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SUMMARY 23 
Several recent studies have suggested that genes that are longer than 100 kilobases are more 24 

likely to be misregulated in neurological diseases associated with synaptic dysfunction, such as autism 25 
and Rett syndrome. These length-dependent transcriptional changes are modest in Mecp2-mutant 26 
samples, but, given the low sensitivity of high-throughput transcriptome profiling technology, the 27 
statistical significance of these results needs to be re-evaluated. Here, we show that the apparent length-28 
dependent trends previously observed in MeCP2 microarray and RNA-Sequencing datasets, particularly 29 
in genes with low fold-changes, disappeared after accounting for baseline variability estimated from 30 
randomized control samples. As we found no similar bias with NanoString technology, this long-gene 31 
bias seems to be particular to PCR amplification-based platforms. In contrast, authentic long gene effects, 32 
such as those caused by topoisomerase inhibition, can be detected even after adjustment for baseline 33 
variability. Accurate detection of length-dependent trends requires establishing a baseline from 34 
randomized control samples.  35 

 36 
 37 
 38 
HIGHLIGHTS 39 

• Length-dependent gene misregulation is not intrinsic to Mecp2 disruption. 40 

• Topoisomerase inhibition produces an authentic long gene bias. 41 

• PCR amplification-based high-throughput datasets are biased toward long genes. 42 
 43 
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INTRODUCTION 55 
The capacity for large-scale analysis of transcriptional changes in human disease has attracted 56 

considerable research attention, most recently in studies related to autism spectrum disorders, including 57 
Angelman syndrome, Rett syndrome (RTT), Fragile X syndrome, and autism itself (Zoghbi and Bear, 58 
2012). Microarray and RNA-Seq studies have demonstrated that these disorders involve the dysregulation 59 
of thousands of neuronal genes. Several recent studies have also suggested that the genes dysregulated in 60 
these syndromes tend to be those that consist of more than 100 kilobases (Katz et al., 2016; Zylka et al., 61 
2015).  This intriguing length bias has been observed across both epigenetic and transcriptional datasets 62 
such as Angelman syndrome (Huang et al., 2011), Rett syndrome (Gabel et al., 2015; Kinde et al., 2016; 63 
Sugino et al., 2014), Fragile X syndrome (Gabel et al., 2015; Ouwenga and Dougherty, 2015) autism 64 
(King et al., 2013; Sullivan et al., 2015). The degree of bias tends to be fairly mild, however, long genes 65 
are themselves overrepresented in the brain compared to other tissues in the body (Zylka et al., 2015). It 66 
seems worthwhile to examine this apparent bias more closely in gene expression datasets. 67 

The afore-mentioned gene expression studies (Gabel et al., 2015; King et al., 2013; Sugino et al., 68 
2014; Sullivan et al., 2015) partitioned the entire genome into hundreds of overlapping bins (or windows), 69 
with each bin containing hundreds of genes. Within each bin, the average fold-change in wildtype or 70 
untreated brain tissue was compared to that observed in the knock-out or treatment groups, and a running 71 
average log2 fold-change was plotted against the average gene length. In these running average plots, long 72 
genes demonstrated a non-zero mean compared to short genes. These analyses did not, however, establish 73 
a baseline of inherent variation among samples within a given genotype, and they did not employ a 74 
statistical test to determine the significance of the length-dependent changes. It should be noted that 75 
variations in measured gene expression can arise because of RNA priming (Hansen et al., 2010; Li et al., 76 
2010), GC-content (Risso et al., 2011), transcript length (Oshlack and Wakefield, 2009), or library 77 
preparation (Lahens et al., 2014), all of which must be accounted for in order to avoid unwarranted 78 
biological conclusions (Robert and Watson, 2015; Wan et al., 2014). 79 

We, therefore, analysed a comprehensive list of large datasets derived from different 80 
transcriptome profiling technologies and set out to determine the best way to enhance the signal-to-noise 81 
ratio. To this end, we began by analysing technical replicates using benchmark datasets. Using these 82 
datasets, we developed an approach to reliably identify patterns with respect to gene regulation, and we 83 
then applied our approach to analyse datasets for which long gene trends have been reported. 84 

 85 
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 87 
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RESULTS 89 
 90 
Baseline length dependency should first be estimated from the control groups: the Topotecan study 91 
as a positive control  92 

Preferential dysregulation of long genes is generally estimated by computing the average gene 93 
expression fold-changes between experimental groups and plotting this fold-change against the gene 94 
length (Gabel et al., 2015; King et al., 2013; Sugino et al., 2014), also known as running average plots 95 
(red curve in Fig 1A, Experimental Procedures). However, the statistical significance of running average 96 
plots has never been evaluated in the current literature. Here, we propose an approach to estimate 97 
statistical significance by constructing a null distribution of the running average plot from randomized 98 
control samples (Figure S1).  99 

The first data that we analyzed were those from a study that evaluated transcriptional effects of 100 
the topoisomerase 1 inhibitor topotecan in autism (King et al., 2013). When we constructed a running 101 
average plot comparing the gene expression changes between topotecan drug-treated neurons (drug or D) 102 
and vehicle-treated cortical neurons (vehicle or V), we observed a preferential downregulation of long 103 
genes (the running average plot comparing drug vs. vehicle is indicated by the red curve in Figure 1A; 104 
Figure S1). To estimate the baseline variation among control samples, two random sets of vehicle-treated 105 
cultured cortical neurons were compared to each other (blue curve in Fig 1A, Experimental Procedures). 106 
Given that these untreated samples were obtained from littermates, we did not expect to observe any 107 
differences in gene expression and predicted that a running average plot comparing gene expression 108 
between vehicle-treated control samples would yield a horizontal line through y=0. However, we found 109 
that genes over 100kb in length tended to be down-regulated on average (blue curve in Figure 1A) when 110 
gene expression levels between control samples are compared. This effect was found for both RNA-Seq 111 
and microarray datasets (Figure 1A) and indicates that a portion of the length-dependent trend observed in 112 
the topotecan datasets is due to a length-dependent bias (i.e. noise) that can be observed even in the 113 
control samples. 114 

