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Abstract

Background: Mathematical modeling is a powerful tool to analyze, and
ultimately design biochemical networks. However, the estimation of the
parameters that appear in biochemical models is a significant challenge.
Parameter estimation typically involves expensive function evaluations and noisy
data, making it difficult to quickly obtain optimal solutions. Further, biochemical
models often have many local extrema which further complicates parameter
estimation. Toward these challenges, we developed Dynamic Optimization with
Particle Swarms (DOPS), a novel hybrid meta-heuristic that combined
multi-swarm particle swarm optimization with dynamically dimensioned search
(DDS). DOPS uses a multi-swarm particle swarm optimization technique to
generate candidate solution vectors, the best of which is then greedily updated
using dynamically dimensioned search.

Results: We tested DOPS using classic optimization test functions, biochemical
benchmark problems and real-world biochemical models. We performed T = 25
trials with N = 4000 function evaluations per trial, and compared the
performance of DOPS with other commonly used meta-heuristics such as
differential evolution (DE), simulated annealing (SA) and dynamically
dimensioned search (DDS). On average, DOPS outperformed other common
meta-heuristics on the optimization test functions, benchmark problems and a
real-world model of the human coagulation cascade.

Conclusions: DOPS is a promising meta-heuristic approach for the estimation of
biochemical model parameters in relatively few function evaluations. DOPS
source code is available for download under a MIT license at
http://www.varnerlab.org.
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Background
Mathematical modeling has evolved as a powerful paradigm to analyze, and ul-

timately design complex biochemical networks [1–5]. Mathematical modeling of

biochemical networks is often an iterative process. First, models are formulated

from existing biochemical knowledge, and then model parameters are estimated

using experimental data [6–8]. Parameter estimation is typically framed as a non-

linear optimization problem wherein the residual (or objective function) between

experimental measurements and model simulations is minimized using an optimiza-

tion strategy [9]. Optimal parameter estimates are then used to predict unseen

experimental data. If the validation studies fail, model construction and calibration
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are repeated iteratively until satisfactory results are obtained. As our biological

knowledge increases, model formulation may not be as significant a challenge, but

parameter estimation will likely remain difficult.

Parameter estimation is a major challenge to the development of biochemical mod-

els. Parameter estimation has been a well studied engineering problem for decades

[10–13]. However, the complex dynamics of large biological systems and noisy, often

incomplete experimental data sets pose a unique estimation challenge. Often opti-

mization problems involving biological systems are non-linear and multi-modal i.e.,

typical models have multiple local minima or maxima [7, 9]. Non-linearity coupled

with multi-modality renders local optimization techniques such as pattern search

[14], Nelder-Mead simplex methods [15], steepest descent or Levenberg-Marquardt

[16] incapable of reliably obtaining globally optimal solutions as these methods often

terminate at local minimum. Though deterministic global optimization techniques

(for example algorithms based on branch and bound) can handle non-linearity and

multi-modality [17, 18], the absence of derivative information, discontinuous objec-

tive functions, non-smooth regions or the lack of knowledge about the objective

function hampers these techniques.

Meta-heuristics like Genetic Algorithms (GAs) [19], Simulated Annealing (SA)

[20], Evolutionary Programming [21] and Differential Evolution (DE) [22–25] have

all shown promise on non-linear multi-modal problems [26]. These techniques do

not make any assumptions, nor do they require, a priori information about the

structure of the objective function. Meta-heuristics are often very effective at find-

ing globally optimal or near optimal solutions. For example, Mendes et al. used

SA to estimate rate constants for the inhibition of HIV proteinase [27], while Mod-

chang et al. used a GA to estimate parameters for a model of G-protein-coupled

receptor (GPCR) activity [28]. Parameter estimates obtained using the GA strat-

ified the effectiveness of two G-protein agonists, N6-cyclopentyladenosine (CPA)

and 5’-N-ethylcarboxamidoadenosine (NECA). Tashkova et al. compared different

meta-heuristics for parameter estimation on a dynamic model of endocytosis; DE

was the most effective of the approaches tested [29]. Banga and co-workers have also

successfully applied scatter-search to estimate model parameters [30–32]. Hybrid ap-

proaches, which combine meta-heuristics with local optimization techniques, have

also become popular. For example, Villaverde et al. developed the enhanced scatter

search (eSS) method [33], which combined scatter and local search methods, for

parameter estimation in biological models [32]. However, despite these successes,

a major drawback of most meta-heuristics remains the large number of function

evaluations required to explore parameter space. Performing numerous potentially

expensive function evaluations is not desirable (and perhaps not feasible) for many

types of biochemical models. Alternatively, Tolson and Shoemaker found, using

high-dimensional watershed models, that perturbing only a subset of parameters

was an effective strategy for estimating parameters in expensive models [34]. Their

approach, called Dynamically Dimensioned Search (DDS), is a simple stochastic

single-solution heuristic that estimates nearly optimal solutions within a specified

maximum number of function (or model) evaluations. Thus, while meta-heuristics

are often effective at estimating globally optimal or nearly optimal solutions, they

require a large number of function evaluations to converge to a solution.
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In this study, we developed Dynamic Optimization with Particle Swarms (DOPS),

a novel hybrid meta-heuristic that combines the global search capability of multi-

