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Abstract 

Reconstructing the genomes of microbial community members is key to the interpretation of 

shotgun metagenome samples. Genome binning programs deconvolute reads or assembled 

contigs of such samples into individual bins, but assessing their quality is difficult due to the 

lack of evaluation software and standardized metrics. We present AMBER, an evaluation 

package for the comparative assessment of genome reconstructions from metagenome 

benchmark data sets. It calculates the performance metrics and comparative visualizations 

used in the first benchmarking challenge of the Initiative for the Critical Assessment of 

Metagenome Interpretation (CAMI). As an application, we show the outputs of AMBER for 

ten different binnings on two CAMI benchmark data sets. AMBER is implemented in 

Python and available under the Apache 2.0 license on GitHub (https://github.com/CAMI-

challenge/AMBER). 

Keywords: binning, metagenomics, benchmarking, performance metrics, bioboxes 

Introduction  

Metagenomics allows studying microbial communities and their members (populations) by 

shotgun sequencing. Evolutionary divergence and abundances of these members can vary 

widely, with genomes occasionally being very closely related to one another, representing 
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strain-level diversity, or evolutionary far apart, whereas abundance can differ by several 

orders of magnitude. Genome binning software deconvolutes metagenomic reads or 

assembled sequences into bins representing genomes of the community members.  A 

popular and performant approach in genome binning uses the covariation of read coverage 

and short k-mer composition of contigs with the same origin across co-assemblies of one or 

more related samples, though the presence of strain-level diversity substantially reduces bin 

quality [1]. 

Benchmarking methods for binning and other tasks in metagenomics, such as assembly and 

profiling, is crucial for both users and method developers. The former need to determine the 

most suitable programs and parametrizations for particular applications and data sets, and 

the latter need to compare their novel or improved method with existing ones. When lacking 

evaluation software or standardized metrics, both need to individually invest considerable 

effort in assessing methods. CAMI is a community-driven initiative aiming to tackle this 

problem by establishing evaluation standards and best practices, including the design of 

benchmark data sets and performance metrics [1,2]. Here, we describe AMBER, an 

evaluation package for the comparative assessment of genome binning reconstructions from 

metagenome benchmark data sets. It implements all metrics decided by the community to be 

most relevant for assessing the quality of genome reconstructions in the first CAMI 

challenge and is applicable to arbitrary benchmark data sets. AMBER automatically 

generates binning quality assessments outputs in flat files, as summary tables, rankings, and 

as visualizations in images and an interactive HTML page.  It complements the popular 

CheckM software that assesses genome bin quality on real metagenome samples based on 

sets of single-copy marker genes [3]. 

Methods 

Input 

AMBER uses as input three types of files to assess binning quality for benchmark data sets: 

(1) a gold standard mapping of contigs or read IDs to underlying genomes of community 

members; (2) one or more files with predicted bin assignments for the sequences; and (3), a 

FASTA or FASTQ file with sequences. Benchmark metagenome sequence samples with a 

gold standard mapping can, for instance, be created with the CAMISIM metagenome 
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simulator (https://github.com/CAMI-challenge/MetagenomeSimulationPipeline). A gold 

standard mapping can also be obtained for sequences (reads or contigs), provided that 

reference genomes are available, by aligning the sequences to these genomes. Popular read 

aligners are, for example, Bowtie [4] and BWA [5]. MetaQUAST [6] can also be used for 

contig alignment while it evaluates metagenome assemblies. High confidence alignments 

can then be used as mappings of the sequences to the genomes. The input files (1) and (2) 

use the Bioboxes binning format [7] (https://github.com/bioboxes/rfc/tree/master/data-

format). AMBER also accepts as bin assignments individual FASTA files for each bin, as 

provided by MaxBin [8]. These can be converted to the Bioboxes format. Example files are 

provided in the AMBER GitHub repository (https://github.com/CAMI-challenge/AMBER). 

Metrics and accompanying visualizations 

AMBER uses the gold standard mapping to calculate a range of relevant metrics [1] for one 

or more genome binnings of a given data set. We give below a more formal definition of all 

metrics than in [1], together with an explanation of their biological meaning.  

