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Abstract

Midbrain dopamine neurons are commonly thought to report a reward prediction error, as
hypothesized by reinforcement learning theory. While this theory has been highly successful,
several lines of evidence suggest that dopamine activity also encodes sensory prediction errors
unrelated to reward. Here we develop a new theory of dopamine function that embraces a
broader conceptualization of prediction errors. By signaling errors in both sensory and
reward predictions, dopamine supports a form of reinforcement learning that lies between
model-based and model-free algorithms. This account remains consistent with current canon
regarding the correspondence between dopamine transients and reward prediction errors,
while also accounting for new data suggesting a role for these signals in phenomena such
as sensory preconditioning and identity unblocking, which ostensibly draw upon knowledge
beyond reward predictions.
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Introduction

The hypothesis that midbrain dopamine neurons report a reward prediction error (RPE, the
discrepancy between observed and expected reward) enjoys a seemingly unassailable accu-
mulation of support from electrophysiology [1, 2, 3, 4, 5], calcium imaging [6, 7], optogenetics
[8, 9, 10], voltammetry [11, 12], and human brain imaging [13, 14]. The success of the RPE
hypothesis is exciting because the RPE is precisely the signal a reinforcement learning (RL)
system would need to update reward expectations [15, 16]. Support for this RL interpre-
tation of dopamine comes from findings that dopamine complies with basic postulates of
RL theory [1], shapes the activity of downstream reward-predictive neurons in the striatum
[17, 11], and plays a causal role in the control of learning [8, 9, 10, 13].

Despite these successes, however, there are a number of signs that this is not the whole story.
First, it has long been known that dopamine neurons respond to novel or unexpected stimuli,
even in the absence of changes in value [18, 19, 20, 7]. While some theorists have tried to
reconcile this observation with the RPE hypothesis by positing that value is a↵ected by
novelty [21] or uncertainty [22], others have argued that this response constitutes a distinct
function of dopamine [23, 24, 25], possibly mediated by an anatomically segregated projection
from midbrain to striatum [7]. A second challenge is that some dopamine neurons respond to
aversive stimuli. If dopamine responses reflect RPEs, then one would expect aversive stimuli
to reduce responses (as observed in some studies; [26, 27]). A third challenge is that dopamine
activity is sensitive to movement-related variables such as action initiation and termination
[28, 29]. A fourth challenge is that dopamine activity [30] and its putative hemodynamic
correlates [31] are influenced by information, such as changes in stimulus contingencies,
that should in principle be invisible to a pure “model-free” RL system that updates reward
expectations using RPEs. This has led to elaborations of the RPE hypothesis according to
which dopamine has access to some “model-based” information, for examples in terms of
probabilistic beliefs or samples from a model-based simulator [32, 33, 22, 34, 35, 36].

While some of these puzzles can be resolved within the RPE framework by modifying as-
sumptions about the inputs to and modulators of the RPE signal, recent findings have
proven more unyielding. In this paper we focus on three of these findings: (1) dopamine
transients are necessary for learning induced by unexpected changes in the sensory features
of expected rewards [37]; (2) dopamine neurons respond to unexpected changes in sensory
features of expected rewards [38]; and (3) dopamine transients are both su�cient and nec-
essary for learning stimulus-stimulus associations [39]. Taken together, these findings seem
to contradict the RPE framework supported by so much other data.

Here we will suggest one possible way to reconcile the new and old findings, based on the
idea that dopamine computes prediction errors over sensory features, much as was previously
hypothesized for rewards. This sensory prediction error (SPE) hypothesis is motivated by
normative considerations: SPEs can be used to estimate a predictive feature map known as
the successor representation (SR; [40, 41]). The key advantage of the SR is that it simplifies
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the computation of future rewards, combining the e�ciency of model-free RL with some of
the flexibility of model-based RL. Neural and behavioral evidence suggests that the SR is
part of the brain’s computational repertoire [42, 43], possibly subserved by the hippocampus
[44, 45]. Here, building on the pioneering work of Suri [46], we argue that dopamine transients
previously understood to signal RPEs may instead constitute the SPE signal used to update
the SR.

Theoretical framework

The reinforcement learning problem

RL theories posit an environment in which an animal accumulates rewards as it traverses
a sequence of “states” governed by a transition function T (s0|s), the probability of moving
from state s to state s0, and a reward function R(s), the expected reward in state s. The RL
problem is to predict and optimize value, defined as the expected discounted future return
(cumulative reward):

V (st) = E
" 1X

k=0

�krt+k

#
, (1)

where rt is the reward received at time t in state st, and � 2 [0, 1] is a discount factor that
determines the weight of temporally distal rewards. Because the environment is assumed to
obey the Markov property (transitions and rewards depend only on the current state), the
value function can be written in a recursive form known as the Bellman equation [47]:

V (st) = E[rt + �V (st+1)]. (2)

The Bellman equation allows us to define e�cient RL algorithms for estimating values, as
we explain next.

Model-free and model-based learning

Model-free algorithms solve the RL problem by directly estimating V from interactions with
the environment. The Bellman equation specifies a recursive consistency condition that the
value estimate V̂ (st) must satisfy in order to be accurate. By taking the di↵erence between
the two sides of the Bellman equation, E[rt + �V̂ (st+1)] � V̂ (st), we can obtain a measure
of expected error; the direction and degree of the error is informative about how to correct
V̂ (st).

