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Abstract	
Motivation:	Genotyping	a	set	of	variants	from	a	database	is	an	important	step	for	identifying	known	
genetic	traits	and	disease	related	variants	within	an	individual.	The	growing	size	of	variant	databases	as	
well	as	the	high	depth	of	sequencing	data	pose	an	efficiency	challenge.	In	clinical	applications,	where	
time	is	crucial,	alignment-based	methods	are	often	not	fast	enough.	To	fill	the	gap,	(Shajii	et	al.	2016)	
propose	LAVA,	an	alignment-free	genotyping	method	which	is	able	to	more	quickly	genotype	SNPs;	
however,	there	remains	large	room	for	improvements	in	running	time.	

Results:	We	present	the	VarGeno	method	for	SNP	genotyping	from	Illumina	whole	genome	sequencing	
data.	Our	method	performs	2-8	times	faster	than	LAVA	with	similar	memory	usage.	VarGeno	uses	Bloom	
filters	to	achieve	a	2x	speedup	without	changing	the	accuracy,	while	a	8x	speedup	is	achieved	by	using	a	
quality	value	filtering	method	(VarGeno-QV)	at	the	cost	of	only	slight	decrease	(0.04%)	in	accuracy.		

Availability:	VarGeno	is	freely	available	at:	https://github.com/medvedevgroup/vargeno.	

1	Introduction	
Given	a	set	of	target	genetic	variants,	the	problem	of	variant	genotyping	is	to	report	which	variants	an	
individual	possesses	(Luikart	et	al.	2003;	Shajii	et	al.	2016;	Syvänen	2005).	Single	nucleotide	
polymorphism	(SNP)	genotyping	has	been	widely	used	in	human	disease-related	research	such	as	
genome	wide	association	studies	(Hirschhorn	and	Daly	2005).	The	approaches	to	SNP	genotyping	can	be	
roughly	divided	into	three	categories:	microarray	methods,	sequencing	mapping-based	methods,	and	
alignment-free	methods.	

The	first	approach	uses	SNP	arrays	(Pastinen	et	al.	2000).	SNP	arrays	are	based	on	the	hybridization	of	
fragmented,	single-stranded,	target	DNA,	labelled	with	fluorescent	dyes,	to	arrays	containing	
immobilized	allele-specific	oligonucleotide	probes	(LaFramboise	2009).	SNP	arrays	are	fast	and	
inexpensive;	however,	they	can	only	hold	a	limited	number	of	probes:	the	state-of-the-art	Affymetrix	
genome-wide	SNP	array	6.0	has	only	906,000	SNP	probes,	compared	with	31,565,214	known	common	
SNPs	in	dbSNP	(build	150).		
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The	second	approach	is	based	on	high-throughput	whole	genome	sequencing	and	read	mapping.	In	a	
standard	pipeline	using	this	method,	sequencing	reads	are	first	mapped	to	the	reference	genome.	The	
mapping	results	are	then	used	as	input	for	genotyping	tools	such	as	SAMtools	mpileup	(Li	et	al.	2009),	or	
Freebayes	(Garrison	and	Marth	2012),	or	GATK	HaplotypeCaller	(Depristo	et	al.	2011;	McKenna	et	al.	
2010).	The	limitation	of	this	direction	is	that	it	requires	a	lot	of	time	in	read	mapping.	This	limitation	
becomes	especially	crucial	in	clinical	applications,	where	bedside	genotyping	of	disease-related	SNPs	
may	become	common	in	the	future.		

The	third	approach	is	based	on	high-throughput	whole	genome	sequencing	followed	by	an	alignment-
free	sequence	comparison	(Vinga	and	Almeida	2003).	Read	mapping	generates	large	amounts	of	general	
information	for	downstream	analysis.	However,	in	SNP	genotyping,	not	all	the	mapping	information	is	
required.	Computing	time	and	memory	are	wasted	to	generate	unnecessary	information;	instead,	
alignment-free	methods	only	generate	necessary	information	with	less	computational	resources.	Recent	
alignment-free	ideas	that	have	made	significant	application	improvements	include	pseudo-alignment	
(Bray	et	al.	2016),	lightweight	alignment	(Patro	et	al.	2017),	and	quasi-mapping	(Srivastava	et	al.	2016).	
An	alignment-free	approach	has	also	been	applied	to	SNP	genotyping	by	(Shajii	et	al.	2016).	They	
introduce	a	SNP	genotyping	tool	named	LAVA,	which	builds	an	index	from	known	SNPs	(e.g.	dbSNP)	and	
then	uses	approximate	k-mer	matching	to	genotype	the	donor	from	sequencing	data.	LAVA	is	reported	
to	perform	4-7	times	faster	than	a	standard	mapping-based	genotyping	pipeline,	while	achieving	
comparable	accuracy.		

A	Bloom	filter	is	a	space	efficient	data	structure	for	representing	sets	that	occasionally	provides	false	
positive	answers	to	membership	queries	(Bloom	1970;	Broder	and	Mitzenmacher	2004).	In	applications	
where	false	positives	are	acceptable,	Bloom	filters	can	help	to	greatly	improve	scalability.	They	have	
been	used	in	the	context	of	indexing,	compressing	and	searching	whole	genome	datasets	(Rozov,	
Shamir,	and	Halperin	2014),	and	large	sequence	databases	(Solomon	and	Kingsford	2016,	2017;	Sun	et	
al.	2017).	

In	this	paper,	we	propose	an	improvement	to	LAVA	called	VarGeno,	which	performs	2-8	times	faster	
than	LAVA	with	similar	memory	usage.	VarGeno	uses	Bloom	filters	to	achieve	a	2x	speedup	without	
changing	the	accuracy.	An	8x	speedup	is	achieved	by	using	a	quality	value	filtering	method	(VarGeno-
QV),	at	the	cost	of	a	slight	decrease	(0.04%)	in	accuracy.	VarGeno-QV	uses	information	from	the	base-
quality	scores	(Cock	et	al.	2009).		

2	Background	
In	this	section,	we	introduce	the	method	used	by	LAVA,	since	it	forms	the	basis	of	VarGeno.	Figure	1	
illustrates	the	pipeline	of	LAVA,	which	contains	two	main	modules:	the	dictionary	generation	module	
(i.e.	the	pre-processing	module),	and	the	main	genotyping	module.	At	a	high-level,	the	pre-processing	
module	takes	as	input	a	reference	genome	(e.g.	hg19)	and	a	list	of	known	SNPs	that	need	to	be	
genotyped	(e.g.	dbSNP,	or	a	disease	related	SNP	database).	Each	SNP	is	a	tuple	of	a	position	in	the	
reference	genome	and	an	alternate	allele.	The	pre-processing	modules	builds	several	dictionaries	(i.e.	
indices),	as	described	below.	The	genotyping	module	takes	as	input	a	collection	of	reads	from	a	donor		 	
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that	needs	to	be	genotyped,	as	well	as	the	indices.	The	genotype	caller	outputs,	for	each	SNP	in	the	SNP	
list,	whether	it	exists	in	the	donor	and,	if	yes,	its	heterozygosity.		

	

Figure	1.	Comparison	of	LAVA	and	VarGeno	pipelines.	Modules	and	files	in	black	are	part	of	both	pipelines	and	in	
blue	are	unique	to	the	VarGeno	pipeline.	The	green	module	is	shared	by	both	pipelines	but	with	different	
implementations.		
	

LAVA	relies	on	a	carefully	chosen	hard-coded	value	of	𝑘 = 32	for	its	k-mer	dictionaries,	which	we	also	
adopt	in	this	paper.	A	32-mer	can	be	directly	encoded	into	64-bits	(which	we	denote	as	the	encoded	k-
mer)	and	the	theoretical	probability	that	more	than	one	error	exists	within	a	single	32-mer	is	acceptably	
low.		

LAVA’s	dictionary	generation	module	generates	a	reference	dictionary	𝐷&'(	and	SNP	dictionary	𝐷)*+	by	
preprocessing	the	reference	genome	and	the	known	SNP	list.		𝐷&'(	is	an	array	of	<encoded	𝑘-mer,	
genome	position>	tuples,	sorted	in	increasing	order	of	encoded	𝑘-mers.	𝐷&'(	contains	a	tuple	for	every	
position	of	the	reference	genome,	but	𝑘-mers	with	undefined	bases	(Ns)	are	not	included.	LAVA	also	
constructs	a	secondary	indexing	hash	table	𝐽&'(.	𝐽&'(	maps	a	32-bit	unsigned	integer	u	to	the	first	
location	in	𝐷&'(	at	which	there	is	an	encoded	k-mer	whose	upper	32	bits	are	u.	To	query	an	encoded	k-
mer,	LAVA	first	queries	𝐽&'(	to	find	the	start	and	end	indices	of	the	block	in	𝐷&'(	with	the	same	upper	32	
bits	as	the	query.	Then	LAVA	does	a	binary	search	through	this	block	to	find	the	encoded	𝑘-mers	whose	
lower	32	bits	match	the	query	(Figure	2).	The	reference	positions	where	this	𝑘-mer	occurs	are	then	
returned.		

LAVA	constructs	a	SNP	dictionary	𝐷)*+	and	a	secondary	index	𝐽)*+	in	a	similar	fashion.	𝐷)*+	is	built	from	
𝑘-mers	from	positions	that	overlap	some	SNP	from	the	SNP	list,	with	the	reference	allele	replaced	by	
alternate	allele.	In	addition	to	the	encoded	𝑘-mer	and	genome	position,	𝐷)*+	also	stores	some	
annotations	about	each	SNP.	Finally,	𝐽&'(	hashes	the	upper	24-bits,	not	32-bits,	since	the	size	of	𝐷)*+	is	
much	smaller	than	𝐷&'(.	
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Figure	2.	The	structure	of	LAVA’s	reference	dictionaries	𝐷&'(	and	𝐷&'(	and	the	process	of	querying.	Let	A	be	the	
upper	32	bits	of	an	encoded	k-mer	K	and	let	B	be	the	lower	32	bits.	The	black	arrows	illustrate	the	process	of	
querying	K;	the	purple	arrows	illustrate	the	process	of	querying	the	lower	neighborhood	of	K;	the	red	arrows	
illustrate	the	process	of	querying	the	upper	neighborhood	of	K.	

To	genotype	the	SNPs	in	a	set	of	donor	reads,	LAVA	first	generates	a	pileup	table.	For	each	SNP	in	the	
SNP	list,	the	table	contains	the	number	of	reads	supporting	the	reference	and	alternate	alleles,	
respectively.	To	generate	the	pileup	table,	LAVA	processes	each	read	independently.	Each	read	is	first	
split	into	non-overlapping	consecutive	𝑘-mers.	The	Hamming	neighborhood	of	distance	1	for	a	𝑘-mer	K,	
denoted	by	N K ,	is	the	set	of	all	𝑘-mers	with	a	Hamming	distance	at	most	1	to	K.	We	refer	to	N K 	as	
the	neighborhood	of	K,	for	short.	Notice	that	K	 ∈ N(K)	and	 N K = 3𝑘 + 1.	For	each	of	a	read’s	
generated	𝑘-mers	as	well	as	their	reverse	complements,	LAVA	queries	𝐷&'(	and	𝐷)*+	for	every	element	
of	N(K).	The	neighborhood	is	used	in	order	to	account	for	the	possibility	of	one	erroneous	nucleotide	in	
K	(recall	that	𝑘	is	chosen	so	that	the	probability	of	more	than	one	error	is	low).	The	genome	positions	of	
the	matching	𝑘-mers	are	then	used	to	identify	the	locus	and	allele	for	which	the	read	has	the	strongest	
support,	if	any.	After	the	pileup	table	is	constructed,	LAVA’s	genotyping	module	uses	it	to	output	a	
genotype	for	each	SNP	in	the	SNP	list:	homozygous	reference,	heterozygous,	and	homozygous	alternate.		

3	Methods	
The	run	time	of	genotyping	is	dominated	by	querying	all	the	𝑘-mers	in	N K 	for	every	K	in	every	read.	
Our	immediate	goal	in	optimizing	LAVA	is	to	reduce	the	number	of	unnecessary	queries.	Here	we	
present	our	improvements	to	reduce	the	number	of	unnecessary	queries.		

The	time	performance	of	the	querying	process	depends	on	the	𝑘-mer	being	queried.	The	neighborhood	
N(K)	can	be	partitioned	into	three	subsets:	1)	the	original	𝑘-mer	K,	2)	the	upper	neighborhood	of	K,	
which	is	the	set	of	𝑘-mers	whose	encoding	differs	with	K	in	the	upper	32	(respectively,	24)	bits	when	
querying	𝐷&'(	(respectively,	𝐷)*+),	and	3)	the	lower	neighborhood	of	K,	which	is	the	set	of	𝑘-mers	
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whose	encoding	differs	with	K	in	the	lower	32	(respectively,	40)	bits	when	querying	𝐷&'(	(respectively,	
𝐷)*+).	The	querying	process	can	also	be	divided	into	three	sub-process,	according	to	which	𝑘-mers	in	
N(K)	are	queried	(Figure	2).	Each	𝑘-mer	in	the	upper	neighborhood	of	K	will	have	a	different	upper	32	
bits	from	K	and	will	require	a	separate	access	to	𝐽&'(	and	one	random	access	to	𝐷&'(.	This	will	likely	
result	in	a	cache	miss	for	every	𝑘-mer	in	the	upper	neighborhood.	On	the	other	hand,	all	the	𝑘-mers	in	
the	lower	neighborhood	will	share	the	same	upper	32	bits	and	hence	will	all	query	the	same	block	of	
𝐷&'(.	Each	block	typically	fits	in	a	cache	line,	hence	the	query	of	𝑘-mers	in	the	lower	neighborhood	is	
unlikely	to	generate	any	cache	misses.	The	same	logic	applies	to	queries	of	𝐷)*+.	

3.1	Upper	neighborhood	queries		
VarGeno	applies	a	Bloom	filter	to	improve	the	performance	of	querying	the	upper	neighborhood.	A	
Bloom	filter	for	representing	a	set	S = {𝑥;, 𝑥=, … , 𝑥*	}	of	n	elements	contains	a	bitvector	of	size	m,	and	
𝑝	independent	hash	functions	ℎ;, ℎ=, … , ℎ+.	Each	hash	function	maps	each	k-mer	to	a	random	integer	
uniformly	between	0	and	m − 1.	The	bitvector	is	initialized	to	an	array	of	zeros.	For	each	element	𝑥	 ∈ S,	
the	bits	ℎE(𝑥)	of	the	bitvector	are	set	to	1	for	1 ≤ 𝑖 ≤ 𝑝.	To	check	if	an	item	y	is	in	S,	we	check	whether	
all	ℎE 𝑦 	are	set	to	1.	If	not,	then	𝑦	is	not	a	member	of	S.	Otherwise,	𝑦	is	a	member	of	S	with	a	small	
false	positive	rate	(Broder	and	Mitzenmacher	2004).	

VarGeno’s	preprocessing	module	builds	Bloom	filters	𝐵𝐹&'(	(respectively,	𝐵𝐹)*+)	where	the	elements	
being	represented	are	the	lower	32	bits	of	all	𝑘-mers	in	𝐷&'(	(respectively,	the	lower	40	bits	of	all	𝑘-
mers	in	𝐷)*+).	Before	searching	any	𝑘-mers	in	the	upper	neighborhood	of	𝑘-mer	K,	VarGeno’s	
genotyping	module	first	checks	if	K’s	lower	bits	exist	in	𝐵𝐹&'(.	If	not,	then	the	upper	neighborhood	𝑘-
mers	are	not	queried,	as	they	will	not	exist	in	𝐷&'(.	Since	each	upper	neighborhood	query	endures	a	
likely	cache	miss,	avoiding	such	queries	provides	substantial	running	time	improvements.		

3.2	Lower	neighborhood	queries		
VarGeno	also	changes	how	lower	neighborhood	queries	are	performed.	The	size	of	a	lower	
neighborhood	for	a	𝐷&'(	query	is	48	k-mers.	To	improve	the	performance,	we	observe	that	doing	that	
many	binary	searches	within	one	small	block	is	inefficient,	and,	instead,	a	linear	scan	of	the	block	using	a	
direct	computation	of	the	Hamming	distance	to	the	each	lower	neighborhood	𝑘-mer	can	be	faster.	
Figure	3	illustrates	the	strategy.	VarGeno	uses	a	fast	bitwise	routine	to	determine	whether	two	𝑘-mers	
are	within	a	Hamming	distance	of	one,	and,	if	so,	where	the	differing	position	is.	We	provide	its	details	in	
the	Supplementary	Information.		

If	the	block	size	is	too	large,	then	the	linear	scan	might	be	slower	than	the	original	binary	search	
approach.	VarGeno	includes	a	size	threshold—if	the	block	size	is	smaller	than	the	threshold,	then	a	
linear	scan	is	used;	otherwise,	the	original	binary	search	based	method	is	used.	The	following	
Observation	shows	that	the	number	of	large	blocks	is	small:	

Observation	1.	Let	𝑛	be	the	number	of	distinct	𝑘-mers	stored	in	a	dictionary	D	and	let	𝑏	be	the	number	
of	blocks	in	D.	Under	the	assumption	that	the	encoded	𝑘-mers	are	independent	from	each	other,	the	
size	of	a	block	in	D	is	at	least	𝑡	with	probability	of	at	most	 *

PQ
.	

Proof.	Let	𝑥E 	be	the	size	of	block	𝑖	in	D.	Under	the	independence	assumption,	𝑥E 	follows	a	Binomial	

distribution	with	𝑛	trials	and	success	probability	of		;
P
.		The	expected	size	of	block	𝑖	is	therefore	E 𝑥E =
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*
P
.	Applying	Markov’s	inequality	(Buot	2006),	the	probability	that	𝑥E 	is	at	least	t	is	P 𝑥E	³	t ≤ U VW

Q
= *

PQ
	.	

∎	

The	assumption	that	encoded	𝑘-mers	are	independent	from	each	other	is	not	true	in	our	data,	since	
many	of	the	k-mers	overlap.	However,	we	argue	that	blocks	of	two	encoded	k-mers	are	much	less	
dependent.	Our	bit	encoding	of	k-mers	is	the	natural	one,	representing	the	nucleotides	with	2	bits	each,	
in	the	same	order	as	they	appear	in	the	k-mer.	The	encodings	of	two	overlapping	k-mers	are	shifted	with	
respect	to	each	other,	which	results	in	different	higher-order	bits	and,	hence,	blocks.	

Based	on	the	size	of		𝐷&'(	for	the	datasets	in	(Shajii	et	al.	2016),	we	have	that	𝑛	is	about	3	billion	and	𝑏	is	
2Y=.	Using	VarGeno’s	default	size	threshold	of	𝑡 = 25,	the	probability	that	a	block	is	large	is	less	than	
0.028.	Thus,	the	Observation	estimates	that	VarGeno	resorts	to	the	binary	search	method	for	less	than	
3%	of	the	blocks.	

3.3	Quality	score	optimization	
VarGeno	further	accelerates	the	genotyping	process	by	utilizing	the	quality	scores	at	each	nucleotide	to	
avoid	generating	the	full	neighborhood	of	each	𝑘-mer.	The	reason	for	generating	all	neighborhood	𝑘-
mers	is	to	account	for	all	possible	instances	of	a	sequencing	error	that	could	be	present.	However,	the	
donor	reads	have	a	Phred	quality	score	associated	with	each	nucleotide,	which	is	an	estimate	of	the	
probability	of	a	nucleotide	error.	Nucleotides	with	high	quality	scores	are	unlikely	to	be	erroneous.	

	

Figure	3.	Using	linear	scanning	to	accelerate	lower	neighborhood	querying.	

Based	on	the	above	observation,	VarGeno	pipeline	also	provides	an	alternate	option	called	VarGeno-QV.	
In	VarGeno-QV,	if	the	quality	score	for	a	certain	position	within	a	𝑘-mer	K	is	higher	than	a	threshold,	
then	the	neighborhood	𝑘-mers	which	differ	at	this	position	are	then	skipped	and	not	queried	against	the	
dictionaries	during	the	genotyping	stage.	While	we	expect	a	time	speed-up	from	this	optimization,	
quality	scores	are	not	perfect	estimates	and	we	also	expect	the	accuracy	to	decrease	compared	to	
VarGeno.	

4 Results	
We	implemented	VarGeno	and	VarGeno-QV	in	C++,	building	on	the	LAVA	code	base	(Shajii	et	al.	2016)	
and	code	from	(Sun	et	al.	2017).	VarGeno	and	VarGeno-QV	implementation	is	freely	available	at:	
https://github.com/medvedevgroup/vargeno.	We	compared	accuracy,	running	time	and	memory	usage	
against	LAVA	and	LAVA-Lite	(run	in	default	parameters).	LAVA-Lite	is	a	lower-memory	version	of	LAVA	
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that	sacrifices	some	accuracy	(Shajii	et	al.	2016).	We	also	compared	against	a	typical	alignment-based	
discovery	pipeline,	denoted	by	BWA+mpileup,	which	was	reported	to	have	the	highest	number	of	SNP	
genotyping	correct	calls	in	(Shajii	et	al.	2016).	This	ran	‘bwa-mem’	(Li	and	Durbin	2010),	followed	by	
‘samtools	mpileup’	(Li	et	al.	2009),	followed	by	‘bcftools	call	–gf’	(Narasimhan	et	al.	2016).	Default	
parameters	were	used.	VarGeno	fixes	the	number	of	hash	function	in	the	Bloom	filter	to	be	1,	to	reduce	
the	hashing	time.	All	experiments	were	run	on	an	Intel	Xeon	CPU	with	512 GB	of	RAM	and	using	single	
core	(at	2.10	GHz).		

4.1 Dataset	
We	used	the	same	input	datasets	as	in	the	LAVA	paper.	For	the	donor	data,	we	used	NA12878	reads	
from	Phase	1	of	the	1000	Genome	Project	(1000	Genomes	Project	Consortium	et	al.	2012).	The	dataset	
contains	reads	with	length	101,	and	the	depth	of	coverage	is	around	6X.	For	the	SNPs	list,	we	used	all	
common	SNPs	from	dbSNP	(12,346,254	SNPs;	build	142).	We	used	GRCh37/hg19	as	the	reference	
sequence.	

4.2	Validation	
For	validation,	we	used	an	up-to-date	high-quality	genotype	annotation	generated	by	the	Genome	in	a	
Bottle	Consortium	(GIAB)	(Zook	et	al.	2014).	The	GIAB	gold	standard	contains	validated	variant	genotype	
information	for	NA12878,	from	14	sequencing	datasets	with	five	sequencing	technologies,	seven	read	
mappers	and	three	different	variant	callers.	To	measure	accuracy,	we	counted	SNPs	from	the	SNP	list	
database	for	which	genotypes	were	present	in	the	gold	standard.	Let	𝑋	denote	this	set	of	SNPs.	We	
defined	the	accuracy	of	a	tool	as	the	proportion	of	SNPs	in	𝑋	that	were	correctly	genotyped	by	the	tool.	
SNPs	in	𝑋	for	which	a	tool	did	not	produce	genotype	information	were	treated	as	incorrectly	genotyped.	

4.3 Effect	of	upper	neighborhood	query	optimization	
Table	1	shows	the	result	of	applying	the	Bloom-filter	optimization	of	Section	3.1.	It	reduces	the	run	time	
by	46%	compared	to	LAVA,	at	the	expense	of	only	a	2%	increase	in	memory	usage.	Note	that	this	
optimization	has	no	effect	on	the	output,	and	hence	we	do	not	compare	the	accuracy.	We	also	measure	
the	effect	of	varying	the	size	of	the	Bloom	filter	(denoted	by	m).	A	larger	size	decreases	the	false	positive	
rate	and	hence	the	number	of	unnecessary	queries	to	the	dictionaries;	a	smaller	size	decreases	the	
memory	usage.	VarGeno’s	default	setting	is	𝑚 = 8𝑛,	where	𝑛	is	the	number	of	distinct	values	that	are	
stored	in	a	Bloom	filter	(these	are	pre-computed	separately	for	𝐵𝐹&'(	and	𝐵𝐹)*+).	This	corresponds	to	a	
theoretical	false	positive	rate	of	0.118	(Broder	and	Mitzenmacher	2004).	We	also	tried	𝑚 = 16𝑛,	which	
corresponds	to	a	theoretical	false	positive	rate	of	0.06.	Our	results	indicate	that	there	is	not	a	significant	
change	in	running	time	or	memory	usage,	relative	to	the	totals.		

	 Running	time	(mins)	 Memory	usage	(GB)	
LAVA	 315	 59.7	
Using	Bloom	filters	(𝑚 = 8𝑛)	 171	 60.9	
Using	Bloom	filters	(𝑚 = 16𝑛)	 170	 62.1	

Table	1.	The	effect	of	using	Bloom	filters	to	accelerate	genotyping.	

4.4 Effect	of	lower	neighborhood	query	optimization	
Next,	we	measured	the	effects	of	the	optimizations	proposed	in	Section	3.2.	Using	the	linear	scan	
optimization	with	default	parameters	resulted	in	an	improvement	of	38.5%	to	the	run	time.	We	also	
measure	the	effect	of	the	block	size	cutoff.	Figure	4	illustrates	the	performance	as	a	function	of	different	
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block	size	thresholds.	Performance	drastically	improves	as	long	as	threshold	is	at	least	ten.	The	
performance	is	not	substantially	impacted	by	further	increasing	the	threshold.	

	

Figure	4.	Speedup	due	to	optimization	of	lower	neighborhood	queries,	depending	on	the	block	size	thresholds	
used.	A	block	size	threshold	of	zero	is	equivalent	to	what	LAVA	does.	If	threshold	is	infinity,	a	linear	scan	is	applied	
to	every	block.	

4.5 Overall	VarGeno	performance	
The	above	optimizations	are	combined	in	VarGeno.	Table	2	compares	its	performance,	using	default	
parameters,	to	LAVA,	LAVA	Lite	and	BWA+mpileup.	VarGeno’s	run	time	is	only	43%	of	LAVA,	at	only	a	
cost	of	a	2%	increase	in	memory.	Note	that	the	output	is	the	same	and	hence	the	accuracy	is	not	
affected.	Compared	to	BWA+mpileup,	VarGeno	is	more	than	12	times	faster,	but	at	the	cost	of	using	20	
times	more	memory.	However,	BWA+mpileup	is	not	as	accurate	as	VarGeno	or	LAVA,	which	is	to	be	
expected	since	it	is	designed	for	the	more	difficult	task	of	discovery	and	not	just	genotyping.	

	 Running	time	(mins)	 Memory	usage	(GB)	 Accuracy	(%)	
BWA+mpileup	 1800	 3.2	 72.16	
LAVA	 315	 59.7	 76.65	
LAVA	Lite	 464	 33.0	 76.65	
VarGeno	 135	 60.9	 76.65	
VarGeno-QV	(𝑐 = 39)	 39	 60.9	 76.61	

Table	2.	Performance	of	VarGeno	and	VarGeno-QV.	

4.6 VarGeno-QV	performance	
VarGeno	uses	a	quality	value	cutoff	(denoted	by	c),	so	that	it	does	not	generate	neighbors	at	positions	
with	a	Phred	quality	score	more	than	c.	We	investigated	the	effect	of	c	on	VarGeno-QV,	by	trying	all	the	
Phred	quality	scores,	which	are	integers	in	the	range	of	[0,42]	(Figure	5).	When	𝑐 = 42,	VarGeno-QV	
behaves	exactly	as	VarGeno.	At	𝑐 = 41,	it	gives	the	most	conservative	improvement,	only	avoiding	
generating	neighbors	at	the	sites	with	the	absolutely	highest	quality.	At	𝑐 = 0,	the	fastest	run	time	is	
achieved	(13	mins)	but	the	accuracy	decreases	to	75.76.	An	appealing	tradeoff	is	achieved	at	𝑐 = 39,	
with	a	run	time	of	39	mins	and	an	accuracy	of	76.61%,	nearly	identical	to	VarGeno	(Table	2).	With	this	
setting,	VarGeno-QV	is	more	than	8	times	faster	than	LAVA	and	more	than	3	times	faster	than	VarGeno.	
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Figure	5:	The	performance	of	VarGeno-QV	under	different	quality	value	cutoffs.	The	green	line	indicates	the	
accuracy	achieved	by	LAVA	and	VarGeno.		

4.7 Pre-processing	
In	our	experiments,	the	preprocessing	time,	which	includes	the	time	to	generate	dictionaries	and	Bloom	
filters	by	LAVA	and	VarGeno,	was	not	counted.	Since	the	pre-processing	module	is	executed	only	initially	
and	then	only	when	the	SNP	list	is	updated,	its	performance	is	not	as	crucial.	But,	for	the	sake	of	
completeness,	Table	3	shows	the	preprocessing	time	of	LAVA’s	dictionary	generation	and	the	
time/memory	required	by	VarGeno’s	additional	Bloom	filter	generation	step.	

	 Preprocessing	time	(mins)	 Memory	usage(GB)	
Dictionary	generation	(LAVA)	 52	 70.6	
Bloom	filter	generation	(VarGeno)	 13	 6.2	

Table	3.	Preprocessing	time	and	memory	usage.	

5	Conclusions	
In	this	paper,	we	presented	VarGeno	and	VarGeno-QV,	an	alignment-free	SNP	genotyping	method.	We	
demonstrated	that	it	is	2x	–	8x	faster	than	LAVA,	a	state-of-the-art	alignment-free	variant	genotyping	
method,	with	similar	memory	usage.	Our	method	integrates	three	general	techniques	to	accelerate	
alignment-free	variant	genotyping:	(1)	Bloom	filters,	(2)	linear	search	with	fast	bitwise	comparisons,	and	
(3)	base-quality	score	filtering.	While	(1)	and	(3)	are	already	broadly	applied,	there	are	many	k-mer	
based	methods	where	(2)	can	still	be	harnessed	to	improve	running	times.	

VarGeno	is	a	streaming	algorithm:	it	can	process	reads	on-the-fly	as	they	come	off	a	sequencer.	This	is	
especially	useful	for	variant	genotyping	scenarios	where	time	is	crucial,	such	as	in	clinical	applications.	
For	instance,	in	our	experiment,	VarGeno-QV	can	genotype	12	million	variants	from	6x	whole	genome	
sequencing	data	in	40	minutes.	VarGeno	can	be	applied	more	widely	to	portable	medical	devices,	if	the	
memory	usage	is	further	reduced.	One	possible	way	to	achieve	this,	at	the	cost	of	running	time,	is	to	
process	the	reference	in	separate	chunks.	Techniques	to	further	reduce	memory	usage	are	a	future	
research	direction.	
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