Assessing the quality of bins 

The purity and completeness, both ranging from 0 to 1, are commonly used measures for 

quantifying bin assignment quality, usually in combination [9]. We provide formal 

definitions below. As predicted genome bins have no label, e.g. a taxonomic one, the first 

step in calculating genome purity and completeness is mapping each predicted genome 

bin to an underlying genome. For this, AMBER uses one of the following choices: 

(1) A predicted genome bin is mapped to the most abundant genome in that bin in number 

of base pairs. More precisely, let   be the set of predicted genome bins and   the set 

of underlying genomes. We define a mapping of the predicted genome bin     

as       , such that genome   maps to   and the overlap between   and  , in base 

pairs, is maximal among all    , i.e. 

            
   

       . (1) 
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(2) A predicted genome bin is mapped to the genome whose largest fraction of base pairs 

has been assigned to the bin. In this case, we define a mapping         as 

             
   

       

   
. (2) 

If more than a genome is completely included in the bin, i.e.           ⁄      for 

more than a    , then the largest genome is mapped. 

Using either option, each predicted genome bin is mapped to a single genome, but a genome 

can map to multiple bins or remain unmapped. Option 1 maps to each bin the genome that 

best represents the bin, since the majority of the base pairs in the bin belong to that genome, 

whereas option 2 maps to each bin the genome that best represents that genome, since most 

of the genome is contained in that specific bin. AMBER uses per default option 1. In the 

following, we use     to denote one of these mappings for simplicity whenever possible. 

The purity  , also known as precision, or specificity, quantifies the quality of genome bin 

predictions in terms of how trustworthy those assignments are. Specifically, the purity 

represents the ratio of base pairs originating from the mapped genome to all bin base pairs. 

For every predicted genome bin  , 

Read or contig of genome A 

Read or contig of genome B 

Read or contig of genome C 

Read or contig of genome D 

Read or contig of genome E 

True positives (TP) 

False positives (FP) 

False negatives (FN) 

A 

C 

B 

D 
E 

C 

D 

Figure 1: Schematic representation of establishing a bin-to-genome mapping for calculation 

of bin quality metrics. Reads and contigs of individual genomes are represented by different 

symbols and grouped by genome (left) or predicted genome bins (right). A bin-to-genome 

mapping is established using one of the criteria outlined in the text, with the upper bin 

mapping to genome C and the lower bin mapping to genome D. The mapping implies TPs, 

FPs and FNs for calculation of genome bin purity, completeness, contamination and overall 

sample assignment accuracy.  
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 (3) 

is determined, where the true positives      are the number of base pairs that overlap with 

the mapped genome      , i.e.               , and the false positives     are the 

number of base pairs belonging to other genomes and incorrectly assigned to the bin. The 

sum         corresponds to the size of bin   in base pairs. See Figure 1 for an example of 

predicted genome bins and respective true and false positives. 

A related metric, the contamination  , can be regarded as the opposite of purity and reflects 

the fraction of incorrect sequence data assigned to a bin (given a mapping to a certain 

genome). Usually, it suffices to consider either purity or contamination. It is defined for 

every predicted genome bin   as 

        . (4) 

The completeness  , also known as recall, or sensitivity  reflects how complete a predicted 

genome bin is with regard to the sequences of the mapped underlying genome. For every 

predicted genome bin  , 

    
   

       
      (5) 

is calculated, where the false negatives     are the number of base pairs of the mapped 

genome       that were classified to another bin or left unassigned. The sum     

    corresponds to the size of the mapped genome in base pairs. 

Because multiple bins can map to the same genome, some bins might have a purity of 1.0 

for a genome (if they exclusively contain its sequences), but the completeness for those bins 

sum up to at most 1.0 (if they include together all sequences of that genome). Genomes 

remaining unmapped are considered to have a completeness of zero and their purity is 

undefined. 

As summary metrics, the average purity  ̅ and average completeness  ̅  of all predicted 

genome bins can be calculated, which are also known in computer science as the macro-

averaged precision and macro-averaged recall [10]. To these metrics, small bins contribute 

in the same way as large bins, differently from the sample-specific metrics discussed below. 