Because model-free algorithms do not have access to the underlying environment model
(R and T ) necessary to compute the expected error analytically, they typically rely on a
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stochastic sample of the error based on experienced transitions and rewards:

�t = rt + �V̂ (st+1)� V̂ (st). (3)

This quantity, commonly known as the temporal di↵erence (TD) error, will on average be
0 when the value function has been perfectly estimated. The TD error is the basis of the
classic TD learning algorithm [47], which in its simplest form updates the value estimate
according to �V̂ (st) / �t. The RPE hypothesis states that dopamine reports the TD error
[15, 16].

Model-free algorithms like TD learning are e�cient because they cache value estimates,
which means that state evaluation (and by extension action selection) can be accomplished
by simply inspecting the values cached in the relevant states. This e�ciency comes at the
cost of flexibility: if the reward function changes at a particular state, the entire value
function must be re-estimated, since the Bellman equation implies a coupling of values
between di↵erent states. For this reason, it has been proposed that the brain also makes use
of model-based algorithms [48, 49], which occupy the opposite end of the e�ciency-flexibility
spectrum. Model-based algorithms learn a model of the environment (R and T ) and use this
model to evaluate states, typically through some form of forward simulation or dynamic
programming. This approach is flexible, because local changes in the reward or transition
functions will instantly propagate across the entire value function, but at the cost of relying
on comparatively ine�cient simulation.

Some of the phenomena that we discuss in the Results have been ascribed to model-based
computations supported by dopamine [50], thus transgressing the clean boundary between
the model-free function of dopamine and putatively non-dopaminergic model-based compu-
tations. The problem with this reformulation is that it is unclear what exactly dopamine
is contributing to model-based learning. Although prediction errors are useful for updating
estimates of the reward and transition functions used in model-based algorithms, these do
not require a TD error. A distinctive feature of the TD error is that it bootstraps a future
value estimate (the �V̂ (st+1) term); this is necessary because of the Bellman recursion. But
learning reward and transition functions in model-based algorithms can avoid bootstrapping
estimates because the updates are local thanks to the Markov property.

To make this concrete, a simple learning algorithm (guaranteed to converge to the maximum
likelihood solution under some assumptions about the learning rate) is to update the model
parameters according to:

�R(s) / rt �R(st) (4)

�T (s0|st) / I(st+1 = s0)� T (s0|st), (5)

where I(·) = 1 if its argument is true, and 0 otherwise [51]. These updates can be un-
derstood in terms of prediction errors, but not TD errors (they do not bootstrap future
value estimates). The TD interpretation is important for explaining phenomena like the
shift in signaling to earlier reward-predicting cues [16], the temporal specificity of dopamine
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responses [52, 53], and the sensitivity to long-term values [54]. Thus, it remains mysterious
how to retain the TD error interpretation of dopamine, which has been highly successful as
an empirical hypothesis, while simultaneously accounting for the sensitivity of dopamine to
SPEs.

The successor representation

To reconcile these data, we will develop the argument that dopamine reflects sensory TD
errors, encompassing both reward and non-reward features of a stimulus. In order to intro-
duce some context to this idea, let us revisit the fundamental e�ciency-flexibility trade-o↵.
One way to find a middle-ground between the extremes occupied by model-free and model-
based algorithms is to think about di↵erent ways to compile a model of the environment. By
analogy with programming, a compiled program gains e�ciency (in terms of runtime) at the
expense of flexibility (the internal structure of the program is no longer directly accessible).
Model-based algorithms are maximally uncompiled: they explicitly represent the parame-
ters of the model, thus providing a representation that can be flexibly altered for new tasks.
Model-free algorithms are maximally compiled: they only represent the summary statistics
(state values) that are needed for reward prediction, bypassing a flexible representation of
the environment in favor of computational e�ciency.

A third possibility is a partially compiled model. [40] presented one such scheme, based on
the following mathematical identity:

V (st) =
X

s0

M(st, s
0)R(s0), (6)

where M denotes the successor representation (SR), the expected discounted future state
occupancy:

M(st, s
0) = E

" 1X

k=0

�kI(st+k = s0)

#
. (7)

Intuitively, the SR represents states in terms of the frequency of their successor states. From
a computational perspective, the SR is appealing for two reasons. First, it renders value
computation a linear operation, yielding e�ciency comparable to model-free evaluation.
Second, it retains some of the flexibility of model-based evaluation. Specifically, changes
in rewards will instantly a↵ect values because the reward function is represented separately
from the SR. On the other hand, the SR will be relatively insensitive to changes in transition
structure, because it does not explicitly represent transitions—these have been compiled into
a convenient but inflexible format. Behavior reliant upon such a partially-compiled model
of the environment should be more sensitive to reward changes than transition changes, a
prediction recently confirmed in humans [42].
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The SR obeys a recursion analogous to the Bellman equation:

M(st, s
0) = E[I(st = s0) + �M(st+1, s

0)]. (8)

Following the logic of the previous section, this implies that a TD learning algorithm can be
used to estimate the SR:

�M̂(st, s
0) / �Mt (s0) = I(st = s0) + �M̂(st+1, s

0)� M̂(st, s
0), (9)

where M̂ denotes the approximation of M .

