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Abstract

The capability of directing gaze to relevant parts in the environment is crucial
for our survival. Computational models based on ideal-observer theory have
provided quantitative accounts of human gaze selection in a range of visual
search tasks. According to these models, gaze is directed to the position in a
visual scene, at which uncertainty about task relevant properties will be reduced
maximally with the next look. However, in tasks going beyond a single action,
delayed rewards can play a crucial role thereby necessitating planning. Here
we investigate whether humans are capable of planning more than the next
single eye movement. We found evidence that our subjects’ behavior was better
explained by an ideal planner compared to the ideal observer. In particular,
the location of the first fixation differed depending on the stimulus and the time
available for the search. Overall, our results are the first evidence that our visual
system is capable of planning.

Actively deciding where to direct our eyes is an essential ability in fundamental 1

tasks, which rely on acquiring visual information for survival such as gathering 2

food, avoiding predators, making tools, and social interaction. As we can only 3

perceive a small proportion of our surroundings at any moment in time due to 4

the spatial distribution of our retinal receptor cells1, we are constantly forced to 5

bring task relevant parts of the visual scene into focus using eye movements2. 6

Thus, vision is a sequential process of active decisions. These decisions have 7

been characterized in terms of optimizing performance in the ongoing task3–7, 8

maximizing knowledge about the environment8–10, or targeting gaze towards 9

locations that are most salient11. 10

To understand the requirements of perceptual tasks, ideal-observer analy- 11

sis12,13 has been very successful based on the idea that visual perception is 12
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inference of latent causes based on sensory signals14,15. In this framework, the 13

goal of the visual system is to use sensory data D to infer unknown properties of 14

the state s of the environment. For example, s could be indicating whether there 15

is a predator hiding behind a bush, and by directing gaze to the bush visual 16

data D about the latent variable describing the true state s of the environment 17

is obtained. This information can be incorporated into what is known about s 18

using Bayes’ theorem P (s|D) = P (D|s)P (s)/P (D). Hence, the ideal observer 19

combines prior knowledge P (s) and sensory information P (D|s) to form an up- 20

dated posterior belief about environmental states relevant to the specific task. 21

The ideal-observer paradigm has been used successfully to understand how hu- 22

mans choose locations for the next saccade. Specifically, human eye movements 23

use the current posterior and target the location where they expect uncertainty 24

about task relevant variables to be reduced most after having acquired new data 25

from that location in situations such as visual search3, face recognition5, and 26

temporal event detection6. 27

A limitation of ideal-observer theory is that performing sensory inference by 28

itself does not prescribe an action, i.e. information about s in the end needs 29

to be used to decide for an appropriate action, e.g. whether to flee. The costs 30

and benefits for the potential outcomes of the action can be very different, 31

e.g., not to flee if a predator is present is more costly than an unnecessary 32

flight. Bayesian decision theory provides such an answer by using the costs 33

and benefits of different outcomes with the respective uncertainties of the as- 34

sociated outcomes. Hence, different potential outcomes of s are weighted with 35

a utility function U(a, s) to determine the action with highest expected util- 36

ity: a = argmaxa
�
s
U(a, s)P (s|D)ds. Thus, it may be better to flee, even 37

when one is not absolutely certain that a predator is hiding behind a bush, be- 38

cause the consequences may be particularly harmful. Interestingly, within this 39

framework, the optimal action targets the location where the next fixation will 40

reduce uncertainty the most and not the location that currently looks like the 41

most probable target location. Indeed, both explicit monetary rewards16 and 42

implicit behavioral costs6 in experimental settings have been shown to influence 43

eye movement choices. 44

However, Bayesian decision theory is limited to a particular subset of visual 45

tasks, namely tasks that do not involve planning. Repeatedly taking the action 46

with the maximum immediate utility in general may fail in tasks with longer 47

action sequences and delayed rewards depending on the specific task structure. 48

In these cases, an ideal planner based on the more powerful framework of belief 49