Specifically, the average purity  ̅ is the fraction of correctly assigned base pairs for all 

assignments to a given bin averaged over all predicted genome bins, where unmapped 
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genomes are not considered. This value reflects how trustworthy the bin assignments are on 

average. Let        be the number of predicted genome bins. Then  ̅ is calculated as 

  ̅  
 

  
∑       . (6) 

A related metric, the average contamination  ̅  of a genome bin, is computed as 

  ̅     ̅ . (7) 

If very small bins are of little interest in quality evaluations, the truncated average purity 

 ̅  can be calculated, where the smallest predicted genome bins adding up to a specified 

percentage (the   percentile) of the data set are removed. For instance, the 99% truncated 

average purity can be calculated by sorting the bins according to their predicted size in base 

pairs and retaining all larger bins that fall into the 99% quantile, including (equally sized) 

bins that overlap the threshold. Let      , be the subset of predicted genome bins of   

after applying the   percentile bin size threshold and         . The truncated average 

purity  ̅  is calculated as 

  ̅  
 

    
∑       . (8) 

AMBER also allows to exclude other subsets of bins, such as bins representing viruses or 

circular elements. 

While the average purity is calculated by averaging over all predicted genome bins, the 

average completeness  ̅  is averaged over all genomes, including those not mapped to 

genome bins (for which completeness is zero). More formally, let   be the set of unmapped 

genomes, i.e.   {                      , and           , i.e. the sum of the 

number of predicted genome bins and the number of unmapped genomes. Then  ̅ is 

calculated as 

  ̅  
 

  
∑      .  (9) 
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Assessing binnings of specific samples and in relation to bin sizes 

Generally, it may not only be of interest how well a binning program does for individual 

bins, or all bins on average, irrespective of their sizes, but also how well it does overall for 

specific types of samples, where some genomes are more abundant than others. Binners may 

perform differently for abundant than for less abundant genomes, or for genomes of 

particular taxa, whose presences and abundances depend strongly on the sampled 

environment. To allow assessment of such questions, another set of related metrics exist, 

which either measure the binning performance for the entire sample, the binned portion of a 

sample, or to which bins contribute proportionally to their sizes. 

To give large bins higher weight than small bins in performance determinations, the average 

purity  ̅   and completeness  ̅   per base pair can be calculated as 

   ̅   
∑       

∑           

 
∑    

            

∑       
   (10) 

and 

   ̅   
∑    

            

∑       
 . (11) 

Equation (10) strictly uses the bin-to-genome mapping function  .  Equation (11) computes 

the sum in base pairs of the intersection between each genome and the predicted genome bin 

that maximizes the intersection, averaged over all genomes. A genome that does not 

intersect with any bin results in an empty intersection. Binners achieving higher values of 

 ̅   and  ̅   than for  ̅ and  ̅ tend to do better for larger bins than for small ones, and for 

those with lower values it is the other way around. 

The accuracy a measures the average assignment quality per base pair over the entire data 

set, including unassigned base pairs. It is calculated as 

   
∑       

  ∑           
 , (12) 

where   is the number of base pairs that were left unassigned. Like the average purity and 

completeness per base pair, large bins contribute more strongly to this metric than small 

bins. 

Genome binners generate groups or clusters of reads and contigs for a given data set. Instead 

of calculating performance metrics established with a bin-to-genome mapping, another way 
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to evaluate the quality of a clustering is to measure the similarity between the obtained and 

correct cluster partitions of the data set, corresponding here to the predicted genome bins 

and the gold standard contig or read genome assignments, respectively. This is accomplished 

with the Rand Index by comparing how pairs of items are clustered [11]. If two contigs or 

reads of the same genome are placed in the same predicted genome bin, these are here 

considered true positives   . If two contigs or reads of different genomes are placed in 

different bins, these are considered true negatives   . The Rand Index ranges from 0 to 1 

and is the number of true pairs,      , divided by the total number of pairs. However, for 

a random clustering of the data set, the Rand Index would be larger than 0. The Adjusted 

Rand Index (ARI) corrects for this by subtracting the expected value for the Rand Index 

and normalizing the resulting value, such that the values still range from 0 to 1.  

More formally, following [12], let   be the total number of base pairs assigned to any 

predicted genome bin and,     , the number of base pairs of genome   assigned to predicted 

genome bin  . The ARI is computed as 

     

∑ (
    

 
)    

∑ (
    
 

) ∑ (
    

 
) 

(
 
 

)

 

 
[∑ (

    

 
)  ∑ (

    

 
) ] 

∑ (
    
 

) ∑ (
    

 
) 

(
 
 

)

 , (13) 

where      ∑       and      ∑      . That is,      is the number of base pairs of 

genome   from all bin assignments and      is the total number of base pairs in predicted 

genome bin  . 