One challenge facing this formulation is the curse of dimensionality : in large state spaces
it is impossible to accurately estimate the SR for all states. Generalization across states
can be achieved by defining the SR over state features (indexed by j) and modeling this
feature-based SR with linear function approximation:

M̂(st, j) =
X

i

fi(st)Wij, (10)

where fi(s) denotes the ith feature of state s and W is a weight matrix that parametrizes the
approximation. In general the features can be arbitrary, but for the purposes of this paper,
we will assume that the features correspond to distinct stimulus identities; thus fi(s) = 1 if
stimulus i is present in state s, and 0 otherwise. Linear function approximation leads to the
following learning rule for the weights:

�Wij / �Mt (j)fi(st), (11)

where

�Mt (j) = fj(st) + �M̂(st+1, j)� M̂(st, j) (12)

is the TD error under linear function approximation. We will argue that dopamine encodes
this TD error.

One issue with comparing this vector-valued TD error to experimental data is that we don’t
yet know how particular dopamine neurons map onto particular features. In order to make
minimal assumptions, we will assume that each neuron has a uniform prior probability of
encoding any given feature. Under ignorance about feature tuning, the expected TD error
is then proportional to the superposition of feature-specific TD errors,

P
j �

M
t (j). In our

simulations of dopamine, we take this superposition to be the “dopamine signal” (see also
[32]), but we wish to make clear that this is a provisional assumption that we ultimately
hope to replace once the feature tuning of dopamine neurons is better understood.

There are several notable aspects of this new model of dopamine. First, it naturally captures
SPEs, as we will illustrate shortly. Second, it also captures RPEs if reward is one of the
features. Specifically, if fj(st) = rt, then the correspond column of the SR is equivalent to
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the value function, M(s, j) = V (s), and the corresponding TD error is the classical RPE,
�Mt (j) = �t. Third, the TD error is now vector-valued, which means that dopamine neurons
may be heterogeneously tuned to particular features (as hypothesized by some authors;
[55]), or they multiplex several features [56], or both. Notably, although the RPE correlate
has famously been evident in single-units, representation of these more complex or subtle
prediction errors may be an ensemble property.

Simulations

Some of the most direct evidence for our hypothesis comes from a recent study by Chang et
al. [37], who examined whether dopamine is necessary for learning about changes in reward
identity (Figure 1A). Animals first learned to associate two stimuli (XB and XUB) with
di↵erent reward flavors. These stimuli were then reinforced in compound with other stimuli
(AB and AUB). Critically, the XUBAUB trials were accompanied by a change in reward
flavor, a procedure known as “identity unblocking” that attenuates the blocking e↵ect [57,
58, 59]. This e↵ect eludes explanation in terms of model-free mechanisms, but is naturally
accommodated by the SR since changes in reward identity induce sensory prediction errors.
Chang et al. [37] showed that optogenetic inhibition of dopamine at the time of the flavor
change prevents this unblocking e↵ect (Figure 1B). Our model accounts for this finding
(Figure 1C), because inhibition suppresses SPEs that are necessary for driving learning.

One discrepant observation is a simulated increase in V in the ITI condition relative to the
Exp condition for AB, which does not appear in the experimental data. During the second
stage of learning, XUB, AUB, and the sensory features of both pellet types are presented
together. Because of the co-occurrence of these features, associations develop between them
such that the sensory features of the pellets now have slight associations with one another
as well as the cues that predict them. This causes AB and XB to have a slight association
with the sensory features of the pellet that it never predicted since both pellets now have
mild associations with one another.

Electrophysiological experiments have confirmed that dopamine neurons respond to changes
in identity, demonstrating a neural signal that is capable of explaining the data from Chang
et al. [37]. We have already mentioned the sizable literature on novelty responses, but the
significance of this activity is open to question, because the animal’s prior value expectation
is typically unclear. A study reported by Takahashi et al. [38] provides more direct evidence
for an SPE signal, using a task (Figure 2A) in which animals experience both shifts in
value (amount of reward) and identity (reward flavor). Takahashi and colleagues found
that individual dopamine neurons exhibited the expected changes in firing to shifts in value
(Figure 2B, reward addition and omission) and also showed a stronger response following a
value-neutral change in reward identity (Figure 2B, identity switch), changes in firing similar
to those predicted by the model under these conditions (Figure 2C).
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Figure 1: Inhibition of dopamine neurons prevents learning induced by changes in

reward identity. (A) Identity unblocking paradigm. Circles and squares denote distinct
reward flavors. Orange light symbol indicates when dopamine neurons were suppressed
optogenetically to disrupt any positive SPE; this spanned a 5s period beginning 500ms
prior to delivery of the second reward. (B) Conditioned responding on the probe test.
Exp: experimental group, receiving inhibition during reward outcome. ITI: control group,
receiving inhibition during the intertrial interval. Asterisk indicates significant di↵erence
(p < 0.05). Error bars show standard error of the mean. Data replotted from [37]. (C )
Model simulation of the value function.