MDPs, which contains the ideal observer and the Bayesian decision maker as 50

special cases, is needed to find the optimal strategy. A Markov Decision Process 51

(MDP)17,18 is a tuple (S,A, T,R, γ), where S is a set of states, A is a set 52

of actions, T = P (s�|s, a) contains the probabilities of transitioning from one 53

state to another, R represents the reward, and finally, γ denotes the discount 54

factor. In a belief MDP only partial information about the current state s is 55

available, therefore a probability distribution over states is kept as a belief state 56

b(s) = P (s | D)19. The expected reward associated with performing action a in 57
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Figure 1. Experimental design. (a) Gaze contingent visual search paradigm. Targets were only visible in close
proximity to the current fixation location (i.e., inside the search area). (b) Procedure for a single trial. Subjects fixated a
fixation cross either shown on the left or the right side, respectively. The shape appeared 750 ms prior to the start of the
search. The search time was initiated by the participants’ gaze crossing the dotted line. The line, however, was not
visible to the subjects. Depending on the condition (short or long) subjects were able to perform one or two fixations
inside the shape. (c) Raw gaze data is shown for a trial with short search time and initial fixation on the right side
(upper panel) and for a trial with long search time and initial fixation on the left side (lower panel). Shapes were
mirrored in a counterbalanced design to ensure equal orientation with respect to the initial fixation cross.

a belief state b(s) is denoted by the action-value function Q: 58

Q(b(s), a) =

�

b(s�)

{P
�
b(s�) | b(s), a

��
R(b(s�)

�
+ γV ∗�b(s�)

��
}db(s�) (1)

where V ∗(b(s�)) is the expected future reward gained from the next belief state 59

b(s�). Essentially, what this means is that the value of an action based on the 60

current belief is a combination of the immediate reward and the long term ex- 61

pected reward, weighted by how likely the next belief is under the action. Thus, 62

as the belief about the state of task relevant quantities depends on uncertain 63

observations, actions are influenced both by obtaining rewards and obtaining 64

more evidence about the state of the environment. 65

In the present study we devised a task that allows probing whether ideal- 66

observer models are sufficient to describe human eye movement strategies. For 67

our visual search task, we derived computational models based on ideal-observer 68

theory as well as on the framework of belief MDPs. Using these models, we 69

specifically created our stimuli such that the two models led either to differ- 70
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ent behavioral sequences or to the same behavioral sequences. The rationale 71

for this was to not only show the differences between ideal planer and ideal 72

observer but to also demonstrate that the solutions of both may lead to the 73

same action sequence, depending on the structure of the specific task. Using 74

this experimental paradigm we are able to test whether human eye movement 75

strategies follow the computational principles underlying ideal-observer theory 76

and sequential Bayesian decision making or whether the strategies are planned 77

and future rewards need to be considered (belief MDP). 78

Results 79

Visual search as planning under uncertainty. To develop a computa- 80

tional model of visual search as optimal planning under uncertainty it is first 81

necessary to specify the relevant quantities describing the task, i.e. the state 82

representation. In our visual search task (Fig. 1), a suitable candidate for 83

a state representation is the target location and the current location of gaze. 84

However, in general, the exact location of the target is unknown. Therefore, we 85

formalize the probability distribution of the target as a belief state. The action 86

space comprises potential fixation locations and with each action we receive in- 87

formation about the target, update our belief and transition to the next belief 88

state. The reward function is an intuitive mapping between the belief state, 89

which comprises the knowledge about the location of a potential target, and the 90

probability of finding the target. 91

How should the actor decide where to look next according to this frame- 92

work? A policy π is a sequence of actions and the optimal policy π∗ comprises 93

actions a = argmaxa Q(b(s), a) that maximize the expected reward. In tasks 94

comprising sequences of actions, the optimal strategy, the ideal planner, incor- 95

porates rewards associated with future actions (V ∗(b(s�)) into action selection. 96