swarm particle swarm optimization with the greedy refinement of dynamically di-

mensioned search (DDS). The objective of DOPS is to obtain near optimal param-

eter estimates for large biochemical models within a relatively few function eval-

uations. DOPS uses multi-swarm particle swarm optimization to generate nearly

optimal candidate solutions, which are then greedily updated using dynamically

dimensioned search. We tested DOPS using a combination of classic optimization

test functions, biochemical benchmark problems and real-world biochemical mod-

els. First, we tested the performance of DOPS on the Ackley and Rosenbrock func-

tions, and published biochemical benchmark problems. Next, we used DOPS to

estimate the parameters of a model of the human coagulation cascade. On aver-

age, DOPS outperformed other common meta-heuristics like differential evolution,

simulated annealing, single-swarm particle swarm optimization, and dynamically di-

mensioned search on the optimization test functions, benchmark problems and the

coagulation model. For example, DOPS recovered the nominal parameters for the

benchmark problems using an order of magnitude fewer function evaluations than

eSS in all cases. It also produced parameter estimates for the coagulation model

that predicted unseen coagulation data sets. Thus, DOPS is a promising hybrid

meta-heuristic for the estimation of biochemical model parameters in relatively few

function evaluations.

Results

DOPS explores parameter space using a combination of global methods.

DOPS combines a multi-swarm particle swarm method with the dynamically dimen-

sioned search approach of Shoemaker and colleagues (Fig. 1). The goal of DOPS is

to estimate optimal or near optimal parameter vectors for high-dimensional biologi-

cal models within a specified number of function evaluations. Toward this objective,

DOPS begins by using a multi-swarm particle swarm search and then dynamically

switches, using an adaptive switching criteria, to the DDS approach. The parti-

cle swarm search uses multiple sub-swarms wherein the update to each particle

(corresponding to a parameter vector estimate) is influenced by the best particle

amongst the sub-swarm, and the current globally best particle. Particle updates

occur within sub-swarms for a certain number of function evaluations, after which

the sub-swarms are reorganized. This sub-swarm mixing is similar to the regroup-

ing strategy described by Zhao et al. [35]. DOPS switches out of the particle swarm

phase based upon an adaptive switching criteria that is a function of the rate of er-

ror convergence. If the error represented by the best particle does not decrease for a

threshold number of function evaluations, DOPS switches automatically to the DDS

search phase. The DDS search is initialized with the globally best particle from the

particle swarm phase, thereafter, the particle is greedily updated by perturbing a

subset of dimensions for the remaining number of function evaluations. The identity

of the parameters perturbed is chosen randomly, with fewer parameters perturbed

the higher the number of function evaluations.
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DOPS minimized benchmark problems using fewer function evaluations.

On average, DOPS performed similarly or outperformed four other meta-heuristics

for the Ackley and Rastrigin test functions (Fig. 2). The Ackley and Rastrigin

functions both have multiple local extrema and attain a global minimum value of

zero. In each case, the maximum number of function evaluations was fixed at N =

4000, and T = 25 independent experiments were run with different initial parameter

vectors. DOPS found optimal or near optimal solutions for both the 10-dimensional

Ackley (Fig. 2A) and Rastrigin (Fig. 2B) functions within the budget of function

evaluations. In each of the 10-dimensional cases, other meta-heurtistics such as

DDS and DE also performed well. However, DOPS consistently outperformed all

other approaches tested. This performance difference was more pronounced as the

dimension of the search problem increased; for a 300-dimensional Rastrigin function,

DOPS was the only approach to find an optimal or near optimal solution within the

function evaluation budget (Fig. 2B). Taken together, DOPS performed at least as

well as other meta-heuristics on small dimensional test problems, but was especially

suited to large dimensional search spaces. Next, we tested DOPS on benchmark

biochemical models of varying complexity.

Villaverde and co-workers published a set of benchmark biochemical problems to

evaluate parameter estimation methods [33]. They ranked the example problems

by computational cost from most to least expensive. We evaluated the performance

of DOPS on problems from the least and most expensive categories. The least ex-

pensive problem was a metabolic model of Chinese Hamster Ovary (CHO) with 35

metabolites, 32 reactions and 117 parameters [36]. The biochemical reactions were

modeled using modular rate laws and generalized Michaelis–Menten kinetics. On

the other hand, the expensive problem was a genome scale kinetic model of Saccha-

romyces cerevisiae with 261 reactions, 262 variables and 1759 parameters [37]. In

both cases, synthetic time series data generated with known parameter values, was

used as training data to estimate the model parameters. For the Saccharomyces cere-

visiae model, the time series data consisted of 44 observables, while for the CHO

metabolism problem the data corresponded to 13 different metabolite measurement

sets. The number of function evaluations was fixed at N = 4000, and we trained

both models against the synthetic experimental data. DOPS produced good fits to

the synthetic data (Fig. S1 and Fig. S2), and recapitulated the nominal parameter

values using only N ≤ 4000 function evaluations (Fig. S3). On the other hand,

the enhanced scatter search (eSS) with a local optimizer method, took on order 105

function evaluations for the same problems. DOPS also had lower variability in the

best value obtained (Fig. S8) and faster convergence (Fig. S5 and Fig. S6) across

multiple runs when compared to other meta-heuristics while requiring a compara-

ble amount of time (Fig. S4). Thus, DOPS estimated the parameters in benchmark

biochemical models, and recovered the original parameters from the synthetic data,

using fewer function evaluations. Next, we compared the performance of DOPS with

four other meta-heuristics for a model of the human coagulation cascade.