AMBER also provides ARI as a measure of assignment accuracy per sequence (contig or 

read) instead of per base pair by considering   to be the total number of sequences assigned 

to any bin and,     , the number of sequences of genome   assigned to bin  . The meaning 

of      and      changes accordingly. 

Importantly, the ARI is mainly designed for assessing a clustering of an entire data set, but 

some genome binning programs exclude sequences from bin assignment, thus assigning 

only a subset of the sequences from a given data set. If including this unassigned portion 

into the ARI calculation, the ARI becomes meaningless. AMBER, therefore, calculates the 

ARI only for the assigned portion of the data. For interpretation of these ARI values, the 
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percentage of assigned data should also be considered (provided by AMBER together in 

plots). 

Output and visualization 

AMBER combines the assessment of genome reconstructions from different binning 

programs or created with varying parameters for one program. The calculated metrics are 

provided as flat files, in several plots, and in an interactive HTML visualization. An example 

page is available at https://cami-challenge.github.io/AMBER/. The plots visualize: 

 (Truncated) purity  ̅  per predicted genome bin vs. average completeness  ̅ per 

genome, with the standard error of the mean 

 Average purity per base pair  ̅   vs. average completeness per base pair  ̅   

 Adjusted Rand Index ARI vs. percentage of assigned data 

 Purity    vs. completeness    and boxplots for all predicted bins  

 Heatmaps for individual binnings representing base pair assignments to predicted 

bins vs. their true origins from the underlying genomes 

Heatmaps are generated from binnings without requiring a mapping, where rows represent 

the predicted genome bins and, columns, the genomes. The last row includes all unassigned 

base pairs for every individual genome and, individual entries, the number of base pairs 

assigned to a bin from a particular genome. Hence, the sum of all entries in a row 

corresponds to the bin size and, the sum of all column entries, to the size of the underlying 

genome. To facilitate the visualization of the overall binning quality, rows and columns are 

sorted as follows: for each predicted bin in each row, a bin-to-genome mapping function ( , 

per default) determines the genome (column) that maps to the bin and the true positive base 

pairs for the bin. Predicted bins are then sorted by the number of true positives in descending 

order from top to bottom in the matrix and genomes are sorted from left to right in the same 

order of the bin-to-genome mappings for the predicted bins. In this way, true positives 

concentrate in the main diagonal starting at the upper left corner of the matrix. 
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AMBER also provides a summary table with the number of genomes recovered with less 

than a certain threshold (5% and 10% per default) of contamination and more than another 

threshold (50%, 70%, and 90% per default) of completeness. This is one of the main quality 

measures used by CheckM [3] and in e.g. [13] and [14]. In addition, a ranking of different 

binnings by the highest average purity, average completeness, or the sum of these two 

metrics is provided as a flat file. 

Figure 2: Assessment of genome bins reconstructed from CAMI’s high complexity 

challenge data set by different binners. Binner versions participating in CAMI are indicated 

in the legend in parentheses. (a) Average purity per bin (x-axis), average completeness per 

genome (y-axis), and respective standard errors (bars). As in the CAMI challenge, we report 

�̅�99 with 1% of the smallest bins predicted by each program removed. (b) Average purity per 

base pair (x-axis) and average completeness per base pair (y-axis). (c) Adjusted Rand Index 

per base pair (x-axis) and percentage of assigned base pairs (y-axis). (d-e) Boxplots of purity 

per bin and completeness per genome, respectively. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 25, 2017. ; https://doi.org/10.1101/239582doi: bioRxiv preprint 

https://doi.org/10.1101/239582
http://creativecommons.org/licenses/by/4.0/


11 
 

Results 

To demonstrate an application of AMBER, we performed an evaluation of the genome 

binning submissions to the first CAMI challenge, together with predictions from three more 

programs and new program versions, on two of the three challenge data sets. These are 

simulated benchmark data sets representing a single sample data set from a low complexity 

microbial community with 40 genomes and a 5-sample time series data set of a high 

complexity microbial community with 596 genome members. Both data sets include 

bacteria, the high complexity sample also archaea, high copy circular elements (plasmids 

and viruses) and substantial strain-level diversity. The samples were sequenced with paired-

end 150 bp Illumina reads to a size of 15 GB for each sample. The assessed binners were 

CONCOCT [12], MaxBin 2.0.2 [8], MetaBAT [15], Metawatt 3.5 [16], and MyCC [17]. We 

generated results with newer program versions of MetaBAT and MaxBin. Furthermore, we 

ran Binsanity, Binsanity-wf [18], and COCACOLA [19] on the data sets. The commands 

and parameters used with the programs are available in the Supplementary information. 