To determine the significance of average fold-change trends, we applied a Student’s t-test to each 115 
of the matching data bins from the drug vs. vehicle (D/V) and vehicle vs. vehicle (V/V) comparisons, 116 
followed by an adjustment for multiple hypothesis testing. For consistency, these plots are referred to as 117 
overlap plots (Experimental Procedures, Figure S1). At a false discovery rate of 0.05, only the long gene 118 
bins were statistically significant and showed preferential downregulation following topotecan treatment 119 
in both RNA-Seq and microarray datasets (lower panel in Fig 1A, red dots indicate statistically significant 120 
bins; Figure S1). In other words, although the control samples showed that long genes are downregulated 121 
at baseline (i.e. when comparing controls to controls), topotecan treatment produced an even stronger 122 
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downregulation of long genes, providing sufficient signal to overcome the noise (or intra sample 123 
variation) observed in long genes at baseline. These datasets enabled us to establish a statistical procedure 124 
as well as provided positive control for further analyses of long gene trends (King et al., 2013; Mabb et 125 
al., 2016) in other studies.  126 
 127 
Gene length trends do not hold up in datasets for MeCP2 mouse models 128 
 Studies of MeCP2-related disorders—both Rett syndrome (caused by loss-of-function mutations 129 
in MECP2) and MECP2 duplication syndrome (caused by duplication or even triplication of the locus)—130 
have provided a wealth of transcriptome data. Experiments in mouse models of both syndromes have 131 
suggested that loss of MeCP2 function causes preferential upregulation of long genes and, conversely, 132 
that gain of MeCP2 function leads to preferential downregulation of long genes (Gabel et al., 2015). We 133 
chose to delve deeper into these datasets to explore the extent of the contribution of long genes to RTT 134 
pathology. We applied our method to eleven MeCP2 datasets (Table 2) across seventeen different tissue 135 
types (Baker et al., 2013; Ben-Shachar et al., 2009; Chahrour et al., 2008; Chen et al., 2015; Gabel et al., 136 
2015; Kishi et al., 2016; Samaco et al., 2012; Sugino et al., 2014; Zhao et al., 2013). We first computed 137 
the running average plots and were able to reproduce the same results as reported previously (Gabel et al., 138 
2015; Sugino et al., 2014). However, when the baseline variation between wild-type (WT) samples is 139 
plotted (blue curves in Fig. 1B), they extensively overlap with the running average plots from the Mecp2-140 
null (KO) samples (red curves in Fig. 1B; see also Figures S2A-K). This overlap between the curves for 141 
the WT vs. WT comparisons and the KO vs. WT comparisons indicates that the signal originally reported 142 
for the KO vs. WT comparison can be largely explained by noise (or intra-sample variation) in the 143 
dataset, as there is not a clear separation between the WT vs. WT curves and the KO vs. WT curves in 144 
most brain regions surveyed.  145 
 A few long gene bins showed significant preferential upregulation in Mecp2-null mice (FDR < 146 
0.05) in these datasets. For example, in hypothalamus dataset, we found 12 bins of long genes to be 147 
significant (Figures 1B, right panel).  However, we observed a similar or even larger number of 148 
significant bins for genes less than 100k (Figures 1B-1C; see also Figures S2B-S2C, S2F-S2G, and S2J). 149 
Likewise, no preferential repression of long genes was observed for datasets from Mecp2-overexpression 150 
models (Tg) (Figure 1C; see also Figure S2L). Indeed, we found more short genes to be preferentially 151 
dysregulated in the Mecp2-overexpression models (Figure 1C). Thus, when assessing the bins of genes 152 
with the significant difference in expression between WT and KO mice, we found that genes with a 153 
variety of lengths were altered in KO and Tg mice. Additionally, while there are certainly some long 154 
genes with significantly altered expression in both KO and Tg mice, there is no consistent and preferential 155 
long gene trend observed in the Mecp2 datasets. 156 
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 Long gene trend is not present in Nuclear RNA profiles of MeCP2 mouse models 157 
A recent study reported that transcripts of long genes were downregulated in nuclear and nascent 158 

RNA samples (Johnson et al., 2017) in contrast to previous studies (Gabel et al., 2015; Sugino et al., 159 
2014). The dataset was generated by combining an in vivo biotinylation system with Cre-loxP technology 160 
that circumvented cellular heterogeneity of the brain and helped examine transcriptomic changes due to 161 
MeCP2 in specific cell types, in both male and female mice (Johnson et al., 2017). The samples were 162 
derived from the cortical cells of Mecp2-mutant mice bearing either of two common Rett-causing 163 
mutations: T158M or R106W, which are among the most common mutations found in RTT patients 164 
(Cuddapah et al., 2014). 165 

We reanalyzed the data using overlap plots and observed no significant downregulation of long 166 
genes in wildtype or Mecp2-mutant excitatory neurons from 18-week old T158M or R106W female mice 167 
(Figures 1D and S4E). In excitatory neurons bearing the R106W mutation, we observed few bins that are 168 
significantly different from WT expression levels. Notably, bins with significant gene expression changes 169 
were not due to the downregulation of long genes in mutant samples. Rather, these bins were significant 170 
due to the downregulation of long genes in control (WT) samples, as indicated by the downward slopes of 171 
the running average plots comparing WT vs. WT samples (blue lines in Figures 1D and S4E). Similarly, 172 
we observed no significant repression of long genes in nuclear RNA-Seq datasets of excitatory and 173 
inhibitory neurons from 6-week old male mice with the same mutation type (Figures S4A-S4D). Finally, 174 
when we examined downregulation of long genes from the GRO-Seq (global nuclear run-on with high-175 
throughput sequencing) data collected from these mice, we confirmed a marginal significance in the 176 
downregulation of long genes (Figure S3A), but upregulation of long genes was not observed in whole 177 
cell RNA-Seq data (Figure S3B). These results suggest that the transcriptome changes in long genes that 178 
appear in RNA isolation-based methods are independent of the sex, age, or mutation type of the mouse. 179 

Together, these results suggest that when the fold-change difference is 50% or more, as it is in the 180 
topotecan datasets, there is likely to be a genuine long gene bias. When the fold-change effect is small 181 
(<15%), however, as it is with the long genes observed in the Mecp2 datasets, it is more likely that the 182 
observed long gene trend is due to inherent variation among samples. The reported long gene trend in the 183 
Mecp2 datasets is in the same range as the noise that we derived from the intra-sample comparison in the 184 
control groups, and this effect was seen in all the Mecp2 datasets that we assessed. This further suggests 185 
that the length-dependent variability estimated from microarray and RNA-Seq platforms is not sensitive 186 
enough to capture small transcriptional changes. We, therefore, recommend that baseline gene length 187 
dependency should be evaluated from the control group first to understand the statistical significance of 188 
observed long gene trends in any sequencing dataset. 189 

 190 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2018. ; https://doi.org/10.1101/240705doi: bioRxiv preprint 

https://doi.org/10.1101/240705
http://creativecommons.org/licenses/by/4.0/


 7 

Human MeCP2 datasets: the importance of age  191 
To determine whether preferential dysregulation of long genes occurs in in vitro human Rett 192 

datasets, we computed overlap plots on samples from isogenic human iPSCs (hiPSCs), neural progenitor 193 
cells (NPCs), and neurons from the fibroblasts of two independent patients, with and without the MECP2 194 
mutation. We found no preferential upregulation of long genes (Figures 2A) but did see a trend toward 195 
downregulation of long genes among human in vitro RTT neuron samples, which is contrary to reports 196 
from Mecp2-null mouse models (Gabel et al., 2015; Sugino et al., 2014). 197 
 Although long genes do not appear to be upregulated above the level of background noise in 198 
murine Mecp2 datasets, they have been reported to be preferentially upregulated in human RTT samples 199 
(Gabel et al., 2015) as well, and we wondered if a more robust signal would be observed in post-mortem 200 
human datasets. Three RTT and three normal control samples from the superior frontal gyrus were 201 
obtained from a previous study (Deng et al., 2007). These samples were from three different ages: RTT 202 
samples were obtained from donors aged 8, 6, and <4 years (pooled samples from a 2- and a 4-year old), 203 
with approximately age-matched normal control samples obtained from donors aged 10, 5 and 2 years, 204 
respectively. The long gene trend was observed (Gabel et al., 2015) in a comparison of the three RTT 205 
samples to the three control samples (Figures 2B). Because stages of brain development and disease 206 
progression in RTT patients change markedly from ages 1 to 5 years before stabilizing (Chahrour and 207 
Zoghbi, 2007), we reanalyzed the data by comparing each sample to its age-matched control separately. 208 
Dysregulation of long genes was observed only in the 2- and 4-year old RTT samples (Figure 2B left 209 
panel), but not in either the 5- or 8-year old RTT samples (Figure 2B right panel). Unfortunately, the 210 
statistical significance of this observation cannot be established because of the small sample size (n = 1 211 
each). 212 
 To determine whether length-dependent misregulation of long genes occurs in other human 213 
datasets, we analyzed samples from another study (Lin et al., 2016) and in-house generated RNA-Seq 214 
RTT datasets. Lin et al. dataset (Lin et al., 2016) consist of postmortem brain samples from the frontal 215 
and temporal cortex of RTT patients with age-matched controls (age = 17-20 years, n = 3 each). Because 216 
the phenotypes are similar for RTT patients in this age range (Chahrour and Zoghbi, 2007), we grouped 217 
these RTT samples together and compared them to the pooled age-matched controls. We computed 218 
running average plots on the normalized dataset (Experimental Procedures, Figure S1) and did not 219 
observe overrepresentation of long genes in these samples (Figure 2C). Similar results were reported by 220 
the original study (Lin et al., 2016). Consistent with our previous results, there was no long gene trend in 221 
the running average plot of the RNA-Seq RTT dataset collected from a postmortem frontal cortex sample 222 
obtained from an 18-year-old RTT female (Figure 2D, left panel) when it was compared to its age-223 
matched control (age = 18 years, n = 1 each). To further probe whether the long-gene trend might be 224 
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present in the early stages of the disease, we compared a RTT postmortem male sample from frontal 225 
cortex (age = 1 year, n = 1) to an age-matched control sample (age = 2 days, n = 1) and again could find 226 
no significant upregulation of long genes (Figure 2D, right panel).  227 

