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Abstract1

Transcriptional profiling of complex tissues by RNA-sequencing of single nuclei presents some advantages over whole cell2

analysis. It enables unbiased cellular coverage, lack of cell isolation-based transcriptional effects, and application to archived3

frozen specimens. Using a well-matched pair of single-nucleus RNA-seq (snRNA-seq) and single-cell RNA-seq (scRNA-seq)4

SMART-Seq v4 datasets from mouse visual cortex, we demonstrate that similarly high-resolution clustering of closely related5

neuronal types can be achieved with both methods if intronic sequences are included in nuclear RNA-seq analysis. More6

transcripts are detected in individual whole cells (˜11,000 genes) than nuclei (˜7,000 genes), but the majority of genes have7

similar detection across cells and nuclei. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to8

over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of9

nuclear RNA for characterization of cellular diversity in brain tissues.10

Introduction11

Understanding neural circuits requires characterization of their cellular components. Cell types in mam-12

malian brain have been defined based on shared morphological, electrophysiological and, more recently,13

molecular properties (Poulin et al., 2016; Zeng and Sanes, 2017; Bernard et al., 2009). scRNA-seq has14

emerged as a high-throughput method for quantification of the majority of transcripts in thousands of cells.15

scRNA-seq data have revealed diverse cell types in many mouse brain regions, including neocortex (Tasic16

et al., 2016, 2017; Zeisel et al., 2015), hypothalamus (Campbell et al., 2017), and retina (Shekhar et al.,17

2016; Macosko et al., 2015).18

However, scRNA-seq profiling does not provide an unbiased survey of neural cell types. Some cell types are19

more vulnerable to the tissue dissociation process and are underrepresented in the final data set. For exam-20

ple, in mouse neocortex, fast-spiking parvalbumin-positive interneurons and deep-projecting glutamatergic21

neurons in layer 5b are observed in lower proportions than expected and need to be selectively enriched22

using Cre-driver lines (Tasic et al., 2017) for sufficient sampling. In adult human neocortex, neurons largely23
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do not survive dissociation thereby causing over-representation of non-neuronal cells in single cell suspen-24

sions (Darmanis et al., 2015). In contrast to whole cells, nuclei are more resistant to mechanical assaults25

and can be isolated from frozen tissue (Krishnaswami et al., 2016; Lacar et al., 2016). Single nuclei have26

been shown to provide sufficient gene expression information to define relatively broad cell classes in adult27

human brain (Lake et al., 2016, 2017a) and mouse hippocampus (Habib et al., 2016).28

Previous studies have not addressed if the nucleus contains sufficient diversity and number of transcripts to29

enable discrimination of closely related cell types at a resolution comparable to whole cells. A recent study30

compared clustering results for single nuclei and whole cells isolated from mouse somatosensory cortex (Lake31

et al., 2017b), but it only showed similar ability to distinguish two very different cell classes: superficial- and32

deep-layer excitatory neurons.33

In this study, we compared 463 matched nuclei and whole cells from layer 5 of mouse primary visual cortex34

(VISp) to investigate differences in single nucleus and single cell transcriptomes. We selected this brain35

region because it contains a known variety of distinguishable yet highly similar cell types that would reveal36

the cell-type detection limit of RNA-seq data obtained from single cells or nuclei (Tasic et al., 2016). We37

used the same primary cell source and processed cells and nuclei with the same transcriptomic profiling38

method to directly compare the resolution limit of cell type detection from well-matched sets of single cells39

and nuclei.40

Results41

RNA-seq profiling of single nuclei and single cells42

We isolated 487 NeuN-positive single nuclei from layer 5 of mouse VISp using fluorescence activated cell43

sorting (FACS). Anti-NeuN staining was performed to enrich for neurons. In parallel, we isolated 12,86644

tdT-positive single cells by FACS from all layers of mouse VISp and a variety of Cre-driver lines, as part of45

a larger study on cortical cell type diversity (Tasic et al., 2017). For both single nuclei and cells, poly(A)-46

transcripts were reverse transcribed and amplified with SMART-Seq v4, cDNA was tagmented by Nextera47

XT, and resulting libraries were sequenced to an average depth of 2.5 million reads (Figure 1A). RNA-seq48

reads were mapped to the mouse genome using the STAR aligner (Dobin et al., 2013). Gene expression was49

quantified as the sum of intronic and exonic reads per gene and was normalized as counts per million (CPM)50

and log2-transformed. For each nucleus and cell, the probabilities of gene detection dropouts were estimated51

as a function of average expression level based on empirical noise models (Kharchenko et al., 2014).52

463 out of 487 single nuclei (95%) passed quality control metrics, and each nucleus was matched to the53

most similar nucleus and cell based on the maximum correlated expression of all genes, weighted for gene54

dropouts. Nuclei had similarly high pairwise correlations to cells as to other nuclei suggesting that cells and55

nuclei were well matched (Figure 1B). As expected, matched cells were derived almost exclusively from layer56

5 and adjacent layers 4 and 6 (Figure S1B), and from Cre-driver lines that labeled cells in layer 5 (Figure 1C57

and Figure S1A,C). The small minority of matched cells isolated from superficial layers were GABAergic58

interneurons that have been detected in many layers (Tasic et al., 2017).59

Comparison of nuclear and whole cell transcriptomes60

scRNA-seq profiles nuclear and cytoplasmic transcripts, whereas snRNA-seq profiles nuclear transcripts.61

Therefore, we expect that RNA-seq reads will differ between nuclei and cells. In nuclei, more than 50%62
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of reads that aligned to the mouse genome did not map to known spliced transcripts but to non-exonic63

regions within gene boundaries. They were therefore annotated as intronic reads (Figure 2A). In contrast,64

the majority of cells had less than 30% intronic reads with a minority of cells having closer to 50% intronic65

reads, similar to nuclei. Median gene detection based on exonic reads was lower for nuclei (˜5,000 genes) than66

for cells (˜9,500). Including both intronic and exonic reads increased gene detection for nuclei (˜7,000) and67

cells (˜11,000), demonstrating that intronic reads provided additional information not captured by exons.68

Whole brain control RNA displayed a read mapping distribution similar to cells, which is consistent with69

dissociated single cells capturing the majority of transcripts in the whole cell.70

Transcript dropouts likely result from both technical and biological variability, and both effects are more71

pronounced in nuclei than in cells. When transcript dropouts were adjusted based on empirical noise models,72

correlations between pairs of nuclei and pairs of cells increased, although cell-cell similarities remained sig-73

nificantly higher (Figure 2B). A majority of expressed genes (21,279; 63%) showed similar detection (<10%74

difference) in nuclei and cells, whereas 7,217 genes (21%) were detected in at least 25% more cells than75

nuclei (Figure 2C and Table S1). 8,614 genes have significantly higher expression in cells than nuclei (>1.576

fold expression; FDR < 0.05) and many are involved in house-keeping functions such as mRNA processing77

and translation (Figure 2D). Genetic markers of neuronal activity, such as immediate early genes Fos, Egr1,78

and Arc also displayed up to 10-fold increased expression in cells, potentially a byproduct of tissue dissocia-79

tion (Lacar et al., 2016). 159 genes have significantly higher expression in nuclei (Figure 2D and Table S2),80

and they appear relevant to neuronal identity as they include connectivity and signaling genes (Figure S2A81

and Table S4). Based on the sum of intronic and exonic reads, these 159 nucleus-enriched genes are on aver-82

age more than 10-fold longer than cell-enriched genes (Figure S2B), as recently reported for single nuclei in83

mouse somatosensory cortex (Lake et al., 2017b). When only exonic reads were used to quantify expression84

in nuclei and cells, a different set of 146 genes were significantly enriched in nuclei (Table S3) and were only85

slightly longer than cell-enriched genes. These genes were not associated with neuron-specific functions and86

were significantly enriched for genes that participate in pre-mRNA splicing.87

Intronic reads are required for high-resolution cell type identification from snRNA-88

seq89

Next, we applied an iterative clustering procedure (see Methods and Figure S3) to identify clusters of single90

nuclei and cells that share gene expression profiles. To assess cluster robustness, we repeated clustering91