A strong form of our proposal is that dopamine transients are both su�cient and necessary for
learning stimulus-stimulus associations. Recent experiments using a sensory precondition-
ing paradigm [39] have tested this using sensory preconditioning. In this paradigm (Figure
3A), various stimuli and stimulus compounds (denoted A, EF, AD, AC) are associated with
another stimulus X through repeated pairing in an initial preconditioning phase. In a sub-
sequent conditioning phase, X is associated with reward (sucrose pellets). In a final probe
test, conditioned responding to a subset of the individual stimuli (F, D, C) is measured in
terms of the number of food cup entries elicited by the presentation of the stimuli. During
the preconditioning phase, one group of animals received optogenetic activation of dopamine
neurons via channelrhodopsin (ChR2) expressed in the ventral tegmental area of the mid-
brain. In particular, optogenetic activation was applied either coincident with the onset of
X on AC!X trials, or (as a temporal control) 120-180 seconds after X on AD!X trials.
Another control group of animals received the same training and optogenetic activation, but
expressed light-insensitive enhanced yellow fluorescent protein (eYFP).
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Figure 2: Dopamine neurons respond to changes in reward identity. (A) Time
course of stimuli presented to the animal on each trial. Dashed indicate reward omission,
solid lines indicate reward delivery. At the start of each session, one well was randomly
designated as short (a .5-s delay before the reward) and the other, long (a 1- to 7-s delay
before the reward; see Block 1). In Block 2, these contingencies were switched. In Block 3,
the delay was held constant, while the number of rewards was manipulated; one well was
designated a big reward, in which a second bolus of reward was delivered (big reward), and
a small (single bolus) reward was delivered in the other well. In Block 4, these contingencies
were switched again.(B) Firing rate of dopamine neurons on trials that occurred early (first
5 trials) or late (last 5 trials) during an identity shift block. Error bars show standard error
of the mean. Data replotted from [38]. (C ) Model simulation of TD error.

A blocking e↵ect was discernible in the control (eYFP) group, whereby A reduced acquisition
of conditioned responding to C and D, compared to F, which was trained in compound with
a novel stimulus (Figure 3B). The blocking e↵ect was eliminated by optogenetic activation in
the experimental (ChR2) group, specifically for C, which received activation coincident with
X. Thus, activation of dopamine neurons was su�cient to drive stimulus-stimulus learning
in a temporally specific manner.

These findings raise a number of questions. First, how does one explain blocking of stimulus-
stimulus associations? Second, how does one explain why dopamine a↵ects this learning in
the apparent absence of new reward information?

In answer to the first question, we can appeal to an analogy with blocking of stimulus-
reward associations. The classic approach to modeling this phenomenon is to assume that
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Figure 3: Dopamine transients are su�cient for learning stimulus-stimulus associ-

ations. (A) Sensory preconditioning paradigm. The initial preconditioning phase is broken
down into two sub-phases. Letters denote stimuli, arrows denote temporal contingencies,
and circles denote rewards. Blue light symbol indicates when dopamine neurons were acti-
vated optogenetically to mimic a positive SPE; this spanned a 1s period beginning at the
start of X. (B) Number of food cup entries occurring during the probe test for experimental
(ChR2) and control (eYFP) groups. Error bars show standard error of the mean. Data re-
plotted from [39]. (C ) Model simulation, using the value estimate as a proxy for conditioned
responding.

each stimulus acquires an independent association and that these associations summate
when the stimuli are presented in compound [60]. While there are boundary conditions
on this assumption [61], it has proven remarkably successful at capturing a broad range of
learning phenomenon, and is inherited by TD models with linear function approximation
(e.g., [16, 22, 62]). Summation implies that if one stimulus (A) perfectly predicts reward,
then a second stimulus (C) with no pre-existing association will fail to acquire an association
when presented in compound with A, because the sum of the two associations will perfectly
predict reward and hence generate an RPE of 0. The same logic can be applied to stimulus-
stimulus learning by using linear function approximation of the successor representation,
which implies that stimulus-stimulus associations will summate and hence produce blocking,
as observed in Sharpe et al. [39].

In answer to the second question, we argue that dopamine is involved in stimulus-stimulus
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Figure 4: Dopamine transients are necessary for learning stimulus-stimulus asso-

ciations. (A) Sensory preconditioning paradigm. Circles and squares denote distinct reward
flavors. Orange light symbol indicates when dopamine neurons were suppressed optogeneti-
cally to disrupt any positive SPE; this spanned a 2.5s period beginning 500ms prior to the
end of B. (B) Number of food cup entries occurring during the probe test for experimental
(NpHR) and control (eYFP) groups. Error bars show standard error of the mean. Data
replotted from [39]. (C ) Model simulation.

learning because it reflects a multifaceted SPE, as described in the previous section. By
assuming that optogenetic activation adds a constant to the SPE (see Methods), we can
capture the unblocking findings reported by Sharpe and colleagues (Figure 3C). The mech-
anism by which optogenetic activation induces unblocking is essentially the same as the one
suggested by the results of Steinberg et al. [9] for conventional stimulus-reward blocking:
by elevating the prediction error, a learning signal is engendered where none would exist
otherwise. However, while the results of Steinberg and colleagues are consistent with the
original RPE hypothesis of dopamine, the results of Sharpe et al. [39] cannot be explained
by this model and instead require the analogous dopamine-mediated mechanism for driving
learning with SPEs.