One possible explanation for the lack of a long gene trend in human RTT samples is 228 
heterogeneity among the various samples (including differences in the genetic background), which 229 
increases the inherent variability in gene expression among biological replicates. Such variability could 230 
obscure the effects of a subtle bias in the sequencing process. Nevertheless, the present findings suggest 231 
that long genes are not preferentially misregulated in human RTT datasets. 232 

 233 
Differential gene expression analysis for Topotecan and Mecp2 datasets 234 

Our previous analyses suggest that the current transcriptome profiling technologies are limited in 235 
their ability to detect subtle differences in gene expression. We hypothesize that long gene effects, if 236 
genuine, should be apparent in both binning analysis and the traditional differential gene expression 237 
analysis. We, therefore, decided to focus our attention on only the differentially expressed genes that were 238 
reported by previous studies (Baker et al., 2013; Ben-Shachar et al., 2009; Chahrour et al., 2008; Chen et 239 
al., 2015; Huang et al., 2011; King et al., 2013; Mabb et al., 2016). We divided the entire list of 240 
differentially expressed genes into four groups based on gene length (> or < 100kb) and fold-change 241 
direction (either up or down). Consistent with our overlap plots, we found long genes to be substantially 242 
overrepresented and downregulated in Topotecan datasets (Figure 3A). This result proves that our 243 
approach does detect long gene trends in gene expression studies. In the MeCP2 datasets, however, we 244 
did not find a preferential upregulation of long genes (Figures 3B-3D) except in the hippocampal dataset 245 
(Figure S5) (Baker et al., 2013). Moreover, in contrast to previous studies, we found that more long genes 246 
were upregulated than downregulated in the cerebellum of Mecp2 over-expressing mice (Figure 3C, right 247 
panel). Another important difference between the Topotecan and Mecp2 datasets was that short genes 248 
dominated among all differentially expressed genes in Mecp2 datasets (Figures 3B-3D; Figures S5). This 249 
further supports the notion that a preference for long gene misregulation is not an inherent feature of gene 250 
expression following the Mecp2 disruption. This is not to say that MeCP2 does not regulate a subset of 251 
long genes, only that our analysis found no preferential misregulation of long gene trend in MeCP2 252 
mouse models.  253 
 254 
RNA-Seq and microarray benchmark datasets are prone to length-dependent bias 255 

To investigate whether length dependent bias might be a function of amplification-based 256 
platforms, we next performed running average analysis on the samples from the phase-III 257 
Sequencing/Microarray Quality Control (SEQC) project (Consortium, 2014). SEQC was designed to 258 
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evaluate the performance of various sequencing platforms, sources of bias in gene expression samples, 259 
and various methods for downstream analysis. The consortium generated benchmark datasets using four 260 
different types of RNA samples: A (Universal Human Reference RNA), B (Human Brain Reference 261 
RNA), C (a mixture of A and B at a ratio of 3:1), and D (a mixture of A and B at a defined ratio of 1:3). 262 
The RNA-Seq datasets generated using the Illumina HiSeq 2000 platform across six different sites were 263 
used for quality control analyses (Experimental Procedures), and the raw read counts were normalized 264 
using the DESeq2 method (Love et al., 2014). 265 

To determine whether the dataset showed nominal batch effects or other non-biological 266 
variability, we used multidimensional scaling (MDS) plots to see if the samples clustered according to 267 

RNA sample type. To ascertain whether or not the samples were consistently titrated, we calculated the  268 
ratio of observed gene expression in the samples, which is obtained from the following equation: ((B-269 

A)/(C-A)) (Consortium, 2014). The value of the  ratio (Shippy et al., 2006) is 4:1 (or log2(4) = 2). In 270 

theory, the  ratio should be independent of gene length in the brain and non-brain tissues. After assessing 271 
various SEQC datasets, we found that the Novartis dataset had nominal batch effects and the β ratio was 272 
close to 2. Therefore, this dataset would be ideal, as it would not bias downstream analyses (Figure 4A).  273 

We separated Human Brain Reference (sample type B) RNA-Seq samples into two groups of 32 274 
samples each, based on their y-axis coordinates of the MDS plot, and computed a running average plot. 275 
Since these samples were technical replicates of the same reference RNA sample type, we expected the 276 
mean log2 fold-change to be a horizontal line along the x-axis with a y-intercept equal to zero (i.e., y=0 on 277 
an xy plane). Instead, we found that long genes deviated from the expected pattern, with the fold-changes 278 
of long genes being overestimated (Figure S6A, left panel).  279 

We then investigated whether the fold-change of long genes is constant for the β ratio samples. 280 
The expected average log2 fold-change should be a horizontal line along the x-axis with a y-intercept 281 
equal to two. We found, however, that the expected ratio was not maintained for long genes and was 282 
overestimated (Figure 4B). Moreover, we observed a similar bias in the β ratio with respect to transcript 283 
length, with longer transcripts being overrepresented (Figure S6A, right panel). Overall, the range of 284 
overestimation in the RNA-Seq dataset was between 3% and 40%. Consistent with our findings, another 285 
study (using a different dataset) previously reported that long genes were more likely to be identified as 286 
statistically significant in RNA-Seq datasets (Oshlack and Wakefield, 2009).  287 

To determine whether the long gene bias was unique to the RNA-Seq datasets or could be 288 
detected on other platforms, we investigated the MAQC-III microarray Affymetrix dataset generated by 289 
the SEQC consortium (Consortium, 2014). Human Brain Reference samples (B) were separated into two 290 
groups based on y-axis location on the MDS plot (Figure 4C). The running average plots were computed 291 
against their average gene length using the same parameters as described for the RNA-Seq analysis 292 
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above. As with the RNA-Seq samples, the average fold-change for long genes deviated from the expected 293 
value of zero (Figure S6B, left panel). When the β ratio was plotted against the mean gene length (Figure 294 
4D) or mean transcript length (Figure S6B right panel), we found that long genes were overrepresented. 295 
Further, long gene bias was observed in both RNA-Seq and microarray datasets in a comparison of two 296 
groups of universal human reference (Figure S6A-S6B, middle panel). The overestimation in the 297 
microarray dataset ranged from 1.5% to 23%—lower overall than for the RNA-Seq dataset, but indicating 298 
that microarray datasets are also predisposed to gene and transcript length-dependent bias. 299 
 300 
Long gene bias is independent of normalization methods 301 

To ensure that the long gene bias we observed was not due to our normalization methods, we 302 
compared the mean log2 fold-change using three different normalization techniques: Total Count, DESeq 303 
(Anders and Huber, 2010), and edgeR/TMM (Robinson et al., 2010; Robinson and Oshlack, 2010). We 304 
normalized the raw read counts from four different RNA sample types using each of the three 305 
normalization methods and computed running average plots of the β ratios against gene and transcript 306 
length. In all cases, long genes were still overestimated, regardless of the normalization method (Figures 307 
S7A-S7B). This lends support to the notion that the overrepresentation of long genes is independent of the 308 
normalization technique. 309 

 310 
Long gene bias is not observed in NanoString datasets, which are not based on amplification 311 

 We hypothesized that PCR amplification, a process shared by both microarray and RNA-Seq 312 
technologies, might introduce the observed bias in long gene expression. We, therefore, performed 313 
NanoString nCounter gene expression quantification, a technique that does not use amplification, with the 314 
SEQC reference RNA samples (A, B, C, and D) (n = 6 each). The MDS plot on normalized data showed 315 
that the samples clustered based on sample type (Figure S8A); the effect of batches was minimal 316 
(Experimental Procedures). The code set consisted of ~ 184 long genes, out of which ~132 long genes 317 
were expressed in brain samples (Figure S8B). We again computed the running average plots against their 318 
average gene length, and we did not observe any long gene bias between the brain samples or when 319 
computing the β ratio of the samples (Figures S8C- S8D). 320 

