh<- matrix(NA,nrow=nrow(D),ncol=ncol(D))490

for(i in 1:nrow(Sh)){491

Sh[i,]<- rnorm(ncol(D),alpha0 - alpha1*D[i,], 0.5)492

}493

cut<- -3494

y<- (Sh> cut)495

Sh[y==0]<-NA496

497
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apply(y,1,sum)498

y<- as.numeric(y)499

500

501

# This is the likelihood for fixed sources, uses fixed distance matrix502

# not estimated503

lik<-function(parms, D){504

alpha0<- parms[1]505

alpha1<- (parms[2])506

sigma<- exp(parms[3])507

508

ES<- alpha0 - alpha1*D509

gamma <- ( cut - ES )/sigma510

511

phi <- pnorm(gamma, 0, 1)512

p <- 1-phi513

dn <- dnorm(Sh, ES, sigma)514

515

ll1<- -1*sum(log(apply((p^y)*(1-p)^(1-y),1,prod))) -1*( sum(log(dn[y==1])) )516

ll1517

}518

# obtain the MLEs519

tmp<-nlm(lik,c(alpha0, alpha1, -1),D=dcost, hessian=TRUE)520

c(tmp$estimate[1], (tmp$estimate[2]),exp(tmp$estimate[3]) )521

522

523

524

# This function computes the likelihood for fixed sources assuming the525

# resistance parameter is a parameter to be estimated...526

527

likknownS<-function(parms,ymat){528

alpha0<- parms[1]529

alpha1<- parms[2]530

alpha2<- parms[3]531

sigma<- exp(parms[4])532

533

cost<- exp( alpha2*habrast ) # lots of attenuation through dense cover534

tr1<-transition(cost,transitionFunction=function(x) 1/mean(x),directions=16)535

tr1CorrC <-geoCorrection(tr1,type="c",multpl=FALSE,scl=FALSE)536

dcost <-costDistance(tr1CorrC, X, sensors)537

538

D<- dcost539

ES<- alpha0 - alpha1*D540
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gamma <- ( cut - ES )/sigma541

542

phi <- pnorm(gamma, 0, 1)543

p <- 1-phi544

dn <- dnorm(Sh, ES, sigma)545

ll1<- -1*sum(log(apply((p^ymat)*((1-p)^(1-ymat)),1,prod))) -1*( sum(log(dn[ymat==1])) )546

return(ll1)547

}548

549

550

# Simulation code. Change "nsims" to do more than 1.551

552

simout<- NULL553

nsims<- 1554

set.seed(123)555

556

for(sim in 1:nsims){557

558

# Simulate a data set using the cost distance specified above559

D<- dcost560

alpha0<- 0561

alpha1<- 1562

nreps<- 3 # In an experimental setting we would do multiple replicates from each sensor563

cut<- -3564

ymat<- Sh<- array(NA,dim=c(nreps, nrow(D),ncol(D)))565

for(r in 1:nreps){566

for(i in 1:nrow(D)){567

Sh[r,i,]<- rnorm(ncol(D),alpha0 - alpha1*D[i,], 0.5)568

ymat[r,i,]<- as.numeric(Sh[r,i,]>cut)569

}570

}571

# Just keep 1 rep for the illustration. Likelihood is not set up for replicates572

Sh<- Sh[1,,]573

ymat<- ymat[1,,]574

575

# Plot the detection data from 1 realization of the experimental setting576

#png("1realization.png",width=480,height=480)577

do<- 1:nrow(ymat)578

prast<- habrast579

plot(prast)580

points(sensors, pch = "+", cex = 2,col="red")581

points(X, pch= " ")582

text(X, as.character(do),cex=1.5)583
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for(i in do){584

a<- ymat[i,]585

if(sum(a)==0) next586

b<- matrix(sensors[a==1,],ncol=2,byrow=FALSE)587

for(j in 1:nrow(b)){588

lines(rbind(X[i,],b[j,]))589

}590

}591

#dev.off()592

593

594

# Obtain the MLE of the known-s model595

596

tmp<-nlm(likknownS,c(0,1,2,0),hessian=TRUE,ymat=ymat)597

parms1<- c(tmp$estimate[1],tmp$estimate[2],tmp$estimate[3],exp(tmp$estimate[4]) )598