In addition to establishing the su�ciency of dopamine transients for learning, [39] also es-
tablished their necessity, using optogenetic inactivation. In a variation of the sensory pre-
conditioning paradigm (Figure 4A), two pairs of stimulus-stimulus associations were learned
(A!X and B!Y). Subsequently, X and Y were paired with di↵erent reward flavors, and
finally conditioned responding to A and B was evaluated in a probe test. In one group of
animals expressing halorhodopsin in dopamine neurons (NpHR), optogenetic inhibition was
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applied coincident with the transition between the stimuli on B!Y trials. A control group
expressing light-insensitive eYFP was exposed to the same stimulation protocol. Sharpe and
colleagues found that inhibition of dopamine selectively reduced responding to B (Figure
4B), consistent with our model prediction that disrupting dopamine transients (a negative
prediction error signal) should attenuate stimulus-stimulus learning (Figure 4C).

Limitations and extensions

One way to drive a wedge between model-based and model-free algorithms is to devalue
rewards (e.g., through pairing the reward with illness or selective satiation) and show e↵ects
on previously acquired conditioned responses to stimuli that predict those rewards. Because
model-free algorithms like TD learning need to experience unbroken stimulus-reward se-
quences to update stimulus values, the behaviors they support are insensitive to such reward
devaluation. Model-based algorithms, in contrast, are able to propagate the devaluation to
the stimulus without direct experience, and hence allow behavior to be devaluation-sensitive.
Because of this, devaluation-sensitivity has frequently been viewed as an assay of model-based
RL [48].

However, such sensitivity can also be a property of SR-based RL, since the SR represents the
association between the stimulus and food and is also able to update the reward function
of the food as a result of devaluation. Thus, like model-based accounts, an SR model
can account for changes in previously learned behavior to reward-predicting stimuli after
devaluation, both in normal situations [43, 42] and when learning about those stimuli is
unblocked by dopamine activation [63]. However, the SR model cannot spontaneously acquire
transitions between states that are not directly experienced [43, 42]. With this in mind, we
consider the finding that reward devaluation alters the learning induced by activation of
dopamine neurons in the sensory preconditioning paradigm of Sharpe et al. [39].

A key aspect of the reward devaluation procedure is that the food was paired with illness
after the end of the entire preconditioning procedure and in the absence of any of the stimuli
(and in fact not in the training chamber). In the SR model, only stimuli already predictive of
the food can change their values after devaluation. In the paradigm of Sharpe and colleagues,
X was associated with food but C was not. Moreover, C was associated with X before any
association with food was established. Because of this, C is not updated in the SR model
to incorporate an association with food. It follows that, unlike the animals in Sharpe et al.
[39], the model will not be devaluation-sensitive when probed with C (Figure 5B).

It is possible to address this failure within our theoretical framework in a number of di↵erent
ways. One way we considered was to allow optogenetic activation to increment predictions
for all possible features, instead of being restricted to recently active features by a feature
eligibility trace (see Methods), as in the simulations thus far. With such a promiscuous
artificial error signal, the model can recapitulate the devaluation e↵ect, because C would
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Figure 5: Behavior to preconditioned cue that is unblocked by activation of

dopamine neurons is sensitive to devaluation of the predicted reward. Data (A,
replotted from [39]) and model simulation (B) for conditioned responding to stimulus C in
the probe test. Animals in the devalued group were injected with lithium chloride in conjunc-
tion with ingestion of the reward (sucrose pellets), causing a strong aversion to the reward.
Animals in the nondevalued group were injected with lithium chloride approximately 6 hours
after ingestion of the reward. Error bars show standard error of the mean. (C) A version of
the model with rehearsal of stimulus X during reward devaluation was able to capture the
devaluation-sensitivity of animals.

then become associated with food (along with everything else) in the preconditioning phase
itself. The problem with this work-around is that it also predicts that animals should develop
a conditioned response to the food cup for all the cues during preconditioning, since food
cup shaping prior to preconditioning seeds the food state with reward value. As a result,
any cue paired with the food state immediately begins to induce responding at the food cup.
Such behavior is not observed, suggesting that the artificial update caused by optogenetic
activation of the dopamine neurons is locally restricted.

A second more conventional way to address this failure within our theoretical framework is
to assume that there is some form of o✏ine rehearsal or simulation that is used to update
cached predictions [33, 64, 65]. Russek et al. [43] have shown that such a mechanism is able
to endow SR-based learning with the ability to retrospectively update predictions even in
the absence of direct experience. A minimal implementation of such a mechanism in our
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model, simply by “confabulating” the presence of X during reward devaluation, is su�cient
to capture the e↵ects of devaluation following optogenetic activation of dopamine neurons
(Figure 5C). This solution makes the experimental prediction that the devaluation-sensitivity
of this artificially unblocked cue should be time-dependent, under the assumption that the
amount of o✏ine rehearsal is proportional to the retention interval.