We next compared the mean expression levels of all the common genes across the RNA-Seq, 321 
microarray and nCounter datasets. Our analysis shows that fold-changes of long genes are overestimated 322 
in the RNA-Seq (P-value < 2.7 e-07; Figure 4E) and microarray datasets (P-value < 0.021; Figure 4F); in 323 
contrast, the nCounter dataset showed no difference in the average expression of long and short genes (P-324 
value = 0.86; Figure 4G). Although it is possible that the smaller number of genes (~680) might make it 325 
more difficult to detect a preference, the proportion of long genes in this dataset (~180 out of ~680 genes, 326 
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or 26%) is twice that found in the human transcriptome (~3200 long genes out of ~ 24,000 genes, or 327 
13%). Any preference for long genes should thus be revealed even more strongly in this dataset. These 328 
results lead us to posit that the long gene overestimation we observed in RNA-Seq and microarray 329 
datasets might be caused by a length-dependent bias in PCR amplification. 330 

 331 
PCA plot confirms the reciprocal relationship of Mecp2 gain- and loss-of-function datasets  332 

One of the most intriguing components of the long gene story in RTT is the presence of a 333 
reciprocal pattern in the Mecp2-overexpression model, where a reported preference for downregulation of 334 
long genes complements the upregulation of long genes reported in Mecp2-null mice (Gabel et al., 2015). 335 
To understand this reciprocal relationship, we divided Human Brain Reference samples (B) into 3 groups 336 
(n = 16 each) based on different library preparation ID numbers from the Novartis SEQC dataset. The 337 
PCA plot clearly clustered the brain samples based on the library preparation group to which they 338 
belonged (Figure S9A). Comparing the brain samples of library preparation ID 2 (green) to library 339 
preparation ID 1 (red) and ID 3 (blue) separately reversed the running average plot (Figures S9B-S9C).  340 
These results show that a reciprocal relationship can be observed in the gene expression data between any 341 
groups that form three distinct clusters on a PCA plot.  342 

We next assessed the influence of the fold-change threshold on differential expression analysis 343 
using brain samples. Although we did not expect to see a trend between replicates, preferential regulation 344 
of long genes was observed (Figure S9D) when the fold-change was small (<10%, or log2FC ~ 13%). 345 
The bias was similar to the trend observed in previously published Mecp2-null and overexpression (Tg) 346 
models when library preparations ID 2 (red) and ID 1 (green), or library preparations ID 3 (blue) and ID 1 347 
(green), were compared (Gabel et al., 2015; Sugino et al., 2014). 348 

In this analysis, all the samples were technical replicates of the same reference RNA and were 349 
expected to have identical gene expression levels, but variation associated with library preparation 350 
resulted in the samples not clustering together and allowed us to observe an inverse trend in long genes 351 
(Figure S9A). Just as biological variation can lead to separation on a PCA plot, so can technical variation, 352 
and both can result in the same apparent long gene bias observed in Mecp2 datasets. Furthermore, our 353 
analysis suggests that differentially expressed genes can be highly variable with small fold-changes, 354 
which underscores the importance of proper fold-change cut-offs in differential gene expression analysis. 355 

  356 
Differentially expressed genes with small fold-changes identified by RNA-Seq are not reproducible 357 
by NanoString in the Mecp2 dataset 358 

To determine whether a long gene trend is present only in the Mecp2 RNA-Seq dataset and not in 359 
the NanoString dataset, we generated RNA-Seq (> 90 million paired-end sequencing reads per sample; n 360 
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= 3 each; Table 3) and NanoString (n = 3 each; Table 4) datasets on cerebellar tissue from wild-type and 361 
Mecp2-null mouse models (KO). The PCA plot on normalized datasets (Experimental Procedures) 362 
showed that the samples clustered based on sample type (Figures S10A-S10B, left panel). Transcriptome 363 
analysis was performed using DESeq2 (Love et al., 2014) on both datasets. We first analyzed RNA-Seq 364 
data to estimate the strength of the long gene trend. Although there appeared to be a long gene trend in the 365 
KO/WT comparison, an overlap plot confirmed there was no significant upregulation of long genes 366 
(Figure S10A, middle panel). Consistent with our previous findings, there was no preferential 367 
upregulation of long genes in our differential expression analysis (Figure S10A, right panel; absolute 368 
log2FC > 1.2 & FDR < 0.05).  369 

We performed further analysis using a list of 750 (~159 long and ~591 short) genes common to 370 
both RNA-Seq and nCounter NanoString (Experimental Procedures). Comparison of the log fold-changes 371 
using the classic method (i.e., log2((mean(group1) + 1)/(mean(group2) + 1)) and using shrunken log fold-372 
changes by DESeq2 (i.e., obtaining reliable variance estimates by pooling information across all the 373 
genes) suggested that the latter method yields more highly correlated fold-changes (Figures S10C). This 374 
is consistent with previous findings showing that shrunken log fold-changes are more reproducible (Love 375 
et al., 2014; Robinson et al., 2010). Even with this method, however, we observed high variability among 376 
genes with low fold-changes between the two datasets, regardless of whether they were long or short 377 
(Figures 5A and 5B). Moreover, genes with high fold-changes in expression (~ FC > 20%) were 378 
consistently called as differentially expressed in both the datasets (Figures 5A and 5B).  379 

This analysis suggests that the genes identified as differentially expressed by RNA-Seq at lower 380 
fold changes are not reproducible by NanoString. To determine whether fold-changes are inflated in 381 
RNA-Seq, we compared the absolute difference of log2 fold-change between the RNA-Seq and 382 
NanoString datasets. We observed fold-changes of long genes to be overestimated by RNA-Seq 383 
technology (Figure 5C; Chi-Square test; p-value <7.44e-3), which further supports our hypothesis that 384 
artefactual long gene trends are more likely to appear in amplification-based expression datasets. 385 

 386 
DISCUSSION 387 

Several recent papers have suggested that diseases associated with synaptic dysfunction tend to 388 
preferentially involve misregulation of long genes (>100 Kb) (Gabel et al., 2015; King et al., 2013; 389 
Sugino et al., 2014; Zylka et al., 2015).  To establish a statistical baseline for the length-dependent gene 390 
regulation analysis, we took advantage of a large number of SEQC consortium datasets where the relative 391 
gene expression fold-change has been measured using RNA-Seq and microarray. We demonstrated the 392 
power of big data analysis by uncovering major sources of technical variation such as intra-sample 393 
variation and PCR amplification bias that can affect the analysis of long gene expression. By contrast, 394 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2018. ; https://doi.org/10.1101/240705doi: bioRxiv preprint 

https://doi.org/10.1101/240705
http://creativecommons.org/licenses/by/4.0/


 13 

NanoString nCounter technology, which does not rely on amplification, revealed no long gene bias. Our 395 
results demonstrate that amplification-based transcriptomic technologies can lead to overestimations of 396 
long gene expression changes.  397 

This is not to say that there is never a bias toward expression changes in long genes. The 398 
topotecan dataset showed an authentic long gene trend even after accounting for baseline variability. This 399 
sizeable effect on long gene expression is consistent with the biological function of topotecan inhibiting 400 
topoisomerase I; long genes should, in theory, be more dependent on proper unwinding during 401 
transcription elongation (King et al., 2013).  By contrast, we found no bias toward long gene 402 
dysregulation in the MeCP2 datasets after baseline correction, even when we focused on only those genes 403 
that are differentially expressed to a statistically significant degree. The sole exception was the one 404 
infantile RTT case, but a single case does not allow us to draw any firm conclusions. Again, this does not 405 
rule out that MeCP2 regulates some long genes; it simply does not support a preferential misregulation of 406 
long genes by mutant MeCP2.  407 