DOPS estimated the parameters of a human coagulation model.

Coagulation is an archetype biochemical network that is highly interconnected,

containing both negative and positive feedback (Fig. 3). The biochemistry of coag-

ulation, though complex, has been well studied [38–44], and reliable experimental
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protocols have been developed to interrogate the system [45–48]. Coagulation is

mediated by a family proteases in the circulation, called factors and a key group

of blood cells, called platelets. The central process in coagulation is the conversion

of prothrombin (fII), an inactive coagulation factor, to the master protease throm-

bin (FIIa). Thrombin generation involves three phases, initiation, amplification and

termination. Initiation requires a trigger event, for example a vessel injury which

exposes tissue factor (TF), which leads to the activation of factor VII (FVIIa) and

the formation of the TF/FVIIa complex. Two converging pathways, the extrin-

sic and intrinsic cascades, then process and amplify this initial coagulation signal.

There are several control points in the cascade that inhibit thrombin formation, and

eventually terminate thrombin generation. Tissue Factor Pathway Inhibitor (TFPI)

inhibits upstream activation events, while antithrombin III (ATIII) neutralizes sev-

eral of the proteases generated during coagulation, including thrombin. Thrombin

itself also inadvertently plays a role in its own inhibition; thrombin, through in-

teraction with thrombomodulin, protein C and endothelial cell protein C receptor

(EPCR), converts protein C to activated protein C (APC) which attenuates the co-

agulation response by proteolytic cleavage of amplification complexes. Termination

occurs after either prothrombin is consumed, or thrombin formation is neutralized

by inhibitors such as APC or ATIII. Thus, the human coagulation cascade is an

ideal test case; coagulation is challenging because it contains both fast and slow dy-

namics, but also accessible because of the availability of comprehensive data sets for

model identification and validation. In this study, we used the coagulation model

of Luan et al. [48], which is a coupled system of non-linear ordinary differential

equations where biochemical interactions were modeled using mass action kinetics.

The Luan model contained 148 parameters and 92 species and has been validated

using 21 published experimental datasets.

DOPS estimated the parameters of a human coagulation model for TF/VIIa ini-

tiated coagulation without anticoagulants (Fig. 5). The objective function was an

unweighted linear combination of two error functions, representing coagulation ini-

tiated with different concentrations of TF/FVIIa (5pM, 5nM) [45]. The number of

function evaluations was restricted to N = 4000 for each algorithm we tested, and

we performed T = 25 trials of each experiment to collect average performance data

(Table 1). DOPS converged faster and had a lower final error compared to the other

algorithms (Fig. 4). Within the first 25% of function evaluations, DOPS produced

a rapid drop in error followed by a slower but steady decline (Fig. S7b). Approxi-

mately between 500-1000 function evaluations DOPS switched to the dynamically

dimensioned search phase, however this transition varied from trial to trial since the

switch was based upon the local convergence rate. On average, DOPS minimized the

coagulation model error to a greater extent than the other meta-heuristics. However,

it was unclear if the parameters estimated by DOPS had predictive power on unseen

data. To address this question, we used the final parameters estimated by DOPS

to simulate data that was not used for training (coagulation initiated with 500pM,

50pM, and 10pM TF/VIIa). The optimal or near optimal parameters obtained by

DOPS predicted unseen coagulation datasets (Fig. 6). The normalized standard er-

ror for the coagulation predictions was consistent with the training error, with the

exception of the 50pM TF/VIIa case which was a factor 2.65 worse (Table 2). How-

ever, this might be expected as coagulation initiation with 50pM TF/FVIIa was
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the farthest away from the training conditions. Taken together, DOPS estimated

parameter sets with predictive power on unseen coagulation data using fewer func-

tion iterations than other meta-heuristics. Next, we explored how the number of

sub-swarms and the switch to DDS influenced the performance of the approach.

Phase switching was critical to DOPS performance.

A differentiating feature of DOPS is the switch to dynamically dimensioned search

following stagnation of the initial particle swarm phase. We quantified the influ-

ence of the number of sub-swarms and the switch to DDS on error convergence by

comparing DOPS with and without DDS for different numbers of sub-swarms (Fig.

7). We considered multi swarm particle swarm optimization with and without the

DDS phase for N = 4000 function evaluations and T = 25 trials on the coagula-

tion model. We used one, two, four, five and eight sub-swarms, with a total of 40

particles divided evenly amongst the swarms. Hence, we did not consider swarm

numbers of three and seven. All other algorithm parameters remained the same

for all cases. Generally, the higher sub-swarm numbers converged in fewer function

evaluations, where the optimum particle partitioning was in the neighborhood of

five sub-swarms. However, the difference in convergence rate was qualitatively sim-

ilar for four, five and eight sub-swarms, suggesting there was an optimal number of

particles per swarm beyond which there was no significant advantage. The multi-

swarm particle swarm optimization stagnated after 25% of the available function

evaluations irrespective of the number of sub-swarms. However, DOPS (with five

sub-swarms) switched to DDS after detecting the stagnation. The DDS phase re-

fined the globally best particle to produce significantly lower error on average when

compared to multi-swarm particle swarm optimization alone. Thus, the automated

switching strategy was critical to the overall performance of DOPS. However, it was

unclear if multiple strategy switches could further improve performance.