Discussion

The RPE hypothesis of dopamine has been one of theoretical neuroscience’s signature success
stories. This paper has set forth a significant generalization of the RPE hypothesis that
enables it to account for a number of anomalous phenomena, without discarding the core
ideas that motivated the original hypothesis. The proposal that dopamine reports a SPE
is grounded in a normative theory of reinforcement learning [40], motivated independently
by a number of computational [43, 66], behavioral [42, 67, 68] and neural [44, 45, 69, 70]
considerations.

An important strength of the proposal is that it extends the functional role of dopamine
beyond RPEs, while still accounting for the data that motivated the original RPE hypothesis.
This is because, if reward is treated as a sensory feature, then one dimension of the vector-
valued SPE will be the RPE. Indeed, dopamine SPEs should behave systematically like
RPEs, except that they respond to features: they should pause when expected features are
unexpectedly omitted, they should shift back to the earliest feature-predicting cue, and they
should exhibit signatures of cue competition, such as overexpectation. SPEs are used to
update cached predictions, analogous to the RPE in model-free algorithms. However these
cached predictions extend beyond value to include information about the occupancy of future
states (the SR). The SR can be used in a semi-flexible manner that allows behavior to be
sensitive to changes in the reward structure, such as devaluation by pairing a reward with
illness. As a result, even if dopamine is constrained by the model proposed here, it would
support significantly more flexible behavior than supposed by classical model-free accounts
[15, 16], even without moving completely to an account of model-based computation in the
dopamine system [50].

Nevertheless, the theory proposed here—particularly if it incorporates o✏ine rehearsal in
order to fully explain the results of Sharpe et al. [39]—does strain the dichotomy between
model-based and model-free algorithms that has been at the heart of modern RL theories
[48]. However, as noted earlier, SR requires o✏ine rehearsal to incorporate the e↵ects of
devaluation after preconditioning in Sharpe et al or manipulations of the transition structures
of tasks [42]. If these e↵ects, and particularly dopamine’s involvement in them, are mediated
by an SR mechanism, then we should be able to interfere with it by manipulating retention
intervals or attention [33]. For example, the strength of devaluation sensitivity in Sharpe et
al should be diminished by a very short retention interval prior to the probe test, since this
would reduce time available for rehearsal. If these e↵ects do not show any dependence on
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the length of the retention interval, then this would be more consistent with model-based
algorithms, which do not require any rehearsal.

Another testable prediction of the theory is that we should see heterogeneity in the dopamine
response, reflecting the vector-valued nature of the SPE. Importantly, such tuning need not
be statistically evident in the spiking of an individual neuron. It might show up in the
pattern of response across the entire population or even in subpopulations determined by
target or other criteria. Indeed, target-based heterogeneity is already evident in some studies
of dopamine release or function in downstream regions [63, 71, 72]. Related to this, the theory
also predicts the existence of a negative SPE to allow reductions in the strength of weights in
the SR. In its simplest form, the omission of an expected stimulus could result in suppression
of firing, analogous to reward omission responses [16]. However, this e↵ect might be subtle
if SPEs are population-coded by the dopamine signal, as suggested above; the negative SPE
may simply reflect a particular pattern across the population rather than overt suppression
at the level of single neurons. Distinctive patterns of activity identifying the source of the
error and di↵erentiating the addition of information versus its omission sets our proposal
apart from explanations based on salience signals, which are typically thought to be both
non-specific and unsigned [73]. These predictions set an exciting new agenda for dopamine
research by embracing a broader conception of dopamine function.

While we have focused on dopamine in this paper, a complete account will obviously need
to integrate the computational functions of other brain regions. Where does information
relevant to computing SPE’s come from? One obvious possibility is from sensory regions.
Sensory areas respond both to and in expectation of external events [?, ?, ?], and these areas
send input to brainstem, thus they are positioned to feed information to the dopaminergic
system. Beyond this, the hippocampus and orbitofrontal cortex seem likely to be particu-
larly important. Many lines of evidence are consistent with the idea that the hippocampus
encodes a “predictive map” resembling the SR [44]. For example, hippocampal place cells
alter their tuning with repeated experience to fire in anticipation of future locations [74], and
fMRI studies have found predictive coding of non-spatial states [45, 75]. The orbitofrontal
cortex has also been repeatedly implicated in predictive coding, particularly of reward out-
comes [76, 77], but also of sensory events [78, ?], and the orbitofrontal cortex is critical for
sensory-specific outcome expectations in Pavlovian conditioning [79]. Wilson et al. [80] have
proposed that the orbitofrontal cortex encodes a “cognitive map” of state space, which pre-
sumably underpins this diversity of stimulus expectations. Thus, evidence suggests that both
hippocampus and orbitofrontal cortex encode some form of predictive representation [81].
Further, dopaminergic modulation of these regions is well-established [82, 83]. It is tempting
to speculate that a↵erent input from and dopaminergic modulation of the hippocampus and
orbitofrontal cortex may be especially critical to the SPE function proposed here.