Apparent expression changes in long genes are clearly liable to exaggeration by biases in 408 
microarray and RNA-Seq. We recommend eliminating confounds such as batch effects and properly 409 
estimating both inter- and intra-sample variations; the control datasets must be carefully analyzed in order 410 
to reveal the degree of baseline variability, which then can inform further analyses of the size of the signal 411 
required to overcome background noise in sequencing datasets (Figure S1). These findings are applicable 412 
to all research that utilizes current microarray and sequencing technologies. We hope that revealing the 413 
influence of protocols and technologies on RNA sequencing data will lead to improved technologies and 414 
more reliable analyses for amplification-based sequencing data.  415 
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 543 
FIGURES and TABLES  544 
 545 
Figure 1. Establishment of baselines and comparison of Mecp2 microarray and RNA-Seq datasets. 546 
A) Topotecan datasets: The top half of each subgraph shows the comparison of cultured cortical neurons 547 
treated with vehicle (V) from C57BL/6J (B6) × CASTEi/J (CAST) F1 hybrid mice with other vehicle-548 
treated samples (V/V, blue line) and comparison of topotecan-treated cortical neurons (D) with vehicle-549 
treated samples (D/V, red line). The red and blue lines diverge only for genes over 100kb in size. (B-D) 550 
Mecp2 datasets: Note the change in the scale of y-axis; these changes are much smaller than in the 551 
topotecan studies. Unlike the topotecan results in row A, gene bins with statistical significance are 552 
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sporadic for both long and short genes in row B. The top half of each subgraph in row B) shows the 553 
comparison of WT male C57BL samples with other WT male C57BL samples (blue line) and Mecp2 554 
male KO samples compared with WT male littermates (red line) in the amygdala (Samaco et al., 2012), 555 
cerebellum (Ben-Shachar et al., 2009) and hypothalamus (Chahrour et al., 2008). C) Comparison of three 556 
different Mecp2 Tg/WT male mouse models. The top half of each subgraph shows the comparison 557 
between WT FVB samples and other WT FVB samples (blue line) within the same genotype and Tg 558 
samples with their WT littermates (red line) in amygdala (Samaco et al., 2012), cerebellum (Ben-Shachar 559 
et al., 2009) and hypothalamus (Chahrour et al., 2008). Note that we observe few long gene bins as well 560 
as short gene bins with significant preferential upregulation in Mecp2-null and Mecp2-overexpression 561 
(Tg) mice datasets.  D) Cortical excitatory neurons from three different Mecp2 KO/WT female mouse 562 
models. The top half of each subgraph shows the comparison between two sets of WT C57BL samples 563 
(blue line), and between WT littermates and mutant mice bearing either the R106W or T158M mutations 564 
(Johnson et al., 2017). Note that the magnitude of length dependent gene misregulation was more 565 
substantial in control samples rather than Mecp2-mutant samples (blue curve).  The blue or red line 566 
represents fold-change in expression for genes binned according to gene length (bin size of 200 genes 567 
with shift size of 40 genes) as described in (Gabel et al., 2015). The blue and red shaded areas correspond 568 
to one-half of one standard deviation of each bin for the comparison of WT/WT and KO/WT (or 569 
MUT/WT) or Tg/WT, respectively. The bottom half of each subgraph is the p-value from the two-sample 570 
t-test between KO/WT (or MUT/WT) or Tg/WT and WT/WT. Bins with FDR < 0.05 are shown as a red 571 
dot. The red dashed line at the bottom of the subgraphs indicates the minimum -Log10(p-value) that 572 
corresponds to a FDR < 0.05. Please refer to Table 1 for the total number of samples used for the 573 
comparison between two random sets of WT (or vehicle-treated) samples and between WT littermates 574 
and KO/Tg/mutant mice. 575 
 576 
Figure 2. No bias toward long genes in MECP2 human datasets. (A) RNA-Seq analysis of isogenic 577 
human Rett in vitro models. Overlap plots were used to compare WT and KO samples, where the top half 578 
of each subgraph shows the comparison of WT samples with other WT samples (blue line), and RTT 579 
samples compared with WT samples (red line) in iPSC (left panel), Neural progenitor cells or NPC 580 
(middle panel), and neurons (right panel). (B) Microarray analysis of human RTT brain samples 581 
compared to age-matched control for Frontal Cortex (Deng et al., 2007). Comparison of gene trends in the 582 
pooled sample from 2- and 4-year old patients (left panel) and whole dataset (left panel). Observed long 583 
gene trend in the sample from 5-year old (right panel) and 8-year old patients (right panel). (C) 584 
Microarray analysis of RTT human frontal cortex samples (Lin et al., 2016) compared to controls (left 585 
panel) and RTT human temporal cortex samples (Lin et al., 2016) compared to controls (right panel). (D) 586 
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RNA-Seq analysis of RTT human (female) frontal cortex samples compared to controls (left panel) and 587 
RTT human (male) frontal lobe samples compared to controls (right panel). The lines in A-D represent 588 
fold-change in expression for genes binned according to gene length (bin size of 200 genes with shift size 589 
of 40 genes) as described in Gabel, Kinde et al. Nature 2015. The blue and red ribbons in (A) correspond 590 
to one-half of one standard deviation of each bin for the comparison of WT/WT and MUT/WT 591 
respectively. The bottom half of each subgraph is the p-value from the two-sample t-test between 592 
MUT/WT and WT/WT. Bins with FDR < 0.05 are shown as a red dot. The red dotted line in the bottom 593 
of the subgraphs indicates the minimum -Log10(p-value) that corresponds to a FDR < 0.05. Please refer to 594 
Table 1 for the total number of samples used for the comparison between two random sets of WT samples 595 
and between WT and RTT samples. 596 
 597 
Figure 3. Differentially expressed genes show length-dependent misregulation in Topotecan 598 
datasets but not in Mecp2 studies. (A) Scatter plot of log fold-change in expression between topotecan 599 
and vehicle-treated cultured cortical neurons (y-axis) against its gene length (x-axis) in RNA-Seq dataset 600 
from (King et al., 2013) (left panel; n = 5 each; FDR < 0.05) and (Mabb et al., 2016) RNA-Seq dataset 601 
(right panel; n = 3 each; FDR < 0.01). (B) Scatter plot of log fold-change in expression (microarray) 602 
between C57BL KO and its C57BL WT littermates (y-axis) against its gene length (x-axis) in 603 
hypothalamus (left panel; n = 4 each; FDR < 0.05 and log2FC > 0.2; (Chahrour et al., 2008)) and 604 
cerebellum (right panel; n = 4 each; FDR < 0.05 and log2FC > 0.2; (Ben-Shachar et al., 2009)). (C) 605 
Scatter plot of log fold-change in expression (microarray) between FVB Tg to its FVB WT littermates (y-606 
axis) against its gene length (x-axis) in hypothalamus (n = 4 each; FDR < 0.05 and log2FC > 0.2; 607 
(Chahrour et al., 2008)) and cerebellum (n = 4 each; FDR < 0.05 and log2FC > 0.2; (Ben-Shachar et al., 608 
2009)). (D) Scatter-plot of log fold-change in expression between KO/Tg and WT littermates (y-axis) 609 
against gene length (x-axis) in RNA-Seq datasets: Hypothalamus KO/WT comparison (left panel; n = 3 610 
each; FDR < 1e-5; (Chen et al., 2015)) and Hypothalamus Tg/WT comparison (right panel; n = 3 each; 611 
FDR < 1e-5; (Chen et al., 2015)). Red dot represents long genes and blue dot represents short genes. 612 
Differentially expressed genes were obtained from the published gene lists. 613 
 614 
Figure 4. Long gene bias in SEQC RNA-Seq and microarray, but not NanoString, datasets. (A) 615 
MDS plot using Euclidean distance on the SEQC (Consortium, 2014) NVS count dataset. (B) Mean Log2 616 