100 times using 80% random subsets of nuclei and cells and calculated the proportion of clustering runs in92

which each pair of samples clustered together. Co-clustering matrices were reordered using Ward’s hierar-93

chical clustering and represented as heatmaps with coherent clusters ordered as squares along the diagonal94

(Figure 3A,B).95

Clustering includes two steps – differentially expressed (DE) gene selection and distance measurement – that96

are particularly sensitive to expression quantification. We repeated clustering using intronic and exonic reads97

or only exonic reads for these steps, and ordered co-clustering matrices to match the results using all reads98

for both steps. When using introns and exons, we found 11 distinct clusters of nuclei and cells, and clusters99

had similar cohesion (average within cluster co-clustering) and separation (average co-clustering difference100

with the closest cluster) (Figure 3C). Including intronic reads for either clustering step increased the number101

of clusters detected for nuclei but not cells. Therefore, accounting for intronic reads in snRNA-seq was102

critical to enable high-resolution cluster detection equivalent to that observed with scRNA-seq.103
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Equivalent cell types identified with nuclei and cells104

We used hierarchical clustering of median gene expression values in each cluster to determine the relationships105

between clusters. We find that cluster relationships represented as dendrograms are remarkably similar for106

nuclei and cells (Figure 4A). We compared the 11 clusters identified with single nuclei and cells to reported107

cell types in mouse VISp (Tasic et al., 2016). Each nucleus and cell cluster could be linked to a reported cell108

type (Figure S4A) and to each other (Figure 4B) based on correlated expression of marker genes. Many genes109

contributed to high expression correlations (r > 0.85) for all cluster pairs (Figure S4B). Conserved marker110

gene expression confirmed that the same 11 cell types were identified with nuclei and cells (Figure 4C).111

These cell types included nine excitatory neuron types from layers 4-6 and two inhibitory interneuron types.112

Matched cluster proportions were mostly consistent, except two closely related layer 5a subtypes were under-113

(L5a Batf3) or over-represented (L5a Hsd11b1) among cells (Figure S4C). This demonstrated that the initial114

matching of cells to nuclei was relatively unbiased.115

We hypothesized that most intronic reads were mapped to nuclear transcripts, so quantifying gene expression116

in cells using only introns would approximate nuclear expression. This was supported by higher correlations117

of average expression across all nuclei and cells using only intronic reads as compared to only exonic reads118

(Figure S4D). Thus, a dendrogram based on the median expression (quantified using only intronic reads) of119

nuclei and cell clusters paired all matching cell types, except for two closely related layer 5b subtypes (Fig-120

ure 4D). Therefore, intronic reads can help facilitate comparisons between data sets derived from snRNA-seq121

and scRNA-seq although small expression differences remain. A dendrogram based on exonic reads grouped122

clusters first by sample type (nuclei and cells) and then by broad cell class (inhibitory and excitatory neu-123

rons). Samples grouped by sample type likely due to differences in cytoplasmic transcripts that were profiled124

in cells but not nuclei. A dendrogram based on intronic reads did not show this grouping because most125

cytoplasmic transcripts are spliced so were quantified by exonic but not intronic reads.126

While we detected the same cell types using nuclei and cells, we expected that gene expression captured with127

cells included additional information from cytoplasmic transcripts. We compared the separation of matched128

pairs of clusters based on co-clustering and found that all nuclei and cell clusters were similarly distinct,129

except using single cells significantly increased the separation of two pairs of similar types: L4 Arf5 from L5a130

Hsd11b1 and L5b Cdh13 from L5b Tph2 (Figure 4E). Next, we compared how well genes marked cell types131

by calculating the degree of binary expression. Cell marker scores were, on average, 15% higher than nuclei132

scores due to fewer expression dropouts in cells (Figure 4F), and this was consistent with mildly improved133

cluster separation.134

Nuclear content varies among cell types and for different transcripts135

We estimated the nuclear proportion of mRNA for each cell type in two ways. Transcripts in the cytoplasm136

are spliced so intronic reads should be restricted to the nucleus. First, we estimated the nuclear proportion137

by calculating the ratio of the percentage of intronic reads in cells to the percentage of intronic reads in nuclei138

(Figure 5A). Second, we estimated nuclear proportions by selecting three genes (Malat1, Meg3, and Snhg11 )139

with the highest expression in nuclei (Figure S4D) and calculating the ratio of the average expression in cells140

versus nuclei (Figure 5B and Figure S5A). Both methods predicted that L4 Arf5 and L5a Hsd11b1 had a141

significantly larger proportion of transcripts located in the nucleus compared to other cell types (Figure 5C).142

Based on the comparison of scRNA-seq and snRNA-seq data, we estimate that L4 types have high nuclear143

to cell volume (˜50%), whereas L5 types have lower nuclear to cell volume. To evaluate this finding, we144

measured nucleus and soma sizes of different cell types in situ. These types were labeled by different Cre-145

transgenes and a Cre-reporter. Nr5a1 -Cre and Scnn1a-Tg3 -Cre mice almost exclusively label two cell types146
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(L4 Arf5 and L5a Hsd11b1), whereas Rbp4 -Cre mice label all layer 5 cell types including L5a Hsd11b1147

(Figure S5B and Table S5). We measured the nuclear and cell sizes in situ, and calculated the nuclear148

proportion of each cell as the ratio of nuclear to soma volume (Figure S5C). We found that the average149

nuclear proportion was significantly lower for layer 5 cells compared to layer 4 cells, as predicted based on150

RNA-seq data (Figure 5D).151

In addition, nuclear proportion estimates based on in situ size measurements were systematically higher than152

predicted for layer 5 but not layer 4 neurons. This could be the result of under-estimating the soma volume153

based on cross-sectional area measurements of these large non-spherical (pyramidal) neurons. Alternatively,154

layer 5 neuronal nuclei may have a lower density of nuclear transcripts or there may be cell type-specific biases155

in our RNA-seq based estimates. We then performed an unbiased survey of nuclear proportions across the156

full depth of cortex to test whether layer 4 or layer 5 neurons were exceptional compared to neurons in other157

layers. We found that layer 5 neurons tend to be larger and have proportionally smaller nuclei (Figure S5D)158

than other cortical neurons, as was recently reported in rat primary visual cortex (öckner2017?).159

Next, we determined the nuclear versus cytoplasmic distribution of transcripts for individual genes. The160

nuclear proportion of 11,932 transcripts was estimated by the ratio of nuclear to whole cell expression mul-161

tiplied by the overall nuclear fraction of each cell type and averaged across cell types (Table S6). Different162

functional classes of genes had strikingly different nuclear proportions (Figure 5E). Many non-coding trans-163

cripts were localized in the nucleus, but some were abundantly expressed in the cytoplasm, such as the long164

non-coding RNA (lncRNA) Tunar that is highly enriched in the brain, is conserved across vertebrates, and165

has been associated with striatal pathology in Huntington’s disease (Lin et al., 2014). Most protein-coding166

transcripts were expressed in both the nucleus and cytoplasm with a small number restricted to the nucleus,167

including the Parkinson’s risk gene Park2. We found that pseudogenes were almost exclusively cytoplasmic168

and were highly enriched for house-keeping functions.169

We compared our estimates of nuclear enrichment in cortex to mouse liver and pancreas based on data170

from Halpern et al. (2015) and found moderately high correlation (r = 0.61) between 4,373 mostly house-171

keeping genes that were expressed in all three tissues. Moreover, the shape of the distributions of nuclear172

transcript proportions was highly similar between tissues with slightly higher proportions estimated in this173

study. These results suggest that the mechanisms regulating the spatial localization of these transcripts – for174

example, rates of nuclear export and cytoplasmic degradation (Halpern et al., 2015) – are conserved across175

cell types.176

Surprisingly, non-coding genes and pseudogenes are better markers of cell types, on average, than protein-177

coding genes (Figure 5F). lncRNAs are known to have more specific expression among diverse human cell178

lines (Djebali et al., 2012), and we show that this is also true for neuronal types in the mouse cortex. Many179

pseudogene transcripts, most of which are enriched in the cytoplasm, were selectively depleted in the two180

cell types, L4 Arf5 and L5a Hsd11b1. This is consistent with our previous analysis that showed that neurons181

of these types have relatively less cytoplasm. We also find that nucleus-enriched transcripts are slightly182

better cell-type markers than cytoplasm-enriched transcripts, although this is highly variable across genes183