The influence of these representations may be filtered through interactions with more basic
value representations in striatum. This proposal fits with the observation that the hip-
pocampus and orbitofrontal cortex appear to confer stimulus specificity on value-sensitive
neurons in the striatum [84, 85]. Striatal value representations are already proposed to influ-
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ence activity in VTA [86]. By this model, dopamine would still provide the RPE signal that
drives striatal plasticity related to actions or “value”, as in most contemporary accounts, but
in addition it would provide an SPE signal to update associative representations, perhaps
in striatum but also in upstream orbitofrontal and hippocampal areas, which feed into the
striatum. While speculative, this idea is consistent with findings showing heterogeneity of
dopamine function based on projection target, at least within striatum [63, 71]. It is also
consistent with recent human imaging work, confirming the presence of an SPE-like signal in
human VTA, and reporting that the strength of this signal during learning is correlated with
the strength of new sensory-sensory correlates developed in the orbitofrontal cortex [70].

The view that dopamine reports the SR prediction error provides a bridge between sensory
and reward prediction error accounts of dopamine function. The tension between these
views has long vexed computational theories, and has posed particular problems for pure
RPE accounts of dopamine. We see our model as the first step towards resolving this tension.
While we have shown that the notion of a generalized prediction error is consistent with a
wealth of empirical data, this is just the beginning of the empirical enterprise. Armed with a
quantitative framework, we can now pursue evidence for such prediction errors with greater
precision and clarity.

Methods

Linear value function approximation

Under the linear function approximation scheme described in the Results, the value function
estimate is given by:

V̂ (st) =
X

i

fi(st)
X

j

U(j)Wij, (13)

where U(j) is the reward expectation for feature j, updated according to a delta rule:

�U(j) = ↵Ufj(st)[rt � V̂ (st)] (14)

with learning rate ↵U .

In the supplementary figures, we report simulations of the value-based TD learning algo-
rithm, TD(0), which approximates the value function using linear function approximation:

V̂ (st) ⇡
X

j

wjfj(st), (15)

and updates the weights according to:

�wj = ↵fj(st)[rt + �V̂ (st+1)� V̂ (st)]. (16)
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Excitatory and inhibitory asymmetry in the TD error term

There is a large body of evidence in associative learning suggesting an imbalance between
excitatory and inhibitory learning [87, 88]. Mirroring this imbalance is an asymmetry in
the dynamic range of the firing rate of single dopaminergic neurons in the midbrain [2]. In
accordance with these observations, we assume that the error terms (�Wij and �Uj) are
rescaled by a factor of 1/4 for negative prediction errors. This is equivalent to assuming
separate learning rates for positive and negative prediction errors [89]. Note that, following
prior theoretical work (e.g., [16]), we consider negative prediction errors to be coded by real
neurons relative to a baseline firing rate, acknowledging the fact that neurons cannot produce
negative firing rates.

Simulation parameters

We used the following parameters in the simulations of SR: � = 0.95,↵W = 0.06,↵U = 0.03,
where ↵W is the learning rate for the weight matrix W , ↵U is the learning rate for the
reward function, and � is the discount rate. For the model-free TD learning algorithm
simulations, we used the following parameters: � = 0.95,↵ = 0.05. We used the same set
of parameters across all simulations. However, our results are largely robust to variations in
these parameters.

Modeling optogenetic activation and inhibition

Optogenetic intervention was modeled by modifying the TD error as follows:

�Mt (j) =

(
(1 + ⌘)�Mt (j) ⌘ < 0

[fj(st)⌘ + �Mt (j) ⌘ > 0
(17)

where ⌘ = 1.0 for optogenetic activation and �0.8 for inhibition. The asymmetry between
the functions for activation and inactivation was chosen to better match the the hypothesized
function of optogenetic stimulation based on empirical findings. For positive stimulation of
dopamine, it is thought that the increased dopamine activity should enhance learning with
the currently active features, which in the SR model is the fj(st) term. For optogenetic inhibi-
tion of dopamine, we have found that punctate versus prolonged inhibition causes di↵erential
e↵ects, with punctate inhibition resulting in negative prediction errors and prolonged inhibi-
tion resulting in shunting of the error signal [10]. Our inhibition in the experiments included
in this paper were prolonged, necessitating a di↵erent model of the inhibitory optogenetic
manipulation.
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[51] Jan Gläscher, Nathaniel Daw, Peter Dayan, and John P O’Doherty. States versus
rewards: dissociable neural prediction error signals underlying model-based and model-
free reinforcement learning. Neuron, 66:585–595, 2010.

[52] Yuji K Takahashi, Angela J Langdon, Yael Niv, and Geo↵rey Schoenbaum. Temporal
specificity of reward prediction errors signaled by putative dopamine neurons in rat vta
depends on ventral striatum. Neuron, 91:182–193, 2016.

[53] Je↵rey R Hollerman and Wolfram Schultz. Dopamine neurons report an error in the
temporal prediction of reward during learning. Nature Neuroscience, 1:304–309, 1998.

23

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/239731doi: bioRxiv preprint 

https://doi.org/10.1101/239731


[54] Kazuki Enomoto, Naoyuki Matsumoto, Sadamu Nakai, Takemasa Satoh, Tatsuo K Sato,
Yasumasa Ueda, Hitoshi Inokawa, Masahiko Haruno, and Minoru Kimura. Dopamine
neurons learn to encode the long-term value of multiple future rewards. Proceedings of
the National Academy of Sciences, 108:15462–15467, 2011.