Fold Change plot against gene length using  ratio samples ((B-A/C-A); n =64 each) in RNA-Seq dataset. 617 
(C) MDS plot using Euclidean distance on the SEQC microarray dataset. (D) Mean Log2 Fold-Change 618 
plot against gene length using β ratio samples in microarray dataset (n = 4 each). Each blue dot is a bin of 619 
200 genes with shift size of 40 genes (Gabel et al., 2015). Box plot of the genes across three different 620 
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platforms that are present in NanoString codeset. The distributions of the mean fold-changes for β ratio 621 
samples for long and short genes are compared across three different platforms: E) RNA-Seq, F) 622 
Microarray, and G) NanoString. P-values were computed using the Wilcoxon Mann Whitney test. 623 
 624 
Figure 5. Expression changes are overestimated in RNA-Seq datasets. Comparison of log fold-change 625 
in expression between RNA-Seq and Nanostring for Short Genes (A) and Long Genes (B). Here, we used 626 
FDR < 0.05 for a gene to be considered differentially expressed. A Red dot represents genes that are 627 
called as differentially expressed by both platforms. The Green and Blue dot represents genes that are 628 
called differentially expressed by Nanostring and RNA-Seq respectively. C) Absolute log fold-change 629 
difference between RNA-Seq and Nanostring (y-axis) against gene length (x-axis). A Red dot represents 630 
long gene and blue dot represents short genes. P-values were computed using chi-square test. 631 
 632 
Table 1: List of Comparisons used in overlap or average plots  633 
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  634 
Brain region Mouse strain/Human samples compared Reference 

Fig 1A. Cultured Cortical 
Neurons (left panel) 

BL: Hybrid Vehicle vs Hybrid Vehicle (n = 2 each)  
RL: Hybrid Topotecan vs Hybrid Vehicle (n = 5 each) 

King et al. Nature 2013 

Cultured Cortical Neurons 
(middle panel) 

BL: Hybrid Vehicle vs Hybrid Vehicle (n = 1 each) 
RL: Hybrid Topotecan vs Hybrid Vehicle (n = 3 each) 

King et al. Nature 2013 

Cultured Cortical Neurons 
(right panel) 

BL: Hybrid Vehicle vs Hybrid Vehicle (n = 1 each) 
RL: Hybrid Topotecan vs Hybrid Vehicle (n = 3 each) 

Mabb et al. PLoS One 
2016 

Fig 1B. Amygdala 
(left panel) 

BL: C57BL WT vs C57BL WT (n = 2 each) 
RL: C57BL KO vs C57BL WT (n = 5 each)  

Samaco et al. Nature 
Genetics 2012 

Cerebellum (middle panel) BL: C57BL WT vs C57BL/6J WT (n = 2 each) 
RL: C57BL KO vs C57BL/6J WT (n = 5 each)  

Ben-Shachar et al., 
Human Mol. Genet. 2009 

Hypothalamus (right panel) BL: C57BL WT vs C57BL/6J WT (n = 2 each) 
RL: C57BL KO vs C57BL/6J WT (n = 4 each) 

Chahrour et al., Science 
2008 

Fig 1C. Amygdala 
(left panel) 

BL: FVB WT vs FVB WT (n = 2 each) 
RL: FVB KO vs FVB WT (n = 5 each)  

Samaco et al. Nature 
Genetics 2012 

Cerebellum (middle panel) BL: FVB WT vs FVB WT (n = 2 each) 
RL: FVB KO vs FVB WT (n = 5 each)  

Ben-Shachar et al. 
Human Mol. Genet. 2009 

Hypothalamus (right panel) BL: FVB WT vs FVB WT (n = 2 each) 
RL: FVB KO vs FVB WT (n = 4 each) 

Chahrour et al., Science 
2008 

Fig 1D. Cortical Excitatory 
Neurons R106WWT (left 
panel) 

BL: C57BL WT vs C57BL WT (n = 1 each) 
RL: C57BL R106WWT vs C57BL WT (n = 2 each) 

Johnson et al., Nature 
Medicine 2017 

Cortical Excitatory Neurons 
R106WMUT (middle panel) 

BL: C57BL WT vs C57BL WT (n = 1 each) 
RL: C57BL R106WMUT vs C57BL WT (n = 2 each) 

Johnson et al., Nature 
Medicine 2017 

Cortical Excitatory Neurons 
T158MMUT (right panel) 

BL: C57BL WT vs C57BL WT (n = 1 each) 
RL: C57BL T158MMUT vs C57BL WT (n = 2 each) 

Johnson et al., Nature 
Medicine 2017 

Fig 2A. iPSC (left panel) BL: iPSC WT vs iPSC WT (n = 2 each) 
RL: iPSC RTT (n = 4) vs iPSC WT (n = 5 each) 

GSE# 

NPC (middle panel) BL: NPC WT vs NPC WT (n = 2 each) 
RL: NPC RTT (n = 4) vs NPC WT (n = 5 each) 

GSE# 

Neuron (right panel) BL: Neuron WT vs Neuron WT (n = 2 each) 
RL: Neuron RTT vs Neuron WT (n = 4 each) 

GSE# 

Fig 2B. Frontal Cortex (left 
panel) 

RL: Post mortem RTT vs Controls (n = 3 each) 
BL: Post mortem pooled sample from 2- and 4-year 
old patient vs Control (n = 1 each) 

Deng et al. Human Mol. 
Genet. 2007 

Frontal Cortex (right panel) GL: Post mortem pooled sample from 5-year old 
patient vs age matched control (n = 1 each) 
PL: Post mortem pooled sample from 8-year old 
patient vs age matched control (n = 1 each) 

Deng et al. Human Mol. 
Genet. 2007 

Fig 2C. Frontal Cortex (left 
panel)   

RTT female samples compared to age matched 
controls (ages 17-20 years; n = 3) 

Lin et al. BMC Genomics 
2016 

Temporal Cortex (right 
panel) 

RTT female samples compared to age matched 
controls (ages 17-20 years; n = 3) 

Lin et al. BMC Genomics 
2016 

Fig 2D. Frontal Cortex (left 
panel) 

RTT female samples compared to age matched 
controls (ages 18 years; n = 1 each) 

GSE# 

Frontal Cortex (right panel) RTT male samples (age 1 year) to compared to age 
matched (age 2 day) controls (n = 1 each) 

GSE# 
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Note: Hybrid is mouse line is C57BL/6J (B6) × CASTEi/J (CAST) F1 hybrid mice. BL, RL, GL and PL stands for 635 
Blue line, Red line, Green line and Purple line respectively.  636 
 637 
Supplementary Figure Legends 638 
Figure S1 Schematic diagram of rigorous assessment of long gene trends 639 
(Related to Figure 1). 640 
 641 
Figure S2 Long gene trend is not present in Mecp2 datasets (Related to Figure 1). (A-L) Analysis of 642 
Intra-sample variation in WT Mecp2 dataset shows a bias toward long genes across different brain 643 
regions. The Blue line (BL) represents the comparison of permuted WT/WT samples from a respective 644 
dataset (as mentioned in the comparison table). The Red line (RL) represents the comparison of 645 
KO/MUT/Tg samples to its WT littermates from a respective dataset (as mentioned in the comparison 646 
table). The top half of each subgraph shows the lines that represent fold-change in expression for genes 647 
binned according to gene length (bin size of 200 genes with shift size of 40 genes) as described (Gabel et 648 
al., 2015; Zhao et al., 2013). Note that we observe few long gene bins as well as short gene bins with 649 
significant preferential upregulation in Mecp2-null mice datasets. The blue and red ribbon correspond to 650 
one-half of one standard deviation of each bin for the comparison of WT/WT and KO/WT or Tg/WT, 651 
respectively. The bottom half of each subgraph is the p-value from the two-sample t-test between KO/WT 652 
or Tg/WT and WT/WT. Bins with FDR < 0.05 are showed in red.  The red dotted line indicates the 653 
minimum -Log10(p-value) that corresponds to a FDR < 0.05.  654 
 655 
Here is the list of comparisons for Figure S2:  656 
  657 
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 658 
Brain region Mouse lines compared  Reference 

A. Striatum BL: C57BL WT vs C57BL WT (n = 2 each)  
RL: C57BL KO vs C57BL WT (n = 5 each) 

Zhao et al. Neuro 
of Disease 2013 

B. Hippocampus (4 weeks) BL: FVBx129 WT vs FVBx129 WT (n = 2 each) 
RL: FVBx129 KO vs FVBx129 WT (n = 4 each) 

Baker et al. Cell 
2013 

C. Hippocampus (9 weeks) BL: FVBx129 WT vs FVBx129 WT (n = 2 each) 
RL: FVBx129 KO vs FVBx129 WT (n = 4 each) 

Baker et al. Cell 
2013 

D. Visual Cortex 
 

BL: WT vs WT (n = 1 each) 
RL: KO (Mecp2tm1.1Bird) vs WT (n = 3 each) 