(Figure 5G).184

Finally, we compared our estimates of nuclear localization of transcripts for three genes – Calb1, Grik1,185

and Pvalb – to relative counts of transcripts in nuclei and cytoplasm using multiplex RNA fluorescence in186

situ hybridization (mFISH). We found that the relative nuclear proportions estimated by scRNA-seq and187

mFISH were consistent although the absolute levels were quite variable (Figure 5H). Both methods confirmed188

that Pvalb transcripts were mostly excluded from the nucleus, and this explained why 2 out of 35 nuclei189

in the Pvalb-positive interneuron type (Pvalb Wt1) had no detectable Pvalb expression, whereas all cells of190
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this cell type had robust Pvalb expression.191

Discussion192

Unlike scRNA-seq, snRNA-seq enables transcriptomic profiling of tissues that are refractory to whole cell193

dissociation and archived frozen specimens. snRNA-seq is also less susceptible to perturbations in gene194

expression that occur during cell isolation, such as increased expression of immediate early genes that can195

obscure transcriptional signatures of neuronal activity (Lacar et al., 2016). However, these advantages come196

at the cost of profiling less mRNA, and until this study, it was unclear if the nucleus contained sufficient197

number and diversity of transcripts to distinguish highly related cell types.198

To directly address this question, we profiled a well-matched set of 463 nuclei and 463 cells from layer 5 of199

mouse primary visual cortex and identified 11 matching neuronal types: 2 interneuron types and 9 similar200

excitatory neuron types. Including intronic reads in gene expression quantification was necessary to achieve201

high-resolution cell type identification from single nuclei. Intronic reads substantially increased gene detection202

to 7000 genes per nucleus. In addition, intronic reads were more frequently derived from long genes that203

are known to have brain-specific expression (Gabel et al., 2015) and that help define neuronal connectivity204

and signaling. Intronic reads may also reflect other cell-type specific features, such as retained introns or205

alternative isoforms. For example, intron retention provides a mechanism for the nuclear storage and rapid206

translation of long transcripts in response to neuronal activity (Mauger et al., 2016).207

We found that nuclei contain at least 20% of all cellular transcripts, and this percentage varies among cell208

types. Two small pyramidal neuron types have large nuclei relative to cell size that contain more than half209

of all transcripts. We detect 4000 more genes in single cells than single nuclei, but the majority of genes are210

detected equally well in both. Cytoplasm-enriched transcripts are missed by profiling single nuclei but include211

mostly house-keeping genes and pseudogenes, which are not related to neuronal identity. Nucleus-enriched212

transcripts include protein-coding and non-coding genes that are more likely to be cell-type markers than213

cytoplasmic transcripts. Overall, single cells do provide somewhat better detection of cell-type marker genes,214

thereby resulting in slightly better cluster separation for two pairs of highly similar cell types. Therefore, as215

more nuclei and cells are profiled, it is possible that finer discrimination of cell types may require single cell216

profiling. However, the benefits of profiling single nuclei may outweigh potential loss in the finest cell type217

resolution.218

snRNA-seq is well suited for large-scale surveys of cellular diversity in various tissues and has the potential to219

be less cell-type biased. For example, single cell profiling of adult human cortex isolated more interneurons220

than excitatory neurons (Darmanis et al., 2015), whereas single nucleus profiling of the same tissue type221

isolated 30% interneurons and 70% excitatory neurons (Lake et al., 2016), close to the proportions found in222

situ. snRNA-seq also enables the use of stored frozen specimens to study cell types that will inform our223

understanding of human diversity and disease. As large scale initiatives begin to characterize transcriptomic224

cell types in the whole brain (Ecker et al., 2017) and whole organism (Regev et al., 2017), it is important to225

understand the strengths and limitations of each mRNA profiling technique.226
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Materials and Methods227

Tissue preparation228

Tissue samples were obtained from adult (postnatal day (P) 53-59)) male and female transgenic mice carrying229

a Cre transgene and a Cre-reporter transgene. Mice were anesthetized with 5% isoflurane and intracardially230

perfused with either 25 or 50 ml of ice cold, oxygenated artificial cerebral spinal fluid (ACSF) at a flow231

rate of 9 ml per minute until the liver appeared clear, or the full volume of perfusate had been flushed232

through the vasculature. The ACSF solution consisted of 0.5mM CaCl2, 25mM D-Glucose, 98mM HCl, 20mM233

HEPES, 10mM MgSO4, 1.25mM NaH2PO4, 3mM Myo-inositol, 12mM N-acetylcysteine, 96mM N-methyl-234

D-glucamine, 2.5mM KCl, 25mM NaHCO3, 5mM sodium L-Ascorbate, 3mM sodium pyruvate, 0.01mM235

Taurine, and 2mM Thiourea. The brain was then rapidly dissected and mounted for coronal slice preparation236

on the chuck of a Compresstome VF-300 vibrating microtome (Precisionary Instruments). Using a custom237

designed photodocumentation configuration (Mako G125B PoE camera with custom integrated software),238

a blockface image was acquired before each section was sliced at 250 μm intervals. The slice was then239

hemisected along the midline, and both hemispheres were then transferred to chilled, oxygenated ACSF.240

Each slice-hemisphere was transferred into a Sylgard-coated dissection dish containing 3 ml of chilled, oxy-241

genated ACSF. Brightfield and fluorescent images between 4X and 20X were obtained of the intact tissue with242

a Nikon Digital Sight DS-Fi1 or a Sentech STC-SC500POE camera mounted to a Nikon SMZ1500 dissecting243

microscope. To guide anatomical targeting for dissection, boundaries were identified by trained anatomists,244

comparing the blockface image and the slice image to a matched plane of the Allen Reference Atlas. In245

general, three to five slices were sufficient to capture the targeted region of interest, allowing for expression246

analysis along the anterior/posterior axis. The region of interest was then dissected and both brightfield and247

fluorescent images of the dissections were acquired for secondary verification. The dissected regions were248

transferred in ACSF to a microcentrifuge tube, and stored on ice. This process was repeated for all slices249

containing the target region of interest, with each region of interest deposited into a new microcentrifuge250

tube.251

For whole cell dissociation, after all regions of interest were dissected, the ACSF was removed and 1 ml of252

a 2 mg/ml pronase in ACSF solution was added. Tissue was digested at room temperature (approximately253

22°C) for a duration that consisted of adding 15 minutes to the age of the mouse (in days; i.e., P53 specimen254

had a digestion time of 68 minutes). After digestion, the pronase solution was removed and replaced by255

1 ml of ACSF supplemented with 1% Fetal Bovine Serum (FBS). The tissue was washed two more times256

with the same solution and the sample was then triturated using fire-polished glass pipettes of decreasing257

bore sizes (600, 300, and 150 μm). The cell suspension was incubated on ice in preparation for fluorescence-258

activated cell sorting (FACS). FACS preparation involved adding 4’-6-diamidino-2-phenylindole (DAPI) at259

a final concentration of 4 μg/ml to label dead (DAPI+) versus live (DAPI-) cells. The suspension was then260

filtered through a fine-mesh cell strainer to remove cell aggregates. Cells were sorted by excluding DAPI261

positive events and debris, and gating to include red fluorescent events (tdTomato-positive cells). Single262

cells were collected into strip tubes containing 11.5μl of collection buffer (SMART-Seq v4 lysis buffer 0.83x,263