[55] Brian Lau, Tiago Monteiro, and Joseph J Paton. The many worlds hypothesis of
dopamine prediction error: implications of a parallel circuit architecture in the basal
ganglia. Current Opinion in Neurobiology, 46:241–247, 2017.

[56] Ju Tian, Ryan Huang, Jeremiah Y Cohen, Fumitaka Osakada, Dmitry Kobak, Chris-
tian K Machens, Edward M Callaway, Naoshige Uchida, and Mitsuko Watabe-Uchida.
Distributed and mixed information in monosynaptic inputs to dopamine neurons. Neu-
ron, 91:1374–1389, 2016.

[57] Michael A McDannald, Federica Lucantonio, Kathryn A Burke, Yael Niv, and Geo↵rey
Schoenbaum. Ventral striatum and orbitofrontal cortex are both required for model-
based, but not model-free, reinforcement learning. Journal of Neuroscience, 31:2700–
2705, 2011.

[58] Robert A Rescorla. Learning about qualitatively di↵erent outcomes during a blocking
procedure. Learning & Behavior, 27:140–151, 1999.

[59] Aaron P Blaisdell, James C Denniston, and Ralph R Miller. Unblocking with qualitative
change of unconditioned stimulus. Learning and Motivation, 28:268–279, 1997.

[60] R. A. Rescorla and A. R. Wagner. A theory of of Pavlovian conditioning: variations
in the e↵ectiveness of reinforcement and nonreinforcement. In A.H. Black and W.F.
Prokasy, editors, Classical Conditioning II: Current Research and theory, pages 64–99.
Appleton-Century-Crofts, New York, NY, 1972.

[61] Fabian A Soto, Samuel J Gershman, and Yael Niv. Explaining compound generalization
in associative and causal learning through rational principles of dimensional generaliza-
tion. Psychological Review, 121:526–558, 2014.

[62] Elliot A Ludvig, Richard S Sutton, and E James Kehoe. Stimulus representation and
the timing of reward-prediction errors in models of the dopamine system. Neural Com-
putation, 20:3034–3054, 2008.

[63] Ronald Keiflin, Heather J Pribut, Nisha B Shah, and Patricia H Janak. Phasic activation
of ventral tegmental, but not substantia nigra, dopamine neurons promotes model-based
pavlovian reward learning. bioRxiv, 2017.

[64] Adam Johnson and A David Redish. Hippocampal replay contributes to within ses-
sion learning in a temporal di↵erence reinforcement learning model. Neural Networks,
18:1163–1171, 2005.

24

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/239731doi: bioRxiv preprint 

https://doi.org/10.1101/239731


[65] Giovanni Pezzulo, Matthijs AA van der Meer, Carien S Lansink, and Cyriel MA Pen-
nartz. Internally generated sequences in learning and executing goal-directed behavior.
Trends in Cognitive Sciences, 18:647–657, 2014.
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Figure 1: Inhibition of dopamine neurons prevents learning induced by changes in

reward identity. (Left) Conditioned responding on the probe test in the identity unblocking
paradigm. Exp: experimental group, receiving inhibition during reward outcome. ITI: control
group, receiving inhibition during the intertrial interval. Asterisk indicates significant di↵erence
(p < 0.05). Data replotted from [1]. (Right) Model simulation of the value function.
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Figure 2: Dopamine neurons respond to changes in reward identity. (Left) Firing rate
of dopamine neurons on trials that occurred early (first 5 trials) or late (last 5 trials) during an
identity shift block. Data replotted from [2]. (Right) Model simulation of TD error.
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Figure 3: Dopamine transients are su�cient for learning stimulus-stimulus associations.
(Left) Number of food cup entries occurring during the probe test for experimental (ChR2) and
control (eYFP) groups in the sensory preconditioning paradigm. Data replotted from [3]. (RIght)
Model simulation, using the value estimate as a proxy for conditioned responding. Note that V
attached to the critical cue, C, is high in the simulation, much like the food cup responding in the
probe test to this cue. This occurs because dopamine is paired with the cue, so it directly acquires
a significant value. However, in this paradigm there is no direct link between C and the policy of
going to the food cup. Thus, the success of TD(0) in this context in matching the empirical data
is somewhat misleading.
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Figure 4: Dopamine transients are necessary for learning stimulus-stimulus associations.
(Left) Number of food cup entries occurring during the probe test for experimental (NpHR) and
control (eYFP) groups in the sensory preconditioning paradigm. Data replotted from [3]. (Right)
Model simulation.
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Figure 5: Behavior to preconditioned cue that is unblocked by activation of dopamine

neurons is sensitive to devaluation of the predicted reward. Data (A, replotted from [3])
and model simulation (B) for conditioned responding to stimulus C in the probe test. Animals
in the devalued group were injected with lithium chloride in conjunction with ingestion of the
reward (sucrose pellets), causing a strong aversion to the reward. Animals in the nondevalued
group were injected with lithium chloride approximately 6 hours after ingestion of the reward. (C)
A version of the model with rehearsal of stimulus X during reward devaluation was able to capture
the devaluation-sensitivity of animals.
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