Gabel, Kinde et al. 
Nature 2015 

E. Locus Coeruleus 
Neurons (TH Young/~P22) 

BL: C57BL/6J WT vs C57BL/6J WT (n = 1 each) 
RL: C57BL/6J KO vs C57BL/6J WT (n = 3 each)  

Sugino et al. J 
Neurosci. 2014 

F. Locus Coeruleus 
Neurons (TH) 

BL: C57BL/6J WT vs C57BL/6J WT (n = 1 each) 
RL: C57BL/6J KO vs C57BL/6J WT (n = 3 each)  

Sugino et al. J 
Neurosci. 2014 

G. Fast Spiking 
interneurons, Motor Cortex 
(G42) 

BL: C57BL/6J WT vs C57BL/6J WT (n = 2 each) 
RL: C57BL/6J KO vs C57BL/6J WT (n = 4 each)  

Sugino et al. J 
Neurosci. 2014 

H. Purkinje Cells, 
Cerebellum (G42) 

BL: C57BL/6J WT vs C57BL/6J WT (n = 1 each) 
RL: C57BL/6J KO vs C57BL/6J WT (n = 3 each)  

Sugino et al. J 
Neurosci. 2014 

I. Pyramidal Neurons, 
Motor Cortex (YPFH) 

BL: C57BL/6J WT vs C57BL/6J WT (n = 1 each) 
RL: C57BL/6J KO vs C57BL/6J WT (n = 3 each)  

Sugino et al. J 
Neurosci. 2014 

J. Callosal Projection 
Neurons 

BL: C57BL/6J WT vs C57BL/6J WT (n = 1 each) 
RL: C57BL/6J KO vs C57BL/6J WT (n = 3 each)  

Kishi et al. Nature 
Comm. 2016 

K. Hypothalamus (KO – 
RNA-Seq) 

BL: FVBx129SvEvTac WT vs FVBx129SvEvTac WT  
(n =1 each) 
RL: FVBx129SvEvTac KO vs FVBx129SvEvTac WT  
(n = 3 each) 

Chen et al. PNAS 
2015 

L. Hypothalamus (Tg – 
RNA-Seq) 

BL: FVBx129SvEvTac WT vs FVBx129SvEvTac WT  
(n =1 each) 
RL: FVBx129SvEvTac Tg vs FVBx129SvEvTac WT  
(n = 3 each) 

Chen et al. PNAS 
2015 

 659 
Figure S3 Intra-sample variation bias in WT Mecp2 datasets is independent of the RNA isolation 660 
method (Related to Figure 1): Blue line (BL) represents the comparison of permuted WT/WT samples 661 
from a respective dataset (as mentioned in the comparison table). The Red line (RL) represents the 662 
comparison of MUT samples to its WT littermates from a respective dataset (as mentioned in the 663 
comparison table). The top half of each subgraph shows the lines that represent fold-change in expression 664 
for genes binned according to gene length (bin size of 200 genes with shift size of 40 genes) as described 665 
(Gabel et al., 2015). The blue and red ribbon correspond to one-half of one standard deviation of each bin 666 
for the comparison of WT/WT and MUT/WT respectively. The bottom half of each subgraph is the p-667 
value from the two-sample t-test between MUT/WT and WT/WT. Bins with FDR < 0.05 are shown in 668 
red.  The red dotted line indicates the minimum -Log10(p-value) that corresponds to a FDR < 0.05. 669 
 670 
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Brain region Mouse lines compared  Reference 

A. Male Cortex (GRO-Seq) BL: C57BL/6J WT vs C57BL/6J WT (n = 1 each) 
RL: C57BL/6J R106W vs C57BL/6J WT (n = 2 
each)  

Johnson et al. 
Nature Med. 2017 

B. Male Cortex (Whole Cell) BL: C57BL/6J WT vs C57BL/6J WT (n = 1 each) 
RL: C57BL/6J R106Wvs C57BL/6J WT (n = 2 
each)  

Johnson et al. 
Nature Med. 2017 

 671 
Figures S4 Intra sample variation bias in WT Mecp2 datasets is independent of the sex of mouse of 672 
the mouse model (Related to Figure 1): Blue line (BL) represents the comparison of permuted WT/WT 673 
samples from a respective dataset (as mentioned in the comparison table). The Red line (RL) represents 674 
the comparison of MUT samples to its WT littermates from a respective dataset (as mentioned in the 675 
comparison table). The top half of each subgraph shows the lines that represent fold-change in expression 676 
for genes binned according to gene length (bin size of 200 genes with shift size of 40 genes) as described 677 
(Gabel et al., 2015). The blue and red ribbon correspond to one-half of one standard deviation of each bin 678 
for the comparison of WT/WT and MUT/WT respectively. The bottom half of each subgraph is the p-679 
value from the two-sample t-test between MUT/WT and WT/WT. Bins with FDR < 0.05 are shown in 680 
red.  The red dotted line indicates the minimum -Log10(p-value) that corresponds to a FDR < 0.05. 681 
 682 

Brain region Mouse lines compared  Reference 
M. Cortical Excitatory 
Neurons (R106W, Male) 

BL: C57BL/6J WT vs C57BL/6J WT (n = 2 each) 
RL: C57BL/6J MUT vs C57BL/6J WT (n = 4 each)  

Johnson et al. 
Nature Med. 2017 

N. Cortical Excitatory 
Neurons (T158M, Male) 

BL: C57BL/6J WT vs C57BL/6J WT (n = 2 each) 
RL: C57BL/6J MUT vs C57BL/6J WT (n = 4 each)  

Johnson et al. 
Nature Med. 2017 

O. Cortical Inhibitory 
Neurons (R106W, Male) 

BL: C57BL/6J WT vs C57BL/6J WT (n = 2 each) 
RL: C57BL/6J MUT vs C57BL/6J WT (n = 4 each)  

Johnson et al. 
Nature Med. 2017 

P. Cortical Inhibitory Neurons 
(T158M, Male) 

BL: C57BL/6J WT vs C57BL/6J WT (n = 2 each) 
RL: C57BL/6J MUT vs C57BL/6J WT (n = 4 each)  

Johnson et al. 
Nature Med. 2017 

Q Excitatory Neurons 
(T158MWT; Female) 

BL: C57BL/6J WT vs C57BL/6J WT (n = 1 each) 
RL: C57BL/6J MUT vs C57BL/6J WT (n = 2 each)  