Clontech #634894), RNase Inhibitor (0.17U/μl), and ERCCs (External RNA Controls Consortium, MIX1264

at a final dilution of 1x10-8) (Baker et al., 2005; Risso et al., 2014). After sorting, strip tubes containing265

single cells were centrifuged briefly and then stored at -80°C.266

For nuclei isolation, dissected regions of interest were transferred to microcentrifuge tubes, snap frozen in a267

slurry of dry ice and ethanol, and stored at -80°C until the time of use. To isolate nuclei, frozen tissues were268

placed into a homogenization buffer that consisted of 10mM Tris pH 8.0, 250mM sucrose, 25mM KCl, 5mM269

MgCl2, 0.1% Triton-X 100, 0.5% RNasin Plus RNase inhibitor (Promega), 1X protease inhibitor (Promega),270

and 0.1mM DTT. Tissues were placed into a 1ml dounce homogenizer (Wheaton) and homogenized using 10271
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strokes of the loose dounce pestle followed by 10 strokes of the tight pestle to liberate nuclei . Homogenate272

was strained through a 30μm cell strainer (Miltenyi Biotech) and centrifuged at 900xg for 10 minutes to pellet273

nuclei. Nuclei were then resuspended in staining buffer containing 1X PBS supplemented with 0.8% nuclease-274

free BSA and 0.5% RNasin Plus RNase inhibitor. Mouse anti-NeuN antibody (EMD Millipore, MAB377,275

Clone A60) was added to the nuclei at a final dilution of 1:1000 and nuclei suspensions were incubated at276

4°C for 30 minutes. Nuclei suspensions were then centrifuged at 400xg for 5 minutes and resuspended in277

clean staining buffer (1X PBS, 0.8% BSA, 0.5% RNasin Plus). Secondary antibody (goat anti-mouse IgG278

(H+L), Alexa Fluor 594 conjugated, ThermoFisher Scientific) was applied to nuclei suspensions at a dilution279

of 1:5000 for 30 minutes at 4°C. After incubation in secondary antibody, nuclei suspensions were centrifuged280

at 400xg for 5 minutes and resuspended in clean staining buffer. Prior to FACS, DAPI was applied to nuclei281

suspensions at a final concentration of 0.1μg/ml and nuclei suspensions were filtered through a 35μm nylon282

mesh to remove aggregates. Single nuclei were captured by gating on DAPI-positive events, excluding debris283

and doublets, and then gating on Alexa Fluor 594 (NeuN) signal. Strip tubes containing FACS isolated284

single nuclei were then briefly centrifuged and frozen at -80°C.285

RNA amplification and library preparation for RNA-seq286

The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Clontech #634894) was used per the ma-287

nufacturer’s instructions for reverse transcription of single cell RNA and subsequent cDNA synthesis. Single288

cells were stored in 8-strips at -80°C in 11.5 μl of collection buffer (SMART-Seq v4 lysis buffer at 0.83x,289

RNase Inhibitor at 0.17 U/μl, and ERCC MIX1 at a final dilution of 1x10-8 dilution). Twelve to 24 8-well290

strips were processed at a time (the equivalent of 1-2 96-well plates). At least 1 control strip was used per291

amplification set, containing 2 wells without cells but including ERCCs, 2 wells without cells or ERCCs, and292

either 4 wells of 10 pg of Mouse Whole Brain Total RNA (Zyagen, MR-201) or 2 wells of 10 pg of Mouse293

Whole Brain Total RNA (Zyagen, MR-201) and 2 wells of 10 pg Control RNA provided in the Clontech294

kit. Mouse whole cells were subjected to 18 PCR cycles after the reverse transcription step, whereas mouse295

nuclei were subjected to 21 PCR cycles. AMPure XP Bead (Agencourt AMPure beads XP PCR, Beckman296

Coulter A63881) purification was done using the Agilent Bravo NGS Option A instrument. A bead ratio of297

1x was used (50 μl of AMPure XP beads to 50 μl cDNA PCR product with 1 μl of 10x lysis buffer added, as298

per Clontech instructions), and purified cDNA was eluted in 17 μl elution buffer provided by Clontech. All299

samples were quantitated using PicoGreen® on a Molecular Dynamics M2 SpectraMax instrument. A por-300

tion of the samples, and all controls, were either run on the Agilent Bioanalyzer 2100 using High Sensitivity301

DNA chips or the Advanced Analytics Fragment Analyzer (96) using the High Sensitivity NGS Fragment302

Analysis Kit (1bp-6000bp) to qualify cDNA size distribution. An average of 7.3 ng of cDNA was synthesized303

across all non-control samples. Purified cDNA was stored in 96-well plates at -20°C until library preparation.304

Sequencing libraries were prepared using NexteraXT (Illumina, FC-131-1096) with NexteraXT Index Kit305

V2 Set A (FC-131-2001). NexteraXT libraries were prepared at 0.5x volume, but otherwise followed the306

manufacturer’s instructions. An aliquot of each amplified cDNA sample was first normalized to 30 pg/μl307

with Nuclease-Free Water (Ambion), then this normalized sample aliquot was used as input material into308

the NexteraXT DNA Library Prep (for a total of 75pg input). AMPure XP bead purification was done using309

the Agilent Bravo NGS Option A instrument. A bead ratio of 0.9x was used (22.5 ul of AMPure XP beads310

to 25 ul library product, as per Illumina protocol), and all samples were eluted in 22 μl of Resuspension311

Buffer (Illumina). All samples were run on either the Agilent Bioanalyzer 2100 using High Sensitivity DNA312

chips or the Advanced Analytics Fragment Analyzer (96) using the High Sensitivity NGS Fragment Analysis313

Kit (1bp-6000bp) to for sizing. All samples were quantitated using PicoGreen using a Molecular Dynamics314

M2 SpectraMax instrument. Molarity was calculated for each sample using average size as reported by315

Bioanalyzer or Fragment Analyzer and pg/μl concentration as determined by PicoGreen. Samples (5 μl316

aliquot) were normalized to 2-10 nM with Nuclease-free Water (Ambion), then 2 μl from each sample within317

one 96-index set was pooled to a total of 192 μl at 2-10 nM concentration. A portion of this library pool318

was sent to an outside vendor for sequencing on an Illumina HS2500. All of the library pools were run using319
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Illumina High Output V4 chemistry. Covance Genomics Laboratory, a Seattle-based subsidiary of LabCorp320

Group of Holdings, performed the RNA-Sequencing services. An average of 229 M reads were obtained per321

pool, with an average of 2.0-3.1 M reads/cell across the entire data set.322

RNA-Seq data processing323

Raw read (fastq) files were aligned to the GRCm38 mouse genome sequence (Genome Reference Consortium,324

2011) with the RefSeq transcriptome version GRCm38.p3 (current as of 1/15/2016) and updated by remov-325

ing duplicate Entrez gene entries from the gtf reference file for STAR processing. For alignment, Illumina326

sequencing adapters were clipped from the reads using the fastqMCF program (Aronesty, 2011). After clip-327

ping, the paired-end reads were mapped using Spliced Transcripts Alignment to a Reference (STAR) (Dobin328

et al., 2013) using default settings. STAR uses and builds it own suffix array index which considerably329

accelerates the alignment step while improving sensitivity and specificity, due to its identification of alterna-330

tive splice junctions. Reads that did not map to the genome were then aligned to synthetic constructs (i.e.331

ERCC) sequences and the E.coli genome (version ASM584v2). Quantification was performed using summer-332

izeOverlaps from the R package GenomicAlignments (Lawrence et al., 2013). Read alignments to the genome333

(exonic, intronic, and intergenic counts) were visualized as beeswarm plots using the R package beeswarm.334

Expression levels were calculated as counts per million (CPM) of exonic plus intronic reads, and log2(CPM335