As a result, the sequence of actions that leads to the maximum total reward is 97

chosen: 98

π∗
ideal planner = argmax

a0,a1,...,an

E[r0 + γr1 + · · ·+ γnrn] , (2)

where γ is the discount factor, which controls how much future rewards influence 99

the current action selection. 100

Ideal observer as special case of the ideal planner. If we are only in- 101

terested in the optimal next action (γ = 0) or if there is only a single action to 102

perform equation (1) simplifies to: 103

Q(b(s), a) =

�

b(s�)

P
�
b(s�) | b(s), a

�
R
�
b(s�)

�
db(s�) (3)

where P
�
b(s�) | b(s), a

�
is the posterior over relevant quantities in the task 104

and R(s, a) is the cost or reward function. Therefore, if reduced to the next 105

action alone, the ideal planner reduces to the ideal observer with an action 106
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Figure 2. Computational models for visual search. (a) Illustration of optimal scanpaths for both models
depending on the search time. For the short search interval (left side, one fixation) both models show the same behavior.
For the long search interval (right side, two fixations), the ideal observer and the ideal planner differ with respect to the
scanpath. While the ideal observer’s next fixation is chosen to maximize the immediate reward (better performance after
the first fixation, bottom row), the ideal planner’s scanpath is chosen to maximize performance after two fixations.
Computational complexity (depicted as decision trees) is higher for the ideal planner as in the condition with long search
intervals all two-fixation sequences are evaluated in order to maximize performance. (b) Shapes used in our visual search
experiment. For each shape the optimal policy is shown for the ideal observer (pink) and the ideal planner (green).
Whether these models lead to different strategies depends on the particular shape. Scanpaths are the same for Shapes S1
and S3, but differ for S2 and S4.

selected to maximize task success after the next action. For sequences of actions, 107

the sequential application of the ideal-observer paradigm leads to the action 108

sequence: 109

πideal observer =

�
argmax

a0

E[r0], argmax
a1

E[r1], . . . , argmax
an

E[rn]
�

, (4)

where a0, . . . , an is the sequence of actions that yields the maximum expected 110

return rt for each time step t. Whether πideal observer and π∗
ideal planner lead to 111

the same action sequence depends on the specific nature of the task. However, 112

in general: 113

π∗
ideal planner �= πideal observer (5)

as can be seen in Fig. 2. Ideal-observer approaches only lead to optimal actions 114

if future rewards do not play a role, for example, if only a single action is 115

concerned. 116
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Figure 3. Main behavioral und model results. (a) Mean human scanpaths for both conditions (solid lines
correspond to long search intervals, dashed lines correspond to short search intervals) are shown in the left column.
Colors refer to the condition and the position within the scanpath(red: short search interval, green: first fixation in the
long search interval, and blue: second fixation in long search interval). Dots depict mean fixation locations aggregated
for each subject individually, error bars show the standard deviation for the fixation location aggregated over all data.
The scanpaths suggested by the best fitting models for the ideal planner and the ideal observer are shown in the center
and the right column, respectively. Again, solid lines depict the strategy for the long search interval, dashed lines for the
short search interval. Global means of the human data are also shown for reference (red, green, and blue). (b) Actual
and predicted spatial relation of first saccades for all four shapes. Graphs are centered at the fixation location in the
short search interval condition. Arrows depict the displacement of the first fixation location in the long search interval
relative to the short interval. Arrow color corresponds to the data source. For the ideal observer, the first fixation
location is the same for both conditions (indicated by the square centered at (0,0)). (c) Difference in BIC between all
tested models. The lower bound corresponds to a model directly estimating the mean fixation locations for each shape
and condition from the data (3 × 4 means).

Surprisingly, all of the reviewed computational models for eye movements are 117

myopic, i.e. they choose actions that maximize the immediate reward3,20,16,5–7. 118

In practice, the problem of delayed rewards is circumvented by either inves- 119

tigating only single saccades or by choosing tasks where both policies lead to 120

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 26, 2017. ; https://doi.org/10.1101/240010doi: bioRxiv preprint 

https://doi.org/10.1101/240010


equivalent solutions. To our knowledge, there exist neither computational mod- 121

els nor empirical data investigating whether humans are capable of planning 122

eye movements. The execution of eye movement sequences has been subject 123

to psychological research and results have shown that the latency of the first 124

saccade was higher for longer sequences of saccades21. Also, discrimination per- 125

formance was enhanced at multiple locations within an instructed sequence of 126

saccades22. Further, if an eye movement plan was interrupted by additional in- 127

formation midway the execution of the second saccade was delayed23. Although 128

these results indicate that a scanpath of at least two saccades is internally pre- 129

pared before execution, no light is shed on whether multiple future fixation 130

locations are jointly chosen to maximize performance in a task. 131

Behavioral and model results. The mean fixation location for each par- 132

ticipant separately for all shapes and conditions is shown in Fig. 3a. Also, 133

fixation sequences for the best fit of the ideal observer (right column) and the 134

ideal planner (center column) are depicted. Visual inspection suggests, that the 135

behavioral data is closer resembled by the results of the ideal planner. To test 136

whether eye movements were planned, we compared the first fixation location 137

in the short condition to the first fixation location in the long condition for all 138

shapes. If subjects were capable of performing planning, we expected a differ- 139

ence in the first fixation location for Shape S2 and S4. We used Hotelling’s 140

T-test to compare the bivariate landing positions of the first saccade between 141

the two search intervals (Supplementary Table 1). Indeed, mean target loca- 142

tions for the first saccade were different in Shape S2 and S4. No significant 143

differences, however, were found in shapes S1 and S3. This behavior was well 144

predicted by our ideal planner, but not by the ideal observer. In addition, the 145

direction of the spatial difference of the first fixation location between the search 146

interval conditions followed the course suggested by our ideal planner (Fig. 3b). 147

Bounded actor extensions. We extended both the ideal observer as well 148

as the ideal planner to yield a more realistic model for human visual search 149

behavior, i.e. a bounded actor (see Materials). We added additive costs for 150

longer saccade amplitude (as they lead to longer scanpath duration24 and higher 151

endpoint variability25, which humans have been shown to minimize26), used 152

foveated versions of the shapes to account for the decline of visual acuity in 153

peripheral vision27, and accounted for the often reported fact, that human sac- 154

cades undershoot their target28,29. We used the sum of squared errors between 155

our model prediction and our data to compute the BIC for each model. Figure 156

3c shows the difference in BIC of all models compared to the best model. The 157

lower bound was derived by computing the mean fixation locations directly from 158

the data (3× 4 parameters). The difference in BIC values between two models 159

is an approximation for the log Bayes factor and a difference ΔBIC > 4.6 is 160

considered to be decisive30. Results clearly favor the ideal planner over the 161

ideal observer (ΔBIC = 138). Crucially, the ideal planner without any param- 162

eter fitting still provided a better description of our human data than the ideal 163
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observer with all extensions (ΔBIC = 27). Further, all model extensions did 164

not only improve our model fit for the ideal planner but were favored by model 165

selection, suggesting that they are needed for describing the eye movement data 166

in our experiment (ΔBIC = 11 between ideal planner with all extensions and 167

ideal planner without undershot). 168

Parameter estimates for the saccadic undershot were similar for the ideal 169

observer (4.14 %) and the ideal planner ( 5.07 %). The influence of the costs for 170

longer saccades was higher for the ideal observer (1.2 DP / Deg) compared to 171

the ideal planner (0.55 DP/Deg). The unit of the costs is detection performance 172

(DP) per degree (Deg) and states, how much performance subjects were willing 173

to give up to shorten saccade amplitudes by one visual degree. We also estimated 174

the radius of the circular gaze contingent search shape centered at the current 175

fixation. Parameter estimation yielded values very close to the true radius 176

and did not improve model quality for neither the ideal planner nor the ideal 177

observer. 178

Discussion 179

It has been unclear whether sequences of human eye movements are planned 180

ahead in time. Prior studies indicate that multiple saccadic targets are jointly 181

prepared as a scanpath and that cueing new targets during execution of eye 182

movements results in longer execution times21–23. However, to our knowledge 183

there has been no experimental evidence that eye movements are chosen by 184

considering more than one step ahead into the future. Instead, the ideal-observer 185

paradigm, that models human eye movements as sequential Bayesian decisions 186

has been the predominant approach. 187

In our study we tested whether the implicit assumptions that accompany the 188

ideal observer are justified. Therefore, we contrasted the ideal observer with the 189

more general ideal planner that was formalized as a Markov Decision Process18 190

with partially observable states19. We formalized policies for the ideal observer, 191

only considering the immediate reward for action selection, and for the ideal 192

planner, which also considers future rewards. Next, we derived the specific cir- 193

cumstances under which the models produce different policies. Ultimately, we 194

used these insights to manufacture stimuli that maximized the behavioral differ- 195

ences elicited by the different cognitive strategies and also obtained stimuli that 196

show very similar strategies. Thus, the resulting stimuli were highly suitable for 197

examining which cognitive strategy was adopted by our subjects. 198

We developed a visual search task where we expected different behavioral 199

sequences depending on the cognitive strategy of our subjects. In particular, 200

we investigated whether subjects adjust their scanpath during visual search 201

dependent on the duration of the search interval. Therefore, we controlled the 202

length of the saccadic sequence. The short search interval allowed subjects to 203

execute a single saccade, while in the long search interval subjects were able to 204

fixate two locations. 205

Our results suggest that eye movements are indeed planned. Subjects’ scan- 206
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path was very well predicted by the ideal planner while showing severe deviations 207

from the scanpath proposed by the ideal observer. Crucially, this was the case 208

even if the sequence required planning. We found fixation locations to be dif- 209

ferent depending on the duration of the search interval. This difference is only 210

expected under the ideal planner and can not be explain by the ideal observer. 211

Finally, model comparison favored the ideal planner and its extensions over the 212

ideal observer by a large margin. Furthermore, extending our ideal planner 213

model to a bounded planner, we found evidence that subjects traded off task 214

performance and saccade amplitude. Including additive costs for saccades with 215

great amplitude into the ideal planner and accounting for saccadic undershot 216

was best capable of explaining our data further. 217

Finding and executing near optimal gaze sequences is crucial for many ex- 218

tended sequential every-day tasks31,32. The capability of humans to plan be- 219

havioral sequences gives further insights into why we can solve so many tasks 220

with ease, which are extremely difficult from a computational perspective. In 221

many visuomotor tasks coordinated action sequences are needed rather than 222

single isolated actions33. This leads to delayed rewards and thus a complex pol- 223

icy is required rather than an action that directly maximizes the performance 224

after the next single gaze switch. Additionally, our findings have implications 225

for future models of human eye movements. While numerous influential past 226

models have not taken planning into consideration3,5,6,20, our results indicate 227

that in the case of visual search humans are capable of including future states 228

into the selection of a suitable scan path. 229

The broader significance of the present results beyond the understanding of 230

eye movements lies in the fact that human behavior in our experiment was best 231

described by a computational model of a bounded probabilistic planning under 232

perceptual uncertainty algorithm. In this framework, sensory measurements 233

and goal directed actions are inseparably intertwined34,35. So far, the predom- 234

inant approach to probabilistic models in perception has been the ideal ob- 235

server12,13, which can be formalized in the Bayesian framework14,15 as inferring 236

latent causes in the environment giving rise to sensory observations. Models of 237

eye movements selection have so far used ideal observers3,5,6 without planning. 238

Probabilistic, Bayesian formulations of optimality in perceptual tasks36,37, cog- 239

nitive tasks38,39, reasoning40, motorcontrol41, learning42, and planning43 have 240

lead to a better understanding of human behavior and the quest to unravel, how 241

the brain could implement these computations44–46, which are known in general 242

to be intractable47. Our results extend the current understanding by demon- 243

strating that planning under perceptual uncertainty is also part of the repertoire 244

of human visual behavior and open up the possibility to understand recent neu- 245

rophysiological results48 within the planning under uncertainty framework. 246

Methods 247

Participants. Overall, 16 subjects (6 female) participated in the experiment. The subjects’ 248

age ranged from 18 to 30 years (M = 21.8, SD = 3.1). Participants either received monetary 249

compensation or course credit for participation. All subjects had normal or corrected to 250

normal vision (four wore contact lenses). One subject stated to have dyschromatopsia, which 251
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had no influence on the experiment. Sufficient eye tracking quality was ensured for all data 252

entering the analysis. In each trial a single fixation location (short search interval) or a 253

sequence of two fixation locations (long search interval) entered the analysis. Further, informed 254

consent was obtained from all participants and all experimental procedures were approved by 255

the ethics committee of the Darmstadt University of Technology. 256

Task. In our task subjects searched for a hidden target within irregularly bounded shapes 257

(Fig. 1a). Using a gaze contingent paradigm the hidden target only became visible if a 258

fixation landed close enough (||pFix − pTar|| < 6.5�). The search area was made explicit by 259

showing the shape’s texture for all points closer than 6.5� to the fixation location. Targets 260

within that area became visible to the participant after a delay of 130 ms. This was done 261

to prevent participants from sliding over the image and instead encourage them to perform 262

distinct fixations. Texture was chosen to reinforce the feeling of looking through the shape 263

(subjects were told to imagine wearing x-ray goggles). 264

A single trial was as follows (Fig. 1b): Participants fixated a fixation cross that was 265

randomly presented either on the left or the right side of the screen. After 1 s the shape was 266

shown in the center of the screen, thus subjects were given access to peripheral information 267

about the shape. Shapes were mirrored if necessary yielding equal distances for left and right 268

starting points. After 750 ms the fixation cross disappeared and participants could initiate the 269

search for the target. Trials in which the first saccade was made while the fixation cross was 270

still visible were dismissed and had to be repeated. It was made transparent to the participants 271

that the search interval started once they made the first eye movement as opposed to when 272

the fixation cross disappeared. After the search interval was over the shape disappeared and 273

participants were asked, whether it contained a target. Overall, shapes contained a target in 274

half the trials. We used two durations as search intervals: a short interval (250 ms) providing 275

enough time for a single saccade and a long interval (550 ms) providing enough time for 276

two saccades. Trials were presented in blocks either containing only short intervals or long 277

intervals, respectively. 278

Materials. Our computational models enabled us to specifically select shapes that facilitate 279

testing our hypothesis. In particular, we identified stimuli that triggered different policies 280

for the ideal-observer model and the ideal-planner model. First, multiple candidates shapes 281

were generated using the following approach: Five points were drawn uniformly in a bounded 282

area (23.24�× 23.24�). Next, a B-spline was fitted to the random points. Finally, the shapes 283

bounded by the splines using the fitted parameters were filled with a texture (white noise). We 284

applied both models to identify shapes that lead to different policies. Overall, four different 285

shapes were used in the experiment (see Fig. 2b). We chose two shapes where optimal behavior 286

requires planning (S2 and S4) and two where it does not (S1 and S3), i.e. where the sequence 287

of eye movements from the ideal observer and the ideal planner coincide. In each category 288

we selected two shapes by visual inspection ensuring that they were similar with respect to 289

the area covered. For display during the experiment the shapes were upscaled with a factor 290

of 1.5 and centered on the monitor such that the center of the shapes bounding box matched 291

the center of the screen. 292

The target was a circular grating stimulus (0.87�in diameter). Contrast was set in a way 293

that it was easily detected if it was within the visible search radius of the current fixation. 294

The target’s position was generated by randomly choosing a location within the shape. 295

Procedure. After signing a consent form the eye tracker (SMI Red, 250 Hz) was calibrated 296

using a 3 point calibration. Subsequently, subjects completed three to five short training 297

trials (about 1 minute) as part of the experiment instruction. During these training trials it 298

was ensured that the search time was sufficiently long for the individual subject to execute 299

a single saccade in the short condition and two fixations in the long condition, respectively. 300

If necessary the search time was adjusted (between 500ms and 580ms, for the long search 301

interval). Participants were encouraged to ask questions if anything was unclear. After train- 302

ing, participants answered ten questions from a checklist to ensure that they understood the 303

task properly (e.g., when does the search interval start and how many targets can be found 304
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at most). Incorrect answers were documented and the correct answers were discussed. Af- 305

ter successfully finishing the training, four blocks each containing 100 trials were performed. 306

Thereby, the order of the blocks was either SSLL (two blocks with short search time followed 307

by two blocks with long search time) or LLSS. Participants were randomly assigned to one of 308

the two orders. Eye tracking calibration was renewed before each block. 309

Preprocessing. First, fixations were extracted from the raw gaze signal using the software 310

of the eye tracking device. Overall, 6400 trials (16 participants × 4 blocks × 100 trials per 311

block) entered the preprocessing. 15 trials (0.23 %) were dismissed because the subjects failed 312

to target gaze towards the shape. In these trials, subjects triggered the beginning of the 313

trial by crossing the boundary, however did not engage in visual search. While search time 314

was adjusted to enable subjects to perform a single saccade in the short condition and two 315

saccades in the long condition, respectively, in 17 % of the trials subjects failed to do so. 316

Since we are only interested in comparing the difference between strategies consisting of one 317

or two targeted locations we only used the remaining 5288 trials. Next, we excluded trials 318

where the target was found during executing the search strategy leaving 3145 trials. Clearly, 319

behavior after successfully finding the target is confounded and does no longer provide valid 320

information about the search strategy. 321

Our analysis and our estimated model parameters rely on mean landing positions aggre- 322

gated within subjects. Therefore, we need to make sure that the variation in landing positions 323

arises due to saccadic endpoint variability or uncertainties the subject might have about the 324

shape, but not from qualitatively different strategies. Shapes S1 and S3 consist of two separate 325

parts, as a consequence the reward distribution is no longer unimodal across potential gaze 326

targets (see Supplementary Figure 1a). Indeed, qualitatively different strategies in the short 327

condition were found for these stimuli (see Supplementary Figure 1b). Computing mean gaze 328

locations therefore leads to strategies that are qualitatively different from the real data. To 329

further analyze the gaze targets of our participants, we first identified the strategy for each 330

trial using a Gaussian mixture model. We only considered the most frequent strategy (see 331

Supplementary Figure 1c) for both shapes and discarded trials (11.4 %) deviating from the 332

chosen strategy. However, our findings do not depend on the particular choice of strategy as 333

shapes that revealed differences between the ideal observer and the ideal planner (S2 and S4) 334

did not elicit different strategies. The remaining 2785 trials were used for our analysis. 335

Model. Here we derive expressions that implement the general mechanisms of equation (2) 336

and (4) for our visual search task. According to our experimental design participants directed 337

their gaze to suitable locations within a shape in order to decide if a target was present. 338

Depending on the condition, the action sequence in our task comprised one (short condition) 339

or two (long condition) fixation locations. Formally, the greedy policy of the ideal observer 340

(equation (4)) leads to the sequence of fixation locations (x0, y0), (x1, y1), . . . , (xn, yn) that 341

maximizes the quality of the decision after each step. In the case of two fixations this leads 342

to: 343

πideal observer :=

�
argmax
(x0,y0)

P (correct | x0, y0), argmax
(x1,y1)

P (correct | x0, y0, x1, y1)

�
(6)

where xn, yn are the coordinates of nth fixation location and P (correct|xn, yn) denotes the 344

probability of deciding correctly whether a target is present after the nth fixation. 345

The non greedy policy of the ideal planner can be derived from equation (2) in a similar 346

fashion. Again, we consider the case of two fixations (LI). Here, the next fixation location is 347

determined by maximizing the reward simultaneously using the next two fixation locations: 348

πideal planner := argmax
(x0,y0),(x1,y1)

P (correct | x0, y0, x1, y1) (7)

Thereby, (x0, y0) is the next location and (x1, y1) is the location thereafter. By jointly op- 349

timizing the entire sequence of fixation locations the ideal planner is always equal or better 350

compared to the ideal observer. Intuitively, πideal observer and πideal planner yield the same 351

action sequence if the sequence only contains a single action, i.e. a single fixation. Also, the 352

first fixation location of ideal observer is the same for both conditions. Crucially, this is not 353
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the case for πideal planner. By jointly maximization the reward over the whole action sequence, 354

even the first fixation location can differ between the conditions. 355

Next, we derive the probability of a correct decision given a sequence of fixation locations 356

since both proposed policies depend on the performance in the task, i.e., the detection proba- 357

bility. The probability of correctly judging the presence of a target is proportional to the area 358

covered by the search. This can be computed as: 359

P (correct | xn, yn) ∝
�

x

�

y

PT (x, y)PO(x, y|xn, yn) (8)

where PT (x, y) is the probability that the target is located at (x, y) and PO(x, y|xn, yn) is the 360

probability that the location (x, y) is covered by the search given that the saccade was targeted 361

at (xn, yn). The former is 1/N if (x, y) lies within the shape and zero otherwise, where N 362

is the number of possible target locations. The latter depends on the distance between the 363

saccadic target (xn, yn) and the target location (x, y). Therefore: 364

PO(x, y|xn, yn) =

�
1 if || [xn − x, yn − y]T || < threshold

0 else
(9)

where the threshold is equal to the radius of the search area (6.5�). 365

Model extensions. To take into account known cognitive and biological constraints we need 366

to incorporate several well known characteristics of the human visual system. We introduced 367

costs on the saccade amplitude thus favoring smaller eye movements. As was shown by 368

prior research, greater amplitudes lead to higher endpoint variability25 and longer saccade 369

duration24. It has further been shown that humans attempt to minimize endpoint variability 370

when execution eye movements26. Therefore, we hypothesized that subjects show a preference 371

for smaller saccade amplitudes. Computationally, we obtain the total reward as a combination 372

of performance and saccade amplitude 373

rn(α) = αP (correct|xn, yn)− (1− α)c(xn, yn) (10)

where c is a linear cost function returning the amplitude of the saccade. The parameter α 374

determines how much detection probability a subject is willing to give up in order to decrease 375

saccade amplitude6. It was estimated from the mean fixation locations of our participants 376

using least squares. 377

Next, the human visual system does not have access to visual content at all locations 378

in the field of view with unlimited precision. We accounted for the decline of visual acuity 379

at peripheral locations. Therefore, foveated versions of the shapes were generated using the 380

known human contrast sensitivity function (see ref. 27, 3, 5, for example). For the first 381

fixation foveation was computed using the initial fixation location of the trial. As it was not 382

computationally tractable to compute foveated images corresponding to the exact location 383

of the first landing position, we approximated it by using the mean fixation location of our 384

subjects instead. 385

Finally, prior studies have shown that saccades undershot target locations29. Initial 386

landing positions are closer to the start location of a saccade. The final target is reached 387

using subsequent corrective saccades. However, in our experiment there is no visible fixation 388

target, therefore corrective saccades might not be present. To account for that we estimated 389

the undershot from our data. 390

Code availability. The codes used for our models are available from the corresponding au- 391

thor on request. 392

Data availability. The data that support the findings of this study are available from the 393

corresponding author on request. 394
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