names(parms1)<- c("alpha0","alpha1","alpha2","sigma")599

(parms1)600

601

# Fit the model with s not known602

603

# First discard the all-zero data from the sources that were not detected604

ncap<- apply(ymat,1,sum)605

rownames(ymat)<- 1:nrow(ymat)606

ymat<- ymat[ncap>0,]607

Sh<- Sh[ncap>0,]608

Sh[ymat==0]<- NA609

gr<-coordinates(habrast)610

gr<- as.matrix(gr)611

612

# Should be defined outside of the simulation loop613

lik<-function(parms,ymat, gr, compute.post=FALSE){614

alpha0<- parms[1]615

alpha1<- parms[2]616

alpha2<- parms[3]617

sigma<- exp(parms[4])618

N<- nrow(ymat) + exp(parms[5])619

620

cost<- exp( alpha2*habrast ) # lots of attenuation through dense cover621

tr1<-transition(cost,transitionFunction=function(x) 1/mean(x),directions=16)622

tr1CorrC <-geoCorrection(tr1,type="c",multpl=FALSE,scl=FALSE)623

dcost <-costDistance(tr1CorrC, gr, sensors)624

625

ymat<- rbind(ymat, rep(0,ncol(ymat)))626
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post<- matrix(NA,nrow=nrow(ymat),ncol=nrow(gr))627

Sh<- rbind(Sh, rep(NA,ncol(ymat)))628

nind<- nrow(ymat)-1629

D<- dcost630

ES<- alpha0 - alpha1*D631

gamma <- ( cut - ES )/sigma632

phi <- pnorm(gamma, 0, 1)633

p <- 1-phi634

635

lik1<- lik2<-rep(NA,nrow(ymat))636

for(i in 1:nrow(ymat)){637

lik.gr<- ( ( t(p)^ymat[i,] )*( t(1-p)^(1-ymat[i,]) ) )638

lik.gr<- apply(lik.gr,2,prod) # joint likelihood for each grid pixel639

lik1[i]<- mean(lik.gr)640

log.dn<-dnorm(matrix(Sh[i,],nrow=nrow(gr),ncol=ncol(Sh),byrow=TRUE), ES, sigma,log=TRUE)641

dn<- exp(rowSums(log.dn, na.rm=TRUE))642

post[i,]<- lik.gr+dn643

lik2[i]<- mean(dn)644

}645

if(!compute.post){646

nv<- c( rep(1,nind), N-nind)647

ll<- -1*(lgamma(N) - lgamma(N-nind) + sum(nv*log(lik1)) + sum(nv*log(lik2)) )648

return(ll)649

}650

if(compute.post){651

post<-post/rowSums(post)652

return(post)653

}654

655

}656

657

# Fit the unknown sources model658

gr<- coordinates(habrast)659

tmp<-nlm(lik,c(0,1,2,-1,-1),hessian=TRUE,ymat=ymat,gr=gr)660

661

parms2<- c(tmp$estimate[1],tmp$estimate[2],tmp$estimate[3],exp(tmp$estimate[4]),662

exp(tmp$estimate[5]) )663

names(parms2)<- c("alpha0","alpha1","alpha2","sigma","n0")664

parms2665

666

simout<- rbind(simout, c(nind=sum(ncap>0),totcap=sum(ncap),parms1,parms2))667

}668

669
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#670

# Compute the posterior distribution using the MLEs671

#672

gr<- coordinates(habrast)673

post<-lik(tmp$estimate,ymat=ymat,gr=gr,compute.post=TRUE)674

675

#### png("posts.png",width=480,height=480)676

par(mfrow=c(2,2))677

do<- 2:5 # I will plot the posterior distribution for sources in rows 2-5 of ymat678

source.ids<- as.numeric(dimnames(ymat)[[1]][do])679

#prast<-rasterFromXYZ(cbind(gr,post[2,]))680

# note: wrong order of coordinates681

prast<- habrast682

m<- 1683

for(i in do){684

prast<- habrast685

values(prast)<- post[i,]686

plot(prast)687

points(sensors, pch = "+", cex = 2,col="red")688

points(X,pch=20,cex=2)689

a<- ymat[i,]690

if(sum(a)==0) next691

b<- matrix(sensors[a==1,],ncol=2,byrow=FALSE)692

693

for(j in 1:nrow(b)){694

lines(rbind(X[source.ids[m],],b[j,]))695

}696

697

title( c("(a)","(b)","(c)","(d)")[m] )698

m<- m+1699

700

}701

#### dev.off()702

703
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