Johnson et al. 
Nature Med. 2017 

 683 
Figure S5 (Related to Figure 3). Differentially expressed gene analysis using gene list from Baker et al., 684 
2013 on Mecp2 hippocampus dataset. Scatter plot of log fold-change (log2FC > 0.1 and FDR < 0.05) in 685 
expression between FVBx129 KO to its FVBx129 WT littermates (y-axis) against its gene length (x-axis) 686 
in samples of hippocampus from 4-week old and 9-week old mice (n = 4; (Baker et al., 2013)). 687 
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 688 
Figure S6 Long gene bias in the SEQC dataset (Related to Figure 4). (A) Brain vs. Brain randomized 689 
log fold-change plot against gene length (left panel; n = 32 each), Universal human reference (UHR) vs 690 
UHR randomized log fold-change plot against gene length (middle panel; n = 32 each) and log2 fold-691 
change plot against transcript length using β ratio samples in RNA-Seq dataset (right panel; n = 32 each). 692 
(B) Brain vs. Brain randomized fold-change plot against gene length (left panel; n = 2 each), Universal 693 
human reference (UHR) vs UHR randomized log fold-change plot against gene length (middle panel; n=2 694 
each) and log2 fold-change plot against transcript length using β ratio samples in microarray dataset (right 695 
panel; n = 2 each). Each blue dot is a bin of 200 genes with shift size of 40 genes (Gabel et al., 2015). 696 
 697 
Figure S7 Long gene bias is independent of normalization methods (Related to Figure 4). Log2 fold-698 
change plot against gene length using β ratio samples (n =64 each) for all genes using (A) library size 699 
normalization (or total count) against gene length (left panel) & transcript length (right panel) and (B) 700 
TMM (edgeR) normalization against gene length (left panel) & transcript length (right panel). Each blue 701 
dot is a bin of 200 genes with shift size of 40 genes (Gabel et al., 2015). 702 
 703 
Figure S8 Long gene bias is not observed in Nanostring dataset (Related to Figure 4). (A) PCA plot 704 
on the NanoString dataset (n = 6 each sample type). (B) Scatter plot for mean gene expression in brain 705 
samples against its gene length (C) brain vs. brain randomized fold-change plot against gene length (n = 6 706 
each). (D) Log2 fold-change plot against gene length using (B-A/C-A) = 4:1 samples (n =6 each). 707 
 708 
Figure S9 Explanation of reciprocal relationship among transcriptional changes between RTT and 709 
MECP2 duplication syndrome. (A) PCA Plot of the B samples in Novartis SEQC dataset using library 710 
prep IDs. (B) Comparison of brain samples having library preparation 1 vs 2 against gene length (n = 16 711 
each). (C) Comparison of brain samples having library preparation 3 vs 2 against gene length (n = 16 712 
each). (D) Differential expression analysis between brain samples having library preparation id 1 vs 2 and 713 
3 vs 2 across different fold changes and FDR < 0.05. Each blue dot is a bin of 200 genes with shift size of 714 
40 genes (Gabel et al., 2015). The red and blue dot in (D) represent long and short genes, respectively. 715 
 716 
Figure S10 RNA-Seq and Nanostring analysis of Mecp2 KO and WT samples from the cerebellum 717 
of male mice (Related to Figure 5). A) Analysis using all the genes in the RNA-Seq cerebellum dataset. 718 
PCA Plot of Mecp2 KO and WT samples (left panel), overlap plot (middle panel) where, blue line (BL) 719 
represents the comparison of permuted WT/WT samples from a respective dataset (n = 1 each). The Red 720 
line (RL) represents the comparison of KO samples to its WT littermates (n = 3 each). The top half of 721 
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each subgraph shows the lines that represent fold-change in expression for genes binned according to 722 
gene length (bin size of 200 genes with shift size of 40 genes) as described (Gabel et al., 2015). The blue 723 
and red ribbon correspond to one-half of one standard deviation of each bin for the comparison of 724 
WT/WT and KO/WT respectively. The bottom half of each subgraph is the p-value from the two-sample 725 
t-test between KO/WT and WT/WT. Bins with FDR < 0.05 are shown in red.  The red dotted line 726 
indicates the minimum -Log10(p-value) that corresponds to a FDR < 0.05. Scatter plot of log fold-change 727 
in expression between KO and WT samples (right panel; n = 3 each) against gene length. The 728 
differentially expressed genes (FDR < 0.05 & absolute log2FC > log2(1.2)) were plotted. B) Analysis 729 
using 750 genes common in both RNA-Seq and Nanostring dataset. PCA plot of Mecp2 KO and WT 730 
samples (n = 3 each) by RNA-Seq (left panel) and Nanostring (right panel) platforms. C) Comparison of 731 
log2 fold changes using classical/standard method (left panel) and shrunken log2 fold changes (right 732 
panel) using DESeq2.  733 
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STAR METHODS 734 
 735 
KEY RESOURCES TABLE 736 
 737 
Deposited Data 738 
 739 
Table 1 has all details about the datasets used in the analysis with GEO Accession IDs. 740 
 741 
Software and Algorithms 742 
 743 
  744 

Reagent or Resource Source Identifier 

STAR aligner 
(v2.4.2a) 

Dobin et al., 2013 https://github.com/alexdobin/STAR/releases/tag/STAR_2.4.2a 
 

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/bioc/html/DESeq2.html 
 

edgeR Robinson et al., 2010 https://bioconductor.org/packages/release/bioc/html/edgeR.html 
 

NanoStringNorm  Waggott et al., 2012 https://cran.r-project.org/web/packages/NanoStringNorm/index.html 

GenomicFeatures Lawrence et al., 2013 https://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html 

ggplot2 Hadley Wickham. 
ggplot2: Elegant 

Graphics for Data 
Analysis (2010) 

https://github.com/tidyverse/ggplot2 
 

cowplot CRAN Package https://github.com/wilkelab/cowplot 
 

 745 
 746 
CONTACT FOR REAGENT AND RESOURCE SHARING  747 
 748 
Further information and requests for resources and reagents should be directed to and will be fulfilled by 749 
the Lead Contact, Zhandong Liu (zhandong.liu@bcm.edu). 750 
 751 
 752 
EXPERIMENTAL MODELS AND SUBJECT DETAILS 753 
 754 
Mice  755 

All mice used in this study were FVB.129 F1-hybrids. They were group-housed with up to five 756 
mice per cage. They were maintained on a 14h light:10h dark cycle (light on at 06:00) with standard 757 
mouse chow and water ad libitum in our AAALAS-accredited facility. All research and animal care 758 
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procedures were approved by the Baylor College of Medicine Institutional Animal Care and Use 759 
Committee. 760 
 761 
METHOD DETAILS 762 
 763 
Analysis of Mecp2 datasets 764 

The transcriptome datasets from Mecp2 studies generated using microarray (GEO accession ids: 765 
GSE50225, GSE11150, GSE15574, GSE33457, GSE42895, GSE42987, GSE8720 and GSE6955) were 766 
downloaded from GEO. RMA function (Gautier et al., 2004; Irizarry et al., 2003) in the R “affy” package 767 
was used to perform background correction, normalization, and summarization of core probesets. NetAffx 768 
annotation files (Release 33 for mm9) was used to map affy probes to its official gene symbols. The 769 
expression values for genes with multiple probes were obtained by taking the average log2 expression 770 
value across all the probes corresponding to each gene. The NetAffx annotation file has information about 771 
the probe location, length and gene coordinates; we calculated gene length using the gene coordinates, 772 
and we specifically used gene length in all our figures where “Gene length in KB” is defined on the x-773 
axis. We also ran our analysis on the transcript length (see figures S5A-B, right panel, and S6A-B, right 774 
panel). The extent of length-dependent bias with transcript length was similar to that of gene length. Since 775 
gene length information was not available in case of Affymetrix Human Genome U95 version 2 array, we 776 
mapped the probe to its gene and gene length using Ensembl Biomart database (version 777 
GRCh38.p5/Ensembl Genes 84). 778 

The transcriptome dataset of the virtual cortex (Gabel et al., 2015) (GSE60077) was mapped to 779 
mm10 genome using STAR aligner v2.4.2a (Dobin et al., 2013) and for hypothalamus RNA-Seq dataset 780 
(Chen et al., 2015) (GSE66871), we used a published list of differentially expressed genes and normalized 781 
counts. For Johnson et al. (Johnson et al., 2017) RNA-Seq dataset (GSE83474), we used the raw count 782 
files provided by the authors in GEO. Similarly, for the transcriptome analysis of frontal and temporal 783 
cortex from RTT patients, we used the normalized gene expression profile provided in GSE75303 (Lin et 784 
al., 2016). We performed box plot and MDS plot to check for outliers in the sample distribution. The 785 
annotation files provided by GPL10558 were obtained to map Illumina probes to official gene symbols 786 
and RefSeq hg19 annotation was used to obtain gene length information. 787 
 788 
Running Average Plots 789 

We used the same method as described in (Gabel et al., 2015) to compute the running average 790 
plot.  In brief, the genes were sorted by their lengths and partitioned into bins using a sliding window of 791 
200 consecutive genes in steps of 40 genes. The log2 fold-change values for genes within each bin were 792 
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averaged. For consistency with the previous studies, we used genes whose lengths are between 1 kb and 793 
1000 kb for all the plots. These plots were created using ggