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ABSTRACT 

 

Background: Pseudomonas aeruginosa is one of the most dangerous superbugs in the list of 

bacteria for which new antibiotics are urgently needed, which was published by World Health 

Organization. P. aeruginosa is an antibiotic-resistant opportunistic human pathogen. It affects 

patients with AIDS, cystic fibrosis, cancer, burn victims and people with prosthetics and 

implants. P. aeruginosa also forms biofilms. Biofilms increase resistance to antibiotics and host 

immune responses. Because of biofilms, current therapies are not effective. It is important to find 

new antibacterial treatment strategies against P. aeruginosa. Biofilm formation is regulated 

through a system called quorum sensing. Thus disrupting this system is considered a promising 

strategy to combat bacterial pathogenicity. It is known that quercetin inhibits Pseudomonas 

aeruginosa biofilm formation, but the mechanism of action is unknown. In the present study, we 

tried to analyse the mode of interactions of LasR with quercetin.  

Results: We used a combination of molecular docking, molecular dynamics (MD) simulations 

and machine learning techniques for the study of the interaction of the LasR protein of P. 

aeruginosa with quercetin. We assessed the conformational changes of the interaction and 

analysed the molecular details of the binding of quercetin with LasR. We show that quercetin has 

two binding modes. One binding mode is the interaction with ligand binding domain, this 

interaction is not competitive and it has also been shown experimentally. The second binding 

mode is the interaction with the bridge, it involves conservative amino acid interactions from 

LBD, SLR, and DBD and it is also not competitive. Experimental studies show hydroxyl group 

of ring A is necessary for inhibitory activity, in our model the hydroxyl group interacts with 

Leu177 during the second binding mode. This could explain the molecular mechanism of how 

quercetin inhibits LasR protein. 

Conclusions: This study may offer insights on how quercetin inhibits quorum sensing circuitry 

by interacting with transcriptional regulator LasR. The capability of having two binding modes 

may explain why quercetin is effective at inhibiting biofilm formation and virulence gene 

expression. 

Keywords: AMR, Pseudomonas, quercetin, virulence, quorum sensing, inhibition, flavonoid, 

short linker region, homology modeling, molecular docking, molecular dynamics, machine 

learning 
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List of abbreviations: PDB, Protein data bank; MD, Molecular Dynamics; PCA, Principal 

Component Analysis; PC, Principal Component; SLR, Short Linker Region; BLAST, Basic local 

alignment search tool; DBI, David-Bouldin Index; psF, pseudo-F statistic. 

 

Background 
Pseudomonas aeruginosa is one of the “ESKAPE” pathogens and has acquired resistance 

to commonly used antibiotics [1, 2]. It is vital to find ways on how to counteract against it. P. 

aeruginosa is an opportunistic human pathogen and of clinical relevance, because it affects 

people with cystic fibrosis, cancer, burn victims, with implants and prosthetics, etc. P. 

aeruginosa uses quorum sensing system for the regulation of collective behaviors. This system 

controls virulence factor production. P. aeruginosa is pathogenic because of the synthesis of 

virulence factors such as proteases, rhamnolipids, hemolysins, production of antibiotic 

pyocyanin, Hydrogen Cyanide (HCN), secretion systems of Types 1 (T1SS), 2 (T2SS), 3 (T3SS), 

4[3], 5 (T5SS), and 6 (T6SS) [4], and biofilm formation [3,5]. P. aeruginosa QS circuit includes 

transcriptional regulator LasR and RhIR, which detect 3-O-C12 homoserine lactone and C4 

homoserine lactone [6-9]. In our previous research, we show that there are multiple binding 

modes of the native ligand with the transcriptional activator LasR [10]. 

There have been numerous attempts for the development of P. aeruginosa QS inhibitors 

[11-14]. These efforts resulted in the findings of inhibitors that work in vitro, but not in vivo 

models in animals [15]. Most of these researches assume that the inhibitors bind to the ligand 

binding domain (LBD). There was also another research involving flavonoids as inhibitors of 

biofilm formation [16]. Flavonoids are a group of natural products and secondary metabolites 

that exhibit broad spectrum of pharmacological activities such as antimicrobial, anti-

inflammatory, etc [17]. However, their mechanism of action is not well investigated. One such 

flavonoid is quercetin, which is considered as generally safe compound [16]. 

Hence, we analysed the molecular details of the interactions of quercetin with LasR 

protein. So far this is the first report that shows that the quercetin can interact as well with the 

bridge of LasR [10]. This study may explain why and how quercetin inhibits biofilm formation 

on a molecular level.  
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Methods 

 

LasR and quercetin models 

Previously modeled LasR monomer structure was used for study [10]. The 2D and 3D

structure of quercetin were obtained from PubChem [18] and they are shown in Figure 1. 

 

Fig. 1 Quercetin molecule structure: left) 2D right) 3D stick representation. 

 

The ligand parameters were generated using the acpype tool [19] for the General Amber

Force Field [20] with AM1-BCC partial charges [21]. 

 

LasR–quercetin ligand blind docking experiments  

Docking experiments of quercetin with LasR monomer were carried out using Autodock

Vina [22, 23], and it is based on the use of a rigid receptor. The whole protein conformational

space was searched, using grid box dimensions 60×62×48 A˚. Following exhaustiveness values

were tested in this study: 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and 4096. Principal component

(PC) [24] and cluster analysis, using K-means algorithm [25], were performed (Additional file 1:

Figure S1). The number of interaction sites doesn’t change in the interval using exhaustiveness

from 1024 to 4096. Exhaustiveness value of 1024 was chosen as it provides good results, good

speed and thorough sampling of the docked configurations. 

Exhaustiveness value was increased to a value of 1024, and a maximum number of

binding modes to generate set to 20. After that 100 independent docking calculations were

carried out with random initial seeds. Later we verified blind docking results with rDock [26]

and FlexAid [27]. 
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Molecular dynamics simulations of LasR–quercetin systems 

The same methodology was used from our previous work [10]. We conducted the MD 

simulations with the GROMACS suite, version 5.1.2 [28] Amber ff99SB-ILDN force field [29] 

was used for the MD simulations. In all cases, Short-range non-bonded interactions were cut off 

at 1.4 nm. Particle Mesh Ewald (PME) [30, 31] was used for the calculation of long-range 

electrostatics. A time step of 2 fs was used during heating, the production run, and coordinates 

were recorded every 1 ps. Two simulations of 300 ns were performed.  

Structures were placed in a dodecahedron box of TIP3P water [32], to which 100 mM 

NaCl was added, including neutralizing counter-ions. After that two steepest descents 

minimization were performed and then equilibrated in two stages. The first stage involved 

simulating for 200 ps under a constant volume (NVT) ensemble. The second stage involved 

simulating for 200 ps under a constant-pressure (NPT) for maintaining pressure isotropically at 

1.0 bar. The temperature was sustained at 300 K using V-rescale [33] algorithm. For isotropic 

regulation of the pressure, the Parrinello-Rahman barostat [34] was used.  

 

Sequence conservation 

To find out whether quercetin interacts with conservative amino acid residues we 

performed multiple sequence alignment (MSA) using msa package [35]. ClustalW [36], Clustal 

Omega [37] and Muscle [38] within msa package were used for multiple sequence alignments. 

We performed multiple sequence alignment of the LasR protein between the closely related 

species of P.aeruginosa. 

The following sequences were used for sequence alignment: 

• WP_054058449.1 LuxR family transcriptional regulator [Pseudomonas fuscovaginae] 

• NP_250121 transcriptional regulator LasR [Pseudomonas aeruginosa PAO1] 

• KFC75736.1 LuxR-type transcriptional regulator [Massilia sp. LC238] 

• WP_018433960 LuxR family transcriptional regulator [Burkholderia sp. JPY251] 

• WP_042326260.1 LuxR family transcriptional regulator [Paraburkholderia ginsengisoli] 

• WP_012426170.1 LuxR family transcriptional regulator [Paraburkholderia phytofirmans] 

• WP_027776298.1 LuxR family transcriptional regulator [Paraburkholderia caledonica] 
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• WP_027214716.1 LuxR family transcriptional regulator [Burkholderia sp. WSM2232] 

• WP_041729325.1 LuxR family transcriptional regulator [Burkholderia sp. CCGE1003] 

• CBI71275.1 UnaR protein [Paraburkholderia unamae] 

• CAP91064.1 BraR protein [Paraburkholderia kururiensis] 

• WP_003082999.1 transcriptional activator protein LasR [Pseudomonas] 

• WP_012076422.1 MULTISPECIES: LuxR family transcriptional regulator 

[Pseudomonas] 

• WP_050376898.1 MULTISPECIES: LuxR family transcriptional regulator 

[Pseudomonas] 

• WP_050395760.1 LuxR family transcriptional regulator [Pseudomonas aeruginosa] 

 

Entire flowchart 

The whole methodology is based on our previous research [10] and is presented as a 

flowchart for a better comprehension:  

� The reconstructed model was from our previous research. 

� The 3D model of quercetin acquired from pubchem web server.  

� Blind docking of quercetin with the LasR monomer performed using Autodock Vina.  

� Later verified blind docking with rDock and FlexAid. 

� PCA and cluster analysis performed on docking conformations. 

� Extraction of centroid conformations from cluster analysis. 

� Ligand parameters generated using acpype interface in the framework of the AMBER force 

field. 

� Using centroid conformations as starting points for molecular dynamics simulations using 

Gromacs. 

� Analysis of molecular dynamics trajectory files using MDTraj. 

� Binding energy calculated using g_mmpbsa 

� Sequence conservation analysis performed using msa library. 
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Results and discussion 

Docking analysis of quercetin with LasR monomer 

Molecular docking was used for the prediction of binding modes of quercetin with LasR 

monomer. PCA and cluster analysis were performed on docking data using center coordinates of 

the conformations (Additional file 1: Figure S2). There are four binding sites, cluster 1 and 3 

correspond to the interaction with LBD [16], cluster 2 corresponds to the interaction with LBD-

SLR-DBD bridge [10], cluster 4 is not significant since it only encompasses only 0.5% of the 

docking simulations. 

Several rounds of K-means clustering (details are available in the section of methods) 

were performed using the docking data. The accuracy of the cluster analysis was evaluated using 

the DBI [39], Dunn Index [40], Silhouette score [41] and the pSF [42] metrics (Additional file 1: 

Figure S3). An optimal number of clusters were chosen for docking results, simultaneously 

accounting for a low DBI, high Dunn, high Silhouette and high pSF values. 

We generated 1979 docked poses and performed representative structure extraction for 

use in MD simulations of the LasR-quercetin binding sites. The resulting representative 

structures from each cluster are shown in Figure 2. These cluster representative structures were 

produced by finding the centroid conformations. 

Representative structures from each cluster were extracted. The binding energy for the 

representative structure of cluster 1 is -7.6 kcal/mol, as for the mean binding affinity for the 

whole cluster is -7.206 (SD 0.398) kcal/mol (Additional file 1: Figure S4). Cluster 1 contains 946 

docked poses from 1979, about 47.802%. For cluster 2 the binding affinity for the representative 

structure is -6.8 kcal/mol and for the whole cluster -6.971 (SD 0.334) kcal/mol (Additional file 1: 

Figure S5). Cluster 2 contains 920 docked poses from 1979, about 46.488%, which is a rather 

unstudied area. For cluster 3, the representative structure features the highest binding affinity -

7.8 kcal/mol and for the whole cluster -7.793 (SD 0.072) kcal/mol (Additional file 1: Figure S6). 

Cluster 3 contains 100 docked poses from 1979, about 5.053%. For cluster 4, the representative 

structure features the highest binding affinity -6.6 kcal/mol and for the whole cluster -6.592 (SD 

0.027) kcal/mol (Additional file 1: Figure S7). Cluster 4 contains 13 docked poses from 1979, 

about 0.657%. 
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Unfortunately molecular docking is not appropriate for the prediction of binding affinity

or binding poses of protein-ligand complexes, however, they can still provide important

information [10, 43-44] 

For molecular dynamics simulations, we only used centroid conformations from cluster 1

and 2, since they encompass 94.29% of the docking data. 

 

Fig. 2 3D visualization of the analysed docking data with their representative structures and

clusters. 

 

Later we corroborated the blind docking with other molecular docking software as well,

which includes Autodock Vina [22], rDock [26] and FlexAid [27] (Figure 3). PC analysis of the

various docking programs was performed for easier comprehension (Additional file 1: Figure

S8). 

 

Fig. 3 3D visualization of the analysed docking data with their representative structures and 
clusters. 
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Binding modes of quercetin  

 We performed two 300 ns simulations using standard MD protocol. Overall, 600ns of 

aggregate simulation data was used for the analysis of the interaction quercetin with LasR 

monomer. The representative structures from docking results (Figure 2) were used as starting 

points for MD simulation with LasR. We used the mass-weighted RMSD for the assessment of 

the overall stability of the ligand. RMSD was calculated with reference to the initial snapshot for 

the different independent MD runs.  

Principal component analysis was performed using molecular dynamics conformations. 

We used the cumulative proportion to assess the total amount of variance that the consecutive 

principal components explain. After that several rounds of agglomerative clustering (details are 

available in the section of methods) were performed using the simulation data. The accuracy of 

the cluster analysis was evaluated using the DBI [39], Dunn Index [40], Silhouette score [41] and 

the pSF [42] metrics. An optimal number of clusters was chosen for molecular dynamics data 

sets, simultaneously accounting for a low DBI, high Dunn, high Silhouette and high pSF values. 

Interaction of quercetin with LBD. The first two principal components explain 93.34% 

of the cumulative proportion variance for the conformational changes of quercetin (Additional 

File 1: Figure S9). Histogram analysis of the RMSD evolution shows there are two peaks 

(Additional File 1: Figure S10), this is another confirmation for cluster analysis (Additional File 

1: Figure S11-S12). 

Hydrogen and hydrophobic analysis show that nine amino acid residues interact with the 

ligand. Three amino acid residues, which include Arg61, Ala50, Glu48, form hydrogen bonds. 

Six amino acid residues interact hydrophobically with quercetin (Figure 4). 
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Fig. 4 Schematic and 3D representation of hydrogen and hydrophobic interactions of quercetin

with LBD of LasR. 

 

Quercetin does not enter the binding pocket fully (Figure 5), this could suggest for a

ternary interaction possibility, so has been shown experimentally [16]. 

 

 

Fig. 5 Quercetin interaction with LBD of LasR. 
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Interaction of quercetin with the bridge. The first two principal components explain

90.7% of the cumulative variance for the conformational changes of quercetin (Additional File 1:

Figure S13). Histogram analysis of the RMSD evolution shows there are two peaks (Additional

File 1: Figure S14), this is another confirmation for cluster analysis (Additional File 1: Figure

S15-S16). 

 Hydrogen and hydrophobic analysis show that thirteen amino acid residues interact with

the ligand. Three amino acid residues, which include Glu11, Ser13, Leu177, form hydrogen

bonds. Ten amino acid residues interact hydrophobically with quercetin (Figure 6). 

 

Fig. 6 Schematic and 3D representation of hydrogen and hydrophobic interactions of quercetin

with the bridge of LasR. 

Quercetin interacts with the bridge, just like 3-O-C12 HSL [10] (Figure 7). 
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Fig. 7 Interaction of quercetin with the bridge of LasR. 

 

Binding energy of quercetin to LasR and sequence conservation 

In order to analyse the binding sites in detail, MMPBSA [45] binding energy calculation

was performed for each binding site based on the trajectories. It is also interesting that quercetin

does not compete for the LBD (Table 1), which has also been shown experimentally [16]. But

the results suggest that the interaction of quercetin with the bridge is not competitive, but

allosteric. 

More detailed analysis of the energy terms showed that Van der Waals, electrostatic

interactions, and non-polar solvation energy contribute negatively to the binding energy while

polar solvation energy contributes positively. Electrostatic interaction contributes most in the

terms of negative contribution for both cases, but for the interaction with the LBD-SLR-DBD

bridge or “the bridge”, the electrostatic interaction is 1.95 times higher than with the LBD

interaction.  
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Table 1 Relative Binding energy using g_mmpbsa on simulation data. 

Binding sites Van der waals 

(kJ/mol) 

Electrostatic 

(kJ/mol) 

Polar 

salvation 

(kJ/mol) 

Non-polar 

salvation 

(kJ/mol) 

Binding energy 

(kJ/mol) 

3-O-C12 HSL-

LBD  

-215.673±8.007  -39.586±18.817  147.522±13.978  -20.840±0.794 -128.578±18.757  

3-O-C12 HSL-

bridge 

-205.141±11.803  -142.974±29.032  201.889±20.117  -20.230±0.842  -166.456±20.492  

QRC-LBD -148.890±14.038  -123.004±33.612  158.564±14.347  -16.113±0.657  -129.443±19.319  

QRC-bridge -129.937±15.771  -240.057±23.884  201.062±11.982  -14.983±0.545  -183.915±16.249  

 

We performed analysis of energy contribution of residues to binding for both simulations 

obtained from MMPBSA calculation using g_mmpbsa [45]. Sequence alignment was performed 

using msa package [35]. ClustalW [36], Clustal Omega [37] and Muscle[38] algorithms were 

used for sequence alignment. The binding state with LBD with binding energy ~ -129.443 kJ/mol 

(Table 1), which the residues Asp65, Tyr64, ILE52, GLU48, and Arg61 contribute most to 

(Figure 8). 
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Fig. 8 Energy contribution of LBD amino acid residues from simulation 1. 

Residue interaction and sequence alignment show that quercetin interacts with very

conservative amino acid that includes Tyr64, Arg61, Asp73, and others (Figure 9). Quercetin

interacts with 7 fully conserved amino acids. In total 10 amino acids participate in the

interaction, where amino acid conservation is more than 75%. 

 

Fig. 9 Interaction of conserved amino acids of LBD of LasR with quercetin molecule. Boxes and

arrows point the amino acid residues that interact with quercetin. 
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Then we performed analysis of which rings of the quercetin molecule participate in the

interaction with the amino acids. Aps65 interacts with hydroxyl group of ring C at position 3 and

hydroxyl groups of ring B at positions 3’ and 2’ (Figure 1). Tyr64 interacts with atoms from ring

C: with hydroxyl groups at position 3 and with oxygen at position 1 and 4. Tyr64 also interacts

with ring A: with hydroxyl groups at position 5. Ile52 interacts with ring C and B: with hydroxyl

group at position 3 of ring C, and hydrogen at position 6’ of ring B. Arg61 interacts with ring C:

oxygen at position 4 and hydroxyl group at position 3. Leu36 interacts with ring A: with

hydrogen at position 6 and hydroxyl group at position 5. Val76 which is a conservative residue

interacts with ring A: with hydroxyl group at position 7. Amino acids that contribute positively

include Asp73 and Ser129. Asp73, which is conservative residue, interacts with ring A: with

hydroxyl group at position 7. The hydroxyl group at position 7 is necessary for inhibitory activity

and has been shown experimentally [16]. 

The new binding state with LBD-SLR-DBD bridge or “the bridge” of LasR with energy

~ -183.915 kJ/mol (Table 1), where residues Glu11, Leu177, Leu236, Lys182, Lys218 contribute

most (Figure 10). 

 

Fig. 10 Energy contribution of LBD-SLR-DBD bridge amino acid residues from simulation 2. 
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Analysis of residue sequence alignment show quercetin interacts with very conservative
amino acids such as Leu236, Leu177, Phe219, Trp19 (Figure 11). Quercetin interacts with 12
fully conserved amino acids. In total 16 amino acids participate in the interaction, where amino
acid conservation is more than 75%. 

 

 

Fig. 11 Interaction of conserved amino acids of LBD-SLR-DBD bridge (“the bridge”) with the

autoinducer molecule. Boxes and arrows point the residues that interact with quercetin. 

 

In this new binding site Glu11 from LBD, Leu177 from SLR and Lys236 of DBD

participate in the interactions with LasR. Then we performed analysis of which parts of the

quercetin molecule interact with the amino acid residues. Glu11 interacts with ring B: mainly

with carbon atoms and hydroxyl groups at position 4’ and 3’. Leu177 interacts with ring A:

especially carbon atoms at position 7 and 6 and hydroxyl group at position 7. Leu236 interacts

with rings A, B, and C: carbon and hydroxyl groups at position 7 of ring A, hydrogen of ring B

at position 6’, carbon and hydrogen at position 8 of ring C. Lys182 interacts with ring A and C:

carbon atoms of ring A at position 7 and 8. This result clearly suggests that both of the C-

terminal and the N- terminal of LasR interact with quercetin.  

ve 
12 
no 

he 

D 

he 

ly 

A: 

cts 

 B 

C: 

-

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2017. ; https://doi.org/10.1101/239996doi: bioRxiv preprint 

https://doi.org/10.1101/239996
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Conclusion 

From the simulations, it can be safely concluded that quercetin can bind both to LBD and 

to “bridge” of transcriptional regulator LasR. This suggests that there are multiple binding modes 

rather than one. From experimental studies, it has been shown that hydroxyl group at position 7 

of ring A is important for inhibitory activity. In our case, it is visible that quercetin interacts with 

Leu177 with hydroxyl group at position 7 from ring A. This amino acid residue is a conservative 

and from the short linker region between LDB and DBD. This could explain how quercetin 

inhibits DNA binding by preventing hinge rotation of DBD. 

The interaction with the LBD-SLR-DBD bridge is a novel site. The analysis of binding 

energy shows that the interaction of quercetin with “bridge” is not competitive. Conservative 

amino acids such as Leu177, Leu236, Lys182, Lys218 contribute most during the interaction 

with LBD-SLR-DBD bridge. This could suggest that for the inhibition of DNA binding 

capability, it is necessary the interaction of quercetin with the “bridge”.  

This study may reveal new insights of the interactions of the quercetin with 

transcriptional regulator LasR of P. aeruginosa. Results from this study may explain why 

quercetin is effective at inhibiting transcriptional regulator LasR and stop biofilm and virulence 

gene expression. 
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