+ 1) transformed values were used for a subset of analyses as described below. Gene detection was calculated336

as the number of genes expressed in each sample with CPM > 0. CPM values reflected absolute transcript337

number and gene length, i.e. short and abundant transcripts may have the same apparent expression level338

as long but rarer transcripts. Intron retention varied across genes so no reliable estimates of effective gene339

lengths were available for expression normalization. Instead, absolute expression levels were estimated as340

fragments per kilobase per million (FPKM) using only exonic reads so that annotated transcript lengths341

could be used.342

Selection of single nuclei and matched cells343

463 of 487 (95%) of single nuclei isolated from layer 5 of mouse VISp passed quality control criteria: >500,000344

genome-mapped reads, >75% reads aligned, and >50% unique reads. 12,866 single cells isolated from layers345

1-6 of mouse VISp passed quality control criteria: >200,000 transcriptome mapped reads and >1000 genes346

detected (CPM > 0).347

Gene expression was more likely to drop out in samples with lower quality cDNA libraries and for low ex-348

pressing genes. To estimate gene dropouts due to stochastic transcription or technical artifacts (Kharchenko349

et al., 2014), expression noise models were fit separately to single nuclei and cells using the “knn.error.models”350

function of the R package scde (version 2.2.0) with default settings and eight nearest neighbors. Noise models351

were used to calculate a dropout weight matrix that represented the likelihood of expression dropouts based352

on average gene expression levels of similar nuclei or cells using mode-relative weighting (dbm) . The prob-353

ability of dropout for each sample (s) and gene (g) was estimated based on two expression measurements:354

average expected expression level of similar samples, p (xg), and observed expression levels, p (xsg), using355

the “scde.failure.probability” and “scde.posteriors” functions. The dropout weighting was calculated as a356

combination of these probabilities: Wsg = 1 −
√
p (xsg) ·

√
p (xsg) · p (xg).357

Dropout weighted Pearson correlations were calculated between all pairs of nuclei and cells using 42,003358

genes expressed in at least one nucleus and one cell. The cell with the highest correlation to any nucleus359
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was selected as the best match, and this cell and nucleus were removed from further analysis. This process360

was repeated until 463 best matching cells were selected, and the expression correlations were compared to361

correlations of the best matching pairs of nuclei (Figure 1B). The Cre-lines and dissected cortical layers of362

origin of the best matching cells were summarized as bar plots (Figure S1). Unweighted Pearson correlations363

were also calculated between all pairs of nuclei and cells to test the effect of accounting for dropouts on364

sample similarities (Figure 2B).365

Differential expression analysis366

Gene detection was estimated as the proportion of cells and nuclei expressing each gene (CPM > 0). In order367

to estimate the expected variability of gene detection as a result of population sampling, cells were randomly368

split into two sets of 231 and 232 cells and genes were grouped into 50 bins based on detection in the first369

set of cells. For each bin of genes, the 97.5 percentile of detection was calculated for the second set of cells.370

A 95% confidence interval of gene detection was constructed by reflecting this these binned quantiles across371

the line of unity. Data were summarized with a hexagonal binned scatter plot and a log-transformed color372

scale using the R package ggplot2 (Wickham, 2009).373

Differential expression between nuclei and cells was calculated with the R package limma (Ritchie et al.,374

2015) using default settings and log2(CPM + 1) expression defined based on two sets of reads: introns plus375

exons and only exons. Significantly differentially expressed were defined as having >1.5-fold change and376

a Benjamini-Hochberg corrected P-value < 0.05. Gene expression distributions of nuclei or cells within a377

cluster were visualized using violin plots, density plots rotated 90 degrees and reflected on the Y-axis.378

Differences in alignment statistics and gene counts were calculated between cells, nuclei, and total RNA379

controls (or just cells and nuclei) with analysis of variance using the “aov” function in R (Chambers et al.,380

1992). P-values for all comparisons were P<10-13.381

Two sets of nucleus- and cell-enriched genes (introns plus exons and exons only) were tested for gene ontology382

(GO) enrichment using the ToppGene Suite (Chen et al., 2009). Significantly enriched (Benjamini-Hochberg383

false discovery rate < 0.05) GO terms were summarized as tree maps with box sizes proportional to -log10(P-384

values) using REVIGO (Supek et al., 2011b) (Figure S2).385

Clustering386

Nuclei and cells were grouped into transcriptomic cell types using an iterative clustering procedure based387

on community detection in a nearest neighbor graph as described in Levine et al. (2015). Clustering was388

performed using gene expression quantified with exonic reads only or intronic plus exonic reads for two key389

clustering steps: selecting significantly variable genes and calculating pairwise similarities between nuclei.390

Four combinations of expression quantification for nuclei and cells resulted in eight independent clustering391

runs.392

For each gene, log2(CPM + 1) expression was centered and scaled across samples. Noise models were used to393

select significantly variable genes (adjusted variance > 1.25). Dimensionality reduction was performed with394

principal components analysis (PCA) on variable genes, and the covariance matrix was adjusted to account395

for gene dropouts using the product of dropout weights across genes for each pair of samples. A maximum396

of 20 principal components (PCs) were retained for which more variance was explained than the broken stick397

null distribution, a conservative method of PC retention (Jackson, 1993).398
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Nearest-neighbor distances between all samples were calculated using the “nn2” function of the R pack-399

age RANN, and Jaccard similarity coefficients between nearest-neighbor sets were computed. Jaccard coeffi-400

cients measured the proportion of nearest neighbors shared by each sample and were used as edge weights in401

constructing an undirected graph of samples. Louvain community detection was used to cluster this graph402

with 15 nearest neighbors. Considering more than 15 neighbors reduced the power to detect small clusters403

due to the resolution limit of community detection (Fortunato and Barthelemy, 2007). Considering fewer404

than 15 neighbors increased over-splitting, as expected based on simulations by Reichardt and Bornholdt405

(2006). Fewer nearest neighbors were used only when there were 15 or fewer samples total.406

Clustering significance was tested by comparing the observed modularity to the expected modularity of an407

Erdös-Rényi random graph with a matching number of nodes and average connection probability. Expected408

modularity was calculated as the maximum estimated by two reported equations (Ω; Reichardt and Born-409

holdt, 2006). Samples were split into clusters only if the observed modularity was greater than the expected410

modularity, and only clusters with distinct marker genes were retained. Marker genes were defined for all411

cluster pairs using two criteria: 1) significant differential expression (Benjamini-Hochberg false discovery412

rate < 0.05) using the R package limma and 2) either binary expression (CPM > 1 in >50% samples in one413

cluster and <10% in the second cluster) or >100-fold difference in expression. Pairs of clusters were merged414

if either cluster lacked at least one marker gene.415

Clustering was applied iteratively to each sub-cluster until the occurrence of one of four stop criteria: 1)416

fewer than six samples (due to a minimum cluster size of three); 2) no significantly variable genes; 3) no417

significantly variable PCs; 4) no significant clusters.418

To assess the robustness of clusters, the iterative clustering procedure described above was repeated 100 times419

for random sets of 80% of samples. A co-clustering matrix was generated that represented the proportion of420

clustering iterations that each pair of samples were assigned to the same cluster. Average-linkage hierarchical421

clustering was applied to this matrix followed by dynamic branch cutting using “cutreeHybrid” in the R422

package WGCNA (Langfelder et al., 2007) with cut height ranging from 0.01 to 0.99 in steps of 0.01. A cut423

height was selected that resulted in the median number of clusters detected across all 100 iterations. Cluster424

cohesion (average within cluster co-clustering) and separation (difference between within cluster co-clustering425

and maximum between cluster co-clustering) was calculated for all clusters. Marker genes were defined for426

all cluster pairs as described above, and clusters were merged if they had a co-clustering separation <0.25427

or either cluster lacked at least one marker gene.428

Scoring marker genes based on cluster specificity429

Many genes were expressed in the majority of nuclei or cells in a subset of clusters. A marker score (beta)430

was defined for all genes to measure how binary expression was among clusters, independent of the number431

of clusters labeled. First, the proportion (xi) of samples in each cluster that expressed a gene above back-432

ground level (CPM > 1) was calculated. Then, scores were defined as the squared differences in proportions433

normalized by the sum of absolute differences plus a small constant (ε) to avoid division by zero. Scores434

ranged from 0 to 1, and a perfectly binary marker had a score equal to 1.435

β =

∑n
i=1

∑n
j=1(xi − xj)2∑n

i=1

∑n
j=1 |xi − xj |+ ε

.
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Cluster dendrograms436

Clusters were arranged by transcriptomic similarity based on hierarchical clustering. First, the average437

expression level of the top 1200 marker genes (i.e. highest beta scores) was calculated for each cluster.438

A correlation-based distance matrix (Dxy = 1−ρ(x,y)
2 ) was calculated, and complete-linkage hierarchical439

clustering was performed using the “hclust” R function with default parameters. The resulting dendrogram440

branches were reordered to show inhibitory clusters followed by excitatory clusters, with larger clusters first,441

while retaining the tree structure. Note that this measure of cluster similarity is complementary to the442

co-clustering separation described above. For example, two clusters with similar gene expression patterns443

but a few binary marker genes may be close on the tree but highly distinct based on co-clustering.444

Matching clusters based on marker gene expression445

Nuclei and cell clusters were independently compared to published mouse VISp cell types (Tasic et al.,446

2016). The proportion of nuclei or cells expressing each gene with CPM > 1 was calculated for all clusters.447

Approximately 400 genes were markers in both data sets (beta score > 0.3) and were expressed in the448

majority of samples of between one and five clusters. Markers expressed in more than five clusters were449

excluded to increase the specificity of cluster matching. Weighted correlations were calculated between all450

pairs of clusters across these genes and weighted by beta scores to increase the influence of more informative451

genes. Heatmaps were generated to visualize all cluster correlations. All nuclei and cell clusters had reciprocal452

best matching clusters from Tasic et al. and were labeled based on these reported cluster names.453

Next, nuclei and cell clusters were directly compared using the above analysis. All 11 clusters had reciprocal454

best matches that were consistent with cluster labels assigned based on similarity to published types. The455

most highly conserved marker genes of matching clusters were identified by selecting genes expressed in a456

single cluster (>50% of samples with CPM > 1) and with the highest minimum beta score between nuclei457

and cell clusters. Two additional marker genes were identified that discriminated two closely related clusters.458

Violin plots of marker gene expression were constructed with each gene on an independent, linear scale.459

Nuclei and cell clusters were also compared by calculating average cluster expression based only on intronic460

or exonic reads and calculating a correlation-based distance using the top 1200 marker genes as described461

above. Hierarchical clustering was applied to all clusters quantified using the two sets of reads. In addition,462

the average log2(CPM + 1) expression across all nuclei and cells was calculated using intronic or exonic463

reads.464

Cluster separation was calculated for individual nuclei and cells as the average within cluster co-clustering465

of each sample minus the maximum average between cluster co-clustering. Separations for matched pairs of466

clusters were visualized with box plots and compared using a Student’s t-test, and significance was tested467

after Bonferroni correction for multiple testing. Finally, a linear model was fit to beta marker scores for468

genes that were expressed in at least one but not all cell and nuclear clusters, and the intercept was set to469

zero.470

Estimating proportions of nuclear transcripts471

The nuclear proportion of transcripts was estimated in two ways. First, all intronic reads were assumed to472

be from transcripts localized to the nucleus so that the proportion of intronic reads measured in cells should473

decrease linearly with the nuclear proportion of the cell as nuclear reads are diluted with cytoplasmic reads.474

For each cell type, the nuclear proportion was estimated as the proportion of intronic reads in cells divided475
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by the proportion of intronic reads in matched nuclei. Second, the nuclear proportion was estimated as the476

average ratio of cell to nuclear expression (CPM) using only exonic reads of three highly expressed nuclear477

genes (Snhg11, Malat1, and Meg3 ). The standard deviation of nuclear proportion estimates were calculated478

based on standard error propagation of variation in intronic read proportions and expression levels. Nuclear479

proportion estimates were compared with linear regression, and the estimate based on relative expression480

levels was used for further analysis.481

The nuclear proportion of transcripts for all genes was estimated for each cell type as the ratio of average482

expression (CPM) in nuclei versus matched cells multiplied by the nuclear proportion of all transcripts.483

Estimated proportions greater than 1 were set equal to 1 for each cell type, and a weighted average proportion484

was calculated for each gene with weights equal to the average log2(CPM + 1) expression in each cell type.485

11,932 genes were expressed in at least one nuclear or cell cluster (>50% samples expressed with CPM >486

1) and were annotated as one of three gene types – protein-coding, protein non-coding, or pseudogene –487

using gene metadata from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Mus_488

musculus.gene_info.gz; downloaded 10/12/2017). For each type, histograms of gene counts with different489

nuclear proportions were generated. Next, beta marker score distributions were visualized as violin plots,490

and differences across gene types were compared with a Kruskal-Wallis rank sum test followed by Wilcoxon491

signed rank unpaired tests. Finally, genes were grouped into 10 bins of estimated nuclear proportions, from492

high cytoplasmic enrichment to high nuclear enrichment, and beta marker score distributions were visualized493

as box plots. A linear regression was fit to marker scores versus nuclear proportion.494

Nuclear transcript proportions were compared to nuclear proportions estimated for mouse liver and pan-495

creatic beta cells based on data from Halpern et al. (2015). Ratios of normalized nuclear and cytoplasmic496

transcript counts were calculated in four tissue replicates. Average ratios were calculated for genes with at497

least one count in either fraction in at least one tissue. Nuclear proportion estimates for all genes with data498

from both data sets (n = 4373) were compared with Pearson correlation, a linear model with intercept set499

equal to zero, and histograms with a bin width of 0.02.500

501

Colorimetric in situ hybridization502

In situ hybridization data for mouse cortex was from the Allen Mouse Brain Atlas (Lein et al., 2007). All data503

is publicly accessible through www.brain-map.org. Data was generated using a semiautomated technology504

platform as described in Lein et al. (2007). Mouse ISH data shown is from primary visual cortex (VISp) in505

the Paxinos Atlas (Paxinos et al., 2013).506

Multiplex fluorescence RNA in situ hybridization and quantification of nuclear507

versus cytoplasmic transcripts508

The RNAscope multiplex fluorescent kit was used according to the manufacturer’s instructions for fresh509

frozen tissue sections (Advanced Cell Diagnostics), with the exception that 16μm tissue sections were fixed510

with 4% PFA at 4°C for 60 minutes and the protease treatment step was shortened to 15 minutes at room511

temperature. Probes used to identify nuclear and cytoplasmic enriched transcripts were designed antisense512

to the following mouse genes: Calb1, Grik1, and Pvalb. Following hybridization and amplification, stained513

sections were imaged using a 60X oil immersion lens on a Nikon TiE epifluorescence microscope.514

To determine if spots fell within the nucleus or cytoplasm, a boundary was drawn around the nucleus to515

delineate its border using measurement tools within Nikon Elements software. To delineate the cytoplasmic516
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boundary of each cell, a circle with a diameter of 15um was drawn and centered over the cell (Fig. 5). RNA517

spots in each channel were quantified manually using counting tools available in the Nikon Elements software.518

Spots that fell fully within the interior boundary of the nucleus were classified as nuclear transcripts. Spots519

that fell outside of the nucleus but within the circle that defined the cytoplasmic boundary were classified520

as cytoplasmic transcripts. Additionally, if spots intersected the exterior boundary of the nucleus they were521

classified as cytoplasmic transcripts. To prevent double counting of spots and ambiguities in assigning spots522

to particular cells, labeled cells whose boundaries intersected at any point along the circumference of the523

circle delineating their cytoplasmic boundary were excluded from the analysis. A linear regression was fit to524

nuclear versus soma probe counts, and the slope was used to estimate the nuclear proportion.525

In situ quantification of nucleus and soma size526

Coronal brain slices from Nr5a1-Cre;Ai14, Scnn1a-Tg3-Cre;Ai14, and Rbp4-Cre KL100;Ai14 mice were stai-527

ned with anti-dsRed (Clontech #632496) to enhance tdTomato signal in red channel and DAPI to label nuclei.528

Maximum intensity projections from six confocal stacks of 1-μm intervals were processed for analysis. Initial529

segmentation was performed by CellProfiler (Lamprecht et al., 2007) to identify nuclei from the DAPI signal530

and soma from the tdTomato signal. Segmentation results were manually verified and any mis-segmented531

nuclei or somata were removed or re-segmented if appropriate. Area measurement of segmented nuclei and532

somata was performed in CellProfiler in Layer 4 from Nr5a1-Cre;Ai14 and Scnn1a-Tg3-Cre;Ai14 mice, and533

in Layer 5 from Rbp4-Cre KL100;Ai14 mice. A linear regression was fit to nuclear versus soma area to534

highlight the differences between Cre-lines.535

For measurements of nucleus and soma size agnostic to Cre driver, we used 16 μm-tissue sections from P56536

mouse brain. To label nuclei, DAPI was applied to the tissue sections at a final concentration of 1mg/ml.537

To label cell somata, tissue sections were stained with Neurotrace 500/525 fluorescent Nissl stain (Ther-538

moFisher Scientific) at a dilution of 1:100 in 1X PBS for 5 minutes, followed by brief washing in 1X PBS.539

Sections were coverslipped with Fluoromount-G (Southern Biotech) and visualized on a Nikon TiE epiflu-540

orescence microscope using a 40x oil objective. Soma and nuclei area measurements were taken by tracing541

the boundaries of the Nissl-stained soma or DAPI-stained nucleus, respectively, using cell measurement tools542

available in the Nikon TiE microscope software. All cells with a complete nucleus clearly present within the543

section were measured, except that we excluded glial cells which had very small nuclei and scant cytoplasm.544

Measurements were taken within a 40x field of view across an entire cortical column encompassing layers545

1-6, and the laminar position of each cell (measured as depth from the pial surface) was tracked along with546

the nucleus and soma area measurements for each cell.547

For each cell in the experiments above, the nuclear proportion was estimated as the ratio of nucleus and soma548

area raised to the 3/2 power. This transformation was required to convert area to volume measurements549

and assumed that the 3-dimensional geometries of soma and nuclei were reflected by their cross-sectional550

profiles. This is true for approximately symmetrical shapes such as most nuclei and some somata, but will551

lead to under- or over-estimates of nuclear proportions for asymmetrical cells. Therefore, the estimated552

nuclear proportion of any individual cell may be inaccurate, but the average nuclear proportion for many553

cells should be relatively unbiased.554

Code availability555

Data and code to reproduce all figures are publicly available from GitHub at https://github.com/AllenInstitute/556

NucCellTypes.557
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Figures563

Figure 1: Identification of an expression-matched set of single nuclei and whole cells from mouse primary
visual cortex (VISp). (A) Whole brains were dissected from transgenic mice, coronal slices were sectioned,
and individual layers of VISp were microdissected. Nuclei were dissociated from layer 5, stained with DAPI
and against the neuronal marker NeuN. Single NeuN-positive nuclei were isolated by fluorescence-activated
cell sorting (FACS). In parallel, whole cells were dissociated from all layers, and single td-Tomato reporter-
positive cells were isolated. Single nucleus and cell mRNA were reverse transcribed, amplified, and sequenced
to measure transcriptome-wide expression levels. (B) Left: 463 nuclei from layer 5 and 12,866 whole cells
from all layers passed quality control metrics, and the expression correlation was calculated between each
nucleus and all other nuclei and cells. Expression similarity can vary based on sample quality, so nuclei
were compared to each other to provide a baseline expected similarity. For each nucleus, the best matching
nucleus and cell were selected based on maximal correlation. Right: Cells and nuclei displayed comparable
expression similarities to all nuclei, with 95% of correlations between 0.63 and 0.78. This suggested that
nuclei and cells were well matched. (C) Chromogenic RNA In situ hybridization (ISH) images of all VISp
layers from four mouse Cre-lines from which the best matching cells were most commonly derived. As
expected, all Cre-lines label cells in layer 5 and adjacent layers.
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Figure 2: Comparison of nuclear and whole cell transcriptomes. (A) Left: Percentage of RNA-seq reads
mapping to genomic regions for cells, nuclei, and whole brain control RNA. Bars indicate median and 25th

and 75th quantiles. Note that among cells exonic and intronic read alignment is bimodal. Right: Gene
detection (counts per million, CPM > 0) based on reads mapping to exons, introns, or both introns and
exons. (B) Left: The most similar pair of cells have more highly correlated gene expression (r = 0.92) than
the most similar pair of nuclei (r = 0.76), due to fewer gene dropouts. Right: Cells have consistently more
similar expression to each other than nuclei, even after correcting for gene dropouts based on an expression
noise model. (C) Left: Binned scatter plot showing all genes are detected (CPM > 0) with equal or greater
reliability in cells than nuclei. Grey lines show the variation in detection that is expected by chance (95%
confidence interval). Right: Binned scatter plot showing 0.4% of genes are significantly more highly expressed
(fold change > 1.5, adjusted P-value < 0.05) in nuclei , and 20.5% of genes are more highly expressed in
cells. The log-transformed color scale indicates the number of genes in each bin. (D) Nuclear enriched
genes are highly enriched for genes involved in neuronal connectivity, synaptic transmission, and intrinsic
firing properties. Cell enriched genes are predominantly related to mRNA processing and protein translation
and degradation. In addition, immediate early gene expression is increased up to 10-fold in cells, despite
comparable isolation protocols for cells and nuclei.
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Figure 3: Single nuclei provide comparable clustering resolution to cells with inclusion of intronic reads. (A)
Co-clustering heatmaps show the proportion of 100 clustering iterations that each pair of nuclei were assigned
to the same cluster. Clustering was performed using gene expression quantified with exonic reads or intronic
plus exonic reads for two key clustering steps: selecting significantly differentially expressed (DE) genes and
calculating pairwise similarities between nuclei. Co-clustering heatmaps were generated for each combination
of gene expression values, and blue boxes highlight 11 clusters of nuclei that consistently co-clustered using
introns and exons (upper left heatmap) and were overlaid on the remaining heatmaps. The row and column
order of nuclei is the same for all heatmaps. (B) Co-clustering heatmaps were generated for cells as described
for nuclei in (A), and blue boxes highlight 11 clusters of cells. (C) Cluster cohesion (average within cluster
co-clustering) and separation (difference between within cluster co-clustering and maximum between cluster
co-clustering) are plotted for nuclei and cells and all combinations of reads. Including introns in gene
expression quantification dramatically increases cohesion and separation of nuclei but not cell clusters.
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Figure 4: Equivalent neuronal cell types identified with nuclei and cells. (A) Cluster dendrograms for nuclei
and cells based on hierarchical clustering of average expression of the top 1200 cluster marker genes. 11
clusters are labeled based on dendrogram leaf order and the closest matching mouse VISp cell type described
in Tasic et al. (2016) based on correlated marker gene expression (see Figure S4). (B) Pairwise correlations
between nuclear and cell clusters using average cluster expression of the top 490 shared marker genes. (C)
Violin plots of cell type specific marker genes expressed in matching nuclear and cell clusters. Plots are on
a linear scale, max CPM indicates the maximum expression of each gene, and black dots indicate median
expression. (D) Hierarchical clustering of nuclear and cell clusters using the top 1200 marker genes with
expression quantified by intronic or exonic reads. Intronic reads group nine matching nuclear and cell clusters
together at the leaves, while two closely related deep layer 5 excitatory neuron types group by sample type.
In contrast, exonic reads completely segregate clusters by sample type. (E) Box plots of cluster separations
for all samples in matched nuclear and cell clusters. Clusters are equally well separated for all but two cell
types, L4 Arf5 and L5b Cdh13, that are moderately but significantly (Wilcoxon signed rank unpaired tests;
Bonferroni corrected P-value < 0.05) more distinct with cells than nuclei. (F) Cell type marker genes are
consistently detected in nuclei and cells, although marker scores (see Methods) were on average 15% higher
for cells.
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Figure 5: Nuclear transcript content varies among cell types and genes. (A) Box plots showing median (bars),
25th and 75th quantiles (boxes), and range (whiskers) of percentages of reads mapping to introns for matched
nuclei and cell clusters. (B) Box plots of log2-transformed expression of the nuclear non-coding RNA, Malat1,
in matched nuclei and cell clusters. (C) The nuclear fraction of transcripts in cell types was estimated with
two methods: the ratio of intronic read percentages in cells compared to nuclei; and the average ratio of
expression in cells compared to nuclei of three highly expressed genes (Snhg11, Meg3, and Malat1 ) that are
localized to the nucleus. The relative ranking of nuclear fractions was consistent (Spearman rank correlation
= 0.84), although estimates based on the intronic read ratio were consistently 50% higher. (D) Estimated
nuclear proportion (ratio of nucleus and soma volume) of neurons labeled by three mouse Cre-lines in
Layers 4 and 5 (see Supplementary Figure S5D). Single neuron measurements (grey points) were summarized
as violin plots, and average nuclear proportions (black points) were compared to the range of estimated
proportions (blue lines) based on intronic read ratios and nuclear gene expression. (E) Histograms of nuclear
fraction estimates for 11,932 genes expressed (CPM > 1) in at least one nuclear or cell cluster and grouped
by type of gene. (F) Violin plots of marker score distributions with median and inter-quartile intervals.
Non-coding genes and pseudogenes are on average better markers of cell types than protein-coding genes.
Kruskal–Wallis rank sum test, post hoc Wilcoxon signed rank unpaired tests: *P < 1 x 10-50 (Bonferroni-
corrected), NS, not significant. (G) Box plots of cell type marker scores for genes grouped by estimated
nuclear enrichment. Nucleus-enriched genes have significantly higher marker scores (linear regression; P =
2.3 x 10-8). (H) Validation of the estimated nuclear proportion of transcripts for Calb1, Grik1, and Pvalb
using multiplex fluorescent in situ hybridization (mFISH). Top: For each gene, transcripts were labeled with
fluorescent probes and counted in the nucleus (white) and soma (yellow). Bottom: Probe counts in the
nucleus and soma across all cells with linear regression fits to estimate nuclear transcript proportions for
each gene. Estimated proportions based on mFISH and RNA-seq data are summarized on the right.
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Supplemental Figures564

Figure S1: [Figure 1 - supplemental] Properties of 463 cells matched to nuclei. (A) Proportion of matched
cells isolated from transgenic mouse lines that label different subsets of cortical neurons. Note that a small
number of “virally labeled” cells (<5%) were FAC sorted from wild-type mice based on retrograde labeling
by viral injections into various cortical and subcortical structures. (B) Proportion of matched cells dissected
from one or more adjacent layers of cortex. (C) ISH images from additional mouse Cre-lines from which the
best matching cells were most commonly derived. ISH images show all cortical layers within VISp.
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Figure S2: [Figure 2 - supplemental] Nuclear enrichment of transcripts related to neuron function can be
explained by nuclear intron retention of long genes. (A) REVIGO (Supek et al., 2011a) summaries of gene
ontology (GO) enrichment of genes enriched in cells or nuclei. Including introns dramatically changes the
functional categories of nuclear but not cell enriched genes. (B) Cumulative distribution of genomic and
transcript lengths for genes enriched in nuclei and cells (fold change > 1.5) based on expression of exons
or introns plus exons. Using introns plus exons, the median genomic length of nuclear enriched genes is
16-fold longer than cell enriched genes. Using exons only, there is no significant difference in genomic lengths
(Kolmogorov-Smirnov test P-value = 0.27).
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Figure S3: [Figure 3 - supplemental] Overview of single nucleus RNA-seq clustering pipeline. See methods
for a detailed description of clustering steps.
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Figure S4: [Figure 4 - supplemental] Nuclear and cell clusters are well matched based on marker gene
expression. (A) Pairwise correlations between previously reported mouse VISp cell type clusters (Tasic
et al., 2016) and nuclear and cell clusters using average cluster expression of the top shared marker genes.
Heatmaps show remarkably similar correlation patterns, supporting the existence of a well matched set of
nuclear and cell clusters. Nuclear and cell clusters were annotated based on the reciprocal best matching
published cluster name and mapped to two interneuron types and five of eight layer 5 excitatory neuron
types. (B) Comparisons of the proportion of nuclei or cells expressing marker genes (CPM > 1) for matched
pairs of clusters. Correlations are reported at the top of each scatter plot, and cell type specific markers
are labeled. As expected based on Figure 2C, gene detection is consistently higher in cells than nuclei. (C)
Matched clusters have similar proportions of nuclei and cells (except for two closely related cell types, L5a
Hsd11b1 and L5 Batf3), which supports the accuracy of the initial correlation based mapping of single
nuclei to cells. (D) Average gene expression quantified based on intronic reads is more highly correlated
between cells and nuclei than expression quantified based on exonic reads, particularly for highly expressed
genes. Malat1, Meg3, and Snhg11 are the three highest expressing genes in nuclei and have consistently lower
expression in cells, as expected based on their reported nuclear localization.
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Figure S5: [Figure 5 - supplemental] Nuclear proportion estimates are supported by multiple genes and
consistent with previously reported values. (A) Box plots of log2-transformed expression of two nuclear
transcripts, Meg3 and the small nucleolar RNA Snhg11, in matched nuclear and cell clusters. (B) Represen-
tative sections of VISp from three Cre-driver mouse lines with layer boundaries, nuclei labeled with DAPI
(blue), and subsets of neurons labeled with tdTomato (red). Scale bar is 100 μm. (C) Nucleus and soma area
measurements from three Cre-lines, and linear regressions to estimate nuclear proportions. (D) Left: Sec-
tion of VISp from wild type mouse labeled with DAPI and Neurotrace 500 fluorescent Nissl stain with layer
boundaries indicated by white lines. Scale bar is 100 μm. Right: Nuclear proportion was quantified based
on nucleus and soma area measurements and plotted as a function of cortical depth. Size and darkness of
points are proportional to soma area. (E) Average nuclear proportions of 4,373 genes (mostly house-keeping)
also expressed in mouse pancreatic beta-cells and liver cells (Halpern et al., 2015) are moderately correlated
with and approximately 13% less than estimated proportions in this study. (F) The distributions of nuclear
proportions are highly similar with slightly higher reported cytoplasmic enrichment for reported genes. Note
that the matched set of genes includes 99% protein-coding genes so the distributions more closely resemble
those genes in Figure 5D.
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Supplemental Tables565

Table S1 [Figure 2 - supplemental]. Average gene expression and detection in matched nuclei and cells.566

Table S2 [Figure 2 - supplemental]. Differentially expressed genes in cells versus nuclei using intronic plus567

exonic reads.568

Table S3 [Figure 2 - supplemental]. Differentially expressed genes in cells versus nuclei using only exonic569

reads.570

Table S4 [Figure 2 - supplemental]. Gene ontology (GO) enrichment of differentially expressed genes in cells571

and nuclei.572

Table S5 [Figure 4 - supplemental]. Cre-driver line composition of cell clusters.573

Table S6 [Figure 5 - supplemental]. Gene properties including the number of clusters with any expression,574

maximum cluster expression, cell type marker score, and estimated nuclear proportion of transcripts.575
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