We explored the performance of DOPS if it was permitted to switch between the

PSO and DDS modes multiple times. This mode (msDOPS) had comparable per-

formance to DOPS on 10-d Ackley and Rastrigin functions, as well as on the 300-

dimensional Rastrigin function. However, msDOPS performed better than DOPS on

the CHO metabolism problem (Fig. 8a), with the average functional value being

nearly half that of DOPS. To further distinguish DOPS from msDOPS, we com-

pared the performance of each algorithm on the Eggholder function, a difficult

function to optimize given its multiple minima [49]. msDOPS outperformed DOPS

on the Eggholder function, however, neither version reached the true minimum at

-959.6407 on any trial with a budget of N = 4000 function evaluations (Fig. 8b).

We also explored the performance of msDOPS and DOPS on the 100 dimensional

Styblinksi-Tang function [50] (Fig. 8c). In this comparison, msDOPS significantly

outperformed DOPS, finding the true minimum before exhausting its function eval-

uation budget, while DOPS does not reach the minimum. Since the performance

of msDOPS was promising on these problems, we measured its performance on the

coagulation problem. Surprisingly, DOPS performed similarly to msDOPS on the

coagulation problem (Fig. 8d); the final average objective value for DOPS reached

0.9413% of the initial functional value, compared to 0.9428% for msDOPS. Taken

together, these results indicate that switching plays a key role in DOPS’s perfor-

mance and that for some classes of problems, multiple switching between modes
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produces a faster drop in objective value. However, the coagulation model results

suggested the advantage of msDOPS was problem specific.

Discussion
In this study, we developed dynamic optimization with particle swarms (DOPS), a

novel meta-heuristic for parameter estimation. DOPS combined multi-swarm par-

ticle swarm optimization, a global search approach, with the greedy strategy of

dynamically dimensioned search to estimate optimal or nearly optimal solutions in

a fixed number of function evaluations. We tested the performance of DOPS and

four widely used meta-heuristics on the Ackley and Rastrigin test functions, a set of

biochemical benchmark problems and a model of the human coagulation cascade.

We also compared the performance of DOPS to enhanced Scatter Search (eSS), an-

other widely used meta-heuristic approach. As the number of parameters increased,

DOPS outperformed the other meta-heuristics, generating optimal or nearly op-

timal solutions using significantly fewer function evaluations compared with the

other methods. We tested the solutions generated by DOPS by comparing the esti-

mated and true parameters in the benchmark studies, and by using the coagulation

model to predict unseen experimental data. For both benchmark problems, DOPS

retrieved the true parameters in significantly fewer function evaluations than other

meta-heuristics. For the coagulation model, we used experimental coagulation mea-

surements under two different conditions to estimate optimal or nearly optimal pa-

rameters. These parameters were then used to predict unseen coagulation data; the

coagulation model parameters estimated by DOPS predicted the correct thrombin

dynamics following TF/FVIIa induced coagulation without anticoagulants. Lastly,

we showed the average performance of DOPS improved when combined with dynam-

ically dimensioned search phase, compared to an identical multi-swarm approach

alone, and that multiple mode switches could improve performance for some classes

of problems. Taken together, DOPS is a promising meta-heuristic for the estimation

of parameters in large biochemical models.

Meta-heuristics can be effective techniques to estimate optimal or nearly optimal

solutions for complex, multi-modal functions. However, meta-heuristics typically

require a large number of function evaluations to converge to a solution. DOPS is a

combination of particle swarm optimization, which is a global search method, and

dynamically dimensioned search, which is a greedy evolutionary technique. Particle

swarm optimization uses collective information shared amongst swarms of com-

putational particles to search for global extrema. Several particle swarm variants

have been proposed to improve the search ability and rate of convergence. These

variations involve different neighborhood structures, multi-swarms or adaptive pa-

rameters. Multi-swarm particle swarm optimization with small particle neighbor-

hoods has been shown to be better in searching on complex multi-modal solutions

[35]. Multi-swarm methods generate diverse solutions, and avoid rapid convergence

to local optima. However, at least for the coagulation problem used in this study,

multi-swarm methods stagnated after approximately 25% of the available function

evaluations; only the introduction of dynamically dimensioned search improved the

rate of error convergence. Dynamically dimensioned search, which greedily perturbs

only a subset of parameter dimensions in high dimensional parameter spaces, re-

fined the globally best particle and produced significantly lower error on average
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when compared to multi-swarm particle swarm optimization alone. However, dy-

namically dimensioned search, starting from a initial random parameter guess, was

not as effective on average as DOPS. The initial solutions generated by the multi

swarm search had a higher propensity to produce good parameter estimates when

refined by dynamically dimensioned search. Thus, our hybrid combination of two

meta-heuristics produced better results than either constituent approach, and bet-

ter results than other meta-heuristic approaches on average. This was true of not

only the convergence rate on the coagulation problem, but also the biochemical

benchmark problems; DOPS required two-orders of magnitude fewer function eval-

uations compared with enhanced Scatter Search (eSS) to estimate the biochemical

benchmark model parameters. Taken together, the combination of particle swarm

optimization and dynamically dimensioned search performed better than either of

these constituent approaches alone, and required fewer function evaluations com-

pared with other common meta-heuristics.

DOPS performed well on many different systems with no pre-optimization of al-

gorithm parameters, however there are many research questions that should be pur-

sued further. DOPS comfortably outperformed existing, widely used meta-heuristics

for high dimensional global optimization functions, biochemical benchmark models

and a model of the human coagulation system. However, it is possible that highly

optimized versions of common meta-heuristics could surpass DOPS; we should com-

pare the performance of DOPS with optimized versions of the other common meta-

heuristics on both test and real-world problems to determine if a performance ad-

vantage exists in practice. Next, DOPS has a hybrid architecture, thus the particle

swarm phase could be combined with other search strategies such as local derivative

based approaches to improve convergence rates. We could also consider multiple

phases beyond particle swarm and dynamically dimensioned search, for example

switching to a gradient based search following the dynamically dimensioned search

phase. Lastly, we should update DOPS to treat multi-objective problems. The iden-

tification of large biochemical models sometimes requires training using qualitative,

conflicting or even contradictory data sets. One strategy to address this challenge is

to estimate experimentally constrained model ensembles using multiobjective opti-

mization. Previously, we developed Pareto Optimal Ensemble Techniques (POETs)

which integrates simulated annealing with Pareto optimality to identify models

near the optimal tradeoff surface between competing training objectives [51]. Since

DOPS consistently outperformed simulated annealing on both test and real-world

problems, we expect a multi-objective form of DOPS would more quickly estimate

solutions which lie along high dimensional trade-off surfaces.
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Methods
Optimization problem formulation.

Model parameters were estimated by minimizing the difference between model sim-

ulations and E experimental measurements. Simulation error is quantified by an

objective function K (p) (typically the Euclidean norm of the difference between

simulations and measurements) subject to problem and parameter constraints:

min
p
K(p) =

E∑
i=1

(gi(ti,x,p,u)− yi)2

subject to ẋ = f(t,x(t,p),u(t),p)

x(t0) = x0

c(t,x,p,u) > 0

pL 6 p 6 pU

(1)

The term K(p) denotes the objective function (sum of squared error), t denotes

time, gi(ti,x,p,u) is the model output for experiment i, while yi denotes the mea-

sured value for experiment i. The quantity x (t,p) denotes the state variable vector

with an initial state x0, u(t) is a model input vector, f(t,x(t,p),u(t),p) is the

system of model equations (e.g., differential equations or algebraic constraints) and

p denotes the model parameter vector (quantity to be estimated). The parameter

search (or model simulations) can be subject to c(t,x,p,u) linear or non-linear con-

straints, and parameter bound constraints where pL and pU denote the lower and

upper parameter bounds, respectively. Optimal model parameters are then given

by:

p∗ = arg min
p
K (p) (2)

Dynamic optimization with particle swarms (DOPS).

DOPS combines multi-swarm particle swarm optimization with dynamically dimen-

sioned search (Fig. 1) and (Algo. 1). The goal of DOPS is to estimate optimal or near

optimal parameter vectors for high-dimensional biological models within a specified

number of function evaluations. Toward this objective, DOPS begins by using a

particle swarm search and then dynamically switches, using an adaptive switching

criteria, to a DDS search phase.

Phase 1: Particle swarm phase.

Particle warm optimization is an evolutionary algorithm that uses a population of

particles (solutions) to find an optimal solution [52, 53]. Each particle is updated

based on its experience (particle best) and the experience of all other particles within

the swarm (global best). The particle swarm phase of DOPS begins by randomly

initializing a swarm of K-dimensional particles (represented as zi), wherein each

particle corresponded to a K-dimensional parameter vector. After initialization,

particles were randomly partitioned into k equally sized sub-swarms S1, . . . ,Sk.
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input : A randomized swarm of particles of size NP ×K and fixed number of function
evaluations N

output: Optimized parameter vector of size 1×K
1 Initialize the particles randomly and assign particles randomly to various sub-swarms;
2 while j ≤ N do
3 if mod(j,G)=0 then
4 Reassign particles to different sub-swarms;
5 end
6 for i← 1 to NS do
7 Update particles within sub-swarms according to equation 3 ;
8 end
9 Find best particle G amongst all sub-swarms;

10 if besterror(j) ≥ 0.99 ∗ besterror(j + 1) then
11 failurecounter ← failurecounter + 1;
12 else
13 failurecounter ← 0;
14 end
15 if failurecounter ≥ threshold then
16 G ← DDS(G, N − j);
17 return G
18 else
19 j ← j + 1;
20 end
21 return G
22 end

Algorithm 1: Pseudo code for the dynamic optimization with particle swarms

(DOPS) method.

Particles within each sub-swarm Sk were updated according to the rule:

zi,j = θ1,j−1zi,j−1 + θ2r1 (Li − zi,j−1) + θ3r2 (Gk − zi,j−1) (3)

where (θ1, θ2, θ3) were adjustable parameters, Li denotes the best solution found by

particle i within sub-swarm Sk for function evaluation 1 → j − 1, and Gk denotes

the best solution found over all particles within sub-swarm Sk. The quantities r1
and r2 denote uniform random vectors with the same dimension as the number of

unknown model parameters (K× 1). Equation (3) is similar to the general particle

swarm update rule, however, it does not contain velocity terms. In DOPS, the

parameter θ1,j−1 is similar to the inertia weight parameter for the velocity term

described by Shi and Eberhart [54]; Shi and Eberhart proposed a linearly decreasing

inertia weight to improve convergence properties of particle swarm optimization.

Our implementation of θ1,j−1 is inspired by this and the decreasing perturbation

probability proposed by Tolson and Shoemaker [34]. It is an analogous equivalent

to inertia weight on velocity. However θ1,j−1 places inertia on the position rather

than velocity and uses the same rule described by Shi and Eberhart to adaptively

change with the number of function evaluations:

θ1,j =
(N − j) ∗ (wmax − wmin))

(N − 1)
+ wmin (4)

whereN represents the total number of function evaluations, wmax and wmin are the

maximum and minimum inertia weights, respectively. While updating the particles,

parameter bounds were enforced using reflection boundary conditions (Algo. 2).

After every M function evaluations, particles were randomly redistributed to a

new sub-swarm, and updated according to Eqn. (3). This process continued for a
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1 if zoldi,j < zmin
i then

2 znew
i,j = zoldi,j + (zmin

i − zoldi,j ) if znew
i,j > zmax

i then

3 znew
i,j = zmax

i

4 end

5 end

6 if zoldi,j > zmax
i then

7 znew
i,j = zoldi,j + (zoldi,j − zmax

i ) if znew
i,j < zmin

i then

8 znew
i,j = zmin

i

9 end

10 end

Algorithm 2: Pseudo code for the reflective boundary conditions used by the

dynamic optimization with particle swarms (DOPS) method.

maximum of F ∗N functions evaluations, where F is the fraction of evaluations in

the particle swarm phase of DOPS. However, if the simulation error stagnated e.g.,

did not change by more than 1% for a specified number of evaluations, the swarm

phase was terminated and DOPS switched to exploring parameter space using the

DDS approach.

Phase 2: DDS phase.

input : Candidate vector G from swarm search and (1−F) ∗ N evaluations
output: Optimized parameter vector of size 1×K

1 while j ≤ (1−F) ∗ N do
2 Assign probability of perturbation to each dimension Pi according to equation 7 ;
3 Select a subset of dimensions based on a threshold value for perturbation;
4 Update candidate solution G(J) according to equation 5 ;
5 Ensure updated solution Gnew(J) is within bounds using Algorithm 2 ;
6 end

Algorithm 3: Pseudo code for the Dynamically Dimensioned Search (DDS)

method.

Dynamically Dimensioned Search (DDS) is a single solution based search algo-

rithm. DDS is used to obtain good solutions to high-dimensional search problems

within a fixed number of function evaluations. DDS starts as a global search algo-

rithm by perturbing all the dimensions. Later the number of dimensions that are

perturbed is decreased with a certain probability. The probability that a certain

dimension is perturbed reduces (a minimum of one dimension is always perturbed)

as the iterations increase. This causes the algorithm to behave as a local search al-

gorithm as the number of iterations increase. The perturbation magnitude of each

dimension is from normal distribution with zero mean. The standard deviation that

was used in the original DDS paper and the current study is 0.2. DDS performs a

greedy search where the solution is updated only if it is better than the previous

solution. The combination of perturbing a subset of dimensions along with greedy

search indirectly relies on model sensitivity to a specific parameter combination.

The reader is requested to refer to the original paper by Tolson and Shoemaker for

further detail [34].

At the conclusion of the swarm phase, the overall best particle, Gk, over the k

sub-swarms was used to initialize the DDS phase. DOPS takes at least (1−F) ∗N
function evaluations during the DDS phase and then terminates the search. For the
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DDS phase, the best parameter estimate was updated using the rule:

Gnew(J) =

G(J) + rnormal(J)σ(J), if Gnew(J) < G(J).

G(J), otherwise.
(5)

where J is a vector representing the subset of dimensions that are being perturbed,

rnormal denotes a normal random vector of the same dimensions as G, and σ denotes

the perturbation amplitude:

σ = R(pU − pL) (6)

where R is the scalar perturbation size parameter, pU and pL are (K × 1) vectors

that represent the maximum and minimum bounds on each dimension. The set J

was constructed using a probability function Pi that represents a threshold for de-

termining whether a specific dimension j was perturbed or not; Pi is monotonically

decreasing function of function evaluations:

Pi = 1− log

[
i

(1−F) ∗ N

]
(7)

where i is the current iteration. After Pi is determined, we drew Pj from a uniform

distribution for each dimension j. If Pj < Pi was included in J. Thus, the proba-

bility that a dimension j was perturbed was inversely proportional to the number

of function evaluations. DDS updates are greedy; Gnew becomes the new solution

vector only if it is better than G.

Multiswitch DOPS

We investigated whether switching search methods more than once would result

in better performance; this DOPS variant is referred to as multiswitch DOPS or

msDOPS. msDOPS begins with the PSO phase and uses the same criteria as DOPS

to switch to the DDS phase. However, msDOPS can switch back to a PSO search

when the DDS phase has reduced the functional value to 90% of its initial value.

Should the DDS phase fail to improve the functional value sufficiently, this version

is identical to DOPS. When the switch from DDS to PSO occurs, we use the best

solution from DDS to seed the particle swarm. DOPS and msDOPS source code is

available for download under a MIT license at http://www.varnerlab.org.
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Figure 1: Schematic of the dynamic optimization with particle swarms (DOPS) ap-
proach. A: Each particle represents an N dimensional parameter vector. Particles are given ran-
domly generated initial solutions and grouped into different sub-swarms. Within each swarm the
magnitude and direction of the movement a particle is influenced by the position of the best parti-
cle and also by its own experience. After every g number of function evaluations the particles are
mixed and randomly assigned to different swarms. When the error due to the global best particle
(best particle amongst all the sub-swarms) does not drop over a certain number of function evalu-
ations, the swarm search is stopped and the search switches to a Dynamically Dimensioned Search
with global best particle as the initial solution vector or candidate vector. B: The candidate vec-
tor performs a greedy global search for the remaining number of function evaluations. The search
neighborhood is dynamically adjusted by varying the number of dimensions that are perturbed
(in black) in each evaluation step. The probability that a dimension is perturbed decreases as the
number of function evaluations increase.
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Figure 2: Performance of DOPS and other meta-heuristics for the Ackley and Ras-
trigin functions. A: Mean scaled error versus the number of function evaluations for the 10-
dimensional Ackley function. DOPS, DDS and PSO find optimal or near optimal solutions within
the specified number of function evaluations. B: Mean scaled error versus the number of function
evaluations for the 10-dimensional Rastrigin function. DOPS and DDS find optimal or near op-
timal solutions within the specified number of function evaluations. C: Mean scaled error versus
the number of function evaluations for the 300-dimensional Rastrigin function. DOPS is the only
algorithm that finds an optimal or near optimal solution within the specified number of function
evaluations. In all cases, the maximum number of function evaluations was N = 4000. Mean and
standard deviation were calculated over T = 25 trials.
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Figure 3: Schematic of the extrinsic and intrinsic coagulation cascade. Inactive zymogens
upstream (grey) are activated by exposure to tissue factor (TF) following vessel injury. Tissue
factor and activated factor VIIa (FVIIa) form a complex that activates factor X (fX) and IX
(fIX). FXa activates downstream factors including factor VIII (fVIII) and fIX. Factor V (fV)
is primarily activated by thrombin (FIIa). In addition, we included a secondary fV activation
route involving FXa. FXa and FVa form a complex (prothrombinase) on activated platelets that
converts prothrombin (fII) to FIIa. FIXa and FVIIIa can also form a complex (tenase) on activated
platelets which catalyzes FXa formation. Thrombin also activates upstream coagulation factors,
forming a strong positive feedback ensuring rapid activation. Tissue factor pathway inhibitor
(TFPI) downregulates FXa formation and activity by sequestering free FXa and TF-FVIIa in a
FXa-dependent manner. Antithrombin III (ATIII) inhibits all proteases. Thrombin inhibits itself
binding the surface protein thrombomodulin (TM). The IIa-TM complex catalyzes the conversion
of protein C (PC) to activated protein C (APC), which attenuates the coagulation response by
the proteolytic cleavage of fV/FVa and fVIII/FVIIIa.
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Figure 4: Error convergence rates of the four different algorithms on the coagulation
model. The objective error is the mean over T = 25 trials. DOPS and SA have the steepest drop
in error during first 300 function evaluations. Thereafter the error drop in DDS and SA remains
nearly constant whereas DOPS continues to drops further. At the end of 4000 function evaluations
DOPS attains the lowest error. The next best estimate using DDS is nearly three times greater
than the lowest error using DE.
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Figure 5: Model fits on experimental data using DOPS. The model parameters were
estimated using DOPS. Solid black lines indicate the simulated mean thrombin concentration
using parameter vectors from 25 trials. The grey shaded region represents the 99% confidence
estimate of the mean simulated thrombin concentration. The experimental data is reproduced
from the synthetic plasma assays of Mann and co-workers. Thrombin generation is initiated by
adding Factor TF/VIIa (5nM (blue) and 5pM (red)) to synthetic plasma containing 200 µmol/L
of phospholipid vesicles (PCPS) and a mixture of coagulation factors (II,V,VII,VIII,IX,X and XI)
at their mean plasma concentrations.
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Figure 6: Model predictions on unseen experimental data using parameters obtained
from DOPS. The parameter estimates that were obtained using DOPS were tested against data
that was not used in the model training. Solid black lines indicate the simulated mean thrombin
concentration using parameter vectors from T = 25 trials. The grey shaded region represents the
99% confidence estimate of the mean simulated thrombin concentration. The experimental data
is reproduced from the synthetic plasma assays of Mann and co-workers. Thrombin generation is
initiated by adding Factor VIIa-TF (500pM - Blue, 50pM - Pink and 10pM - purple, respectively)
to synthetic plasma containing 200 µmol/L of phospholipid vesicles (PCPS) and a mixture of
coagulation factors (II,V,VII,VIII,IX,X and XI) at their mean plasma concentrations.
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Figure 7: Influence of the switching strategy and sub-swarms on DOPS performance
for the coagulation model. DOPS begins by using a particle swarm search and then dynami-
cally switches (switch region), using an adaptive switching criteria, to the DDS search phase. We
compared the performance of DOPS with and without DDS for different sub-swarm searches to
quantify the effect of number of sub-swarms and DDS. We used one, two, four, five and eight
sub-swarms, with a total of 40 particles divided evenly amongst the swarms. The results presented
are the average of T = 25 trials with N = 4000 function evaluations each. The convergence rates
with higher swarm numbers is typically higher but there is no pronounced difference amongst four,
five and eight. The multi-swarm with without DDS saturates while DOPS shows a rapid drop due
to a switch to the DDS phase.
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Figure 8: Comparsion of DOPS and Experimental DOPS Performance of DOPS and
Experimental DOPS on the CHO metabolism problem (a), the Eggholder function (b), the 100
dimensional Styblinksi-Tang function (c) and the coagulation problem (d). Both methods have the
same initial decrease in error, but as the number of function evaluations increases, experimental
DOPS produces a larger decrease in error. The results presented are the average of T = 250 trials
with for the CHO metabolism problem and T = 250 trials on the Eggholder and Styblinksi-Tang
functions with N = 250 function evaluations each, and T = 25 trials for the coagulation problem.
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Tables

Table 1: Table with optimization settings and results for the coagulation problem, the benchmarks
and test functions using DOPS. For each problem the bounds on the parameter vector, the total
number of function evaluations, the best initial objective value and the best final objective value
are specified. Here pnom indicates the nominal or true parameter vector of the model. Nominal
objective value represents the objective value using the true parameter vector or the nominal
parameter vector. The CPU time is the time taken for the problem on a 2.4GHz Intel Xeon
Architecture running Matlab 2014b.

Coagulation B1 B4 Ackley Rastrigin

Evaluations 4000 4000 4000 4000 4000
Lower Bound 0.001.pnom 0.2.pnom 0.2.pnom -15 -5.12
Upper Bound 1000.pnom 5.pnom 5.pnom 30 5.12

CPU Time 10.1 hrs 38.3 hrs 6.2 min 2.8 s 2.6 s

Scaled initial error 1.0 1.0 1.0 1.0 1.0
Scaled final error < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Scaled nominal error 0.42 0.1 < 0.01 0 0
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Table 2: Error analysis for the human coagulation model. The coagulation model was trained
on coagulation initiated with TF/FVIIa at 5 nM and the 5 pM to obtain the optimal parame-
ters. Using these optimal parameters, coagulation dynamics were predicted for varying initiator
concentrations (500 pM, 50 pM and 10 pM). Model agreement with measurements was quan-
tified using normalized squared error. The normalized squared error is defined as N.S.E. =
(1/max(X)) ∗ (‖(Y,X)‖/sqrt(N)) where X is the experimental data, Y is the model simula-
tion data interpolated onto the experimental time scale and N is the total number of experimental
time points.

TF/FVIIa concentration Normalized S.E. Category

5 nM 0.1336 Training
500 pM 0.2242 Prediction

50 pM 0.3109 Prediction
10 pM 0.2023 Prediction

5 pM 0.1170 Training
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Additional Files
Additional file S1-(Data fits for CHO metabolism problem)
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Figure S1: (Data fits for CHO metabolism problem) Pseudo-experimental data (red x) vs.
optimal solution obtained using DOPS (solid blue lines) for the 44 observed states. X axis: time
[s]; Y axis: metabolite concentrations [mM].

Additional file S2-(Data fits for S.cerevisiae metabolism problem)

Additional file S3-(Comparison of states and parameters)

Additional file S4-(Time Comparison)

Additional file S5-(Convergence Curves)

Additional file S6-(Comparison of DOPS to ESS)

Additional file S7-(Dispersion Curves)

Additional file S8-(Comparison of functional values)
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Figure S2: (Data fits for S.cerevisiae metabolism problem) Pseudo-experimental data
(red x) vs. optimal solution obtained using DOPS (solid blue lines) for the 13 observed states. X
axis: time [s]; Y axis: metabolite concentrations [mM].
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Figure S3: (A) Difference between nominal and optimal parameters for genome wide ki-
netic model of S.cerevisiae with 1759 unknown parameters. (B) Difference between experimental
(measured) data and data simulated with optimal parameters for genome wide kinetic model of
S.cerevisiae with 1759 unknown parameters. (C) Difference between nominal and optimal param-
eters for metabolic model of Chinese Hamster Ovary Cells (CHO) cells with 117 parameters. (D)
Difference between experimental (measured) data and data simulated with optimal parameters for
metabolic model of Chinese Hamster Ovary Cells (CHO) cells with 117 parameters.
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Figure S4: Comparison of the runtime of the different optimization methods used for comparison
with T = 25 trials per method. All methods used take about the same amount of time to perform
4,000 function evaluations on the coagulation problem, as this problem is very stiff, so the majority
of the time is spent solving the system of differential equations.

  

a b

Figure S5: Mean convergence curves for different metaheuristics for (a) Ackley 300 dimensional
and (b) Rastrigin 300 dimensional with T = 25 trials per method. DOPS not only finds a better
solution than any other technique, it finds it with fewer function evaluations
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Figure S6: Mean convergence curves for DOPS and ESS for the (a) CHO model and (b) the
coagulation model with T = 25 trials per method.

  

a b

Figure S7: Dispersion curves for DOPS on (a) CHO model (b) coagulation with T = 25 trials
per problem .
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Figure S8: Variability analysis in best objective value for T = 25 trials. (a) Ackley 300 dimensional
(b) Rastrigin 300 dimensional (c) CHO model (d) coagulation.
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