On the low complexity data set, MaxBin 2.2.4, as its previous version, performed very well, 

as did the new MetaBAT version (2.11.2, Figure 3, Supplementary Figure 1). On the high 

complexity data set, both MaxBin versions assigned less data than other programs, though 

with the highest purity (Figures 2, 3). MetaBAT 2.11.2 substantially improved over the 

previous version with all measures, recovering the most high quality bins and showing the 

highest interquartile range in the purity and completeness boxplots for the high complexity 

data set. MetaBAT 2.11.2 and MaxBin 2.0.2 also recovered the most genomes with more 

than specified thresholds of completeness and contamination on the high and the low 

complexity data sets, respectively (Table 1, Supplementary Table 1).  Notably, some 

binners, such as CONCOCT, may require more than five samples for optimal performance. 

All results and evaluations are also available in the CAMI benchmarking portal 

(https://data.cami-challenge.org). 
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Figure 3: Heatmaps of confusion matrices for four different binnings for the low complexity 

data set of the first CAMI challenge representing the base pair assignments to predicted 

genome bins (y-axis) vs. their true origin from the underlying genomes or circular elements 

(x-axis). Rows and columns are sorted according to the number of true positives per 

predicted bin (see main text). Row scatter indicates a reduced average purity per base pair 

and thus underbinning (genomes assigned to one bin), whereas column scatter indicates a 

lower completeness per base pair and thus overbinning (many bins for one genome). The last 

row represents the unassigned bases per genome, allowing to assess the fraction of sample 

left unassigned. These views allow a more detailed inspection of binning quality relating to 

the provided quality metrics (Supplementary Figure 1).  
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Table 1: Respective number of genomes recovered from CAMI’s high complexity data set 

with less than 10% and 5% contamination and more than 50%, 70%, and 90% completeness. 

Genome binner Predicted bins 

(% contamination) (% completeness) 

    >50% >70% >90% 

Gold standard 

 

596 596 596 

CONCOCT (CAMI) 
<10% 129 129 123 

<5% 124 124 118 

MaxBin 2.0.2 (CAMI) 
<10% 277 274 244 

<5% 254 252 224 

MaxBin 2.2.4 
<10% 274 271 236 

<5% 249 247 216 

MetaBAT (CAMI) 
<10% 173 152 126 

<5% 159 140 118 

MetaBAT 2.11.2 
<10% 427 417 361 

<5% 414 404 353 

Metawatt 3.5 (CAMI) 
<10% 408 387 338 

<5% 396 376 330 

MyCC (CAMI) 
<10% 189 182 145 

<5% 166 159 127 

Binsanity 0.2.5.9 
<10% 9 9 9 

<5% 6 6 6 

Binsanity-refine 0.2.5.9 
<10% 206 204 192 

<5% 183 181 171 

COCACOLA 
<10% 88 87 75 

<5% 69 69 60 

 

Conclusions 

AMBER provides commonly used metrics for assessing the quality of metagenome binnings 

on benchmark data sets in several convenient output formats, allowing in-depth comparisons 

of binnings by different programs, software versions, or with varying parameter settings. As 

such, AMBER facilitates the assessment of genome binning programs on benchmark 

metagenome data sets, for bioinformaticians aiming to optimize data processing pipelines 

and method developers. The software is available as a standalone program, as a Docker 

image (automatically built with the provided Dockerfile), and in the CAMI benchmarking  
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portal. We will continue to extend the metrics and visualizations according to community 

requirements and suggestions. 

Availability of supporting source code and requirements 

Project name: AMBER: Assessment of Metagenome BinnERs 

Project home page: https://github.com/CAMI-challenge/AMBER 

Operating system(s): Platform independent 

Programming language: Python 3.5 

License: Apache 2.0 

Additional files 

SupplementaryInformation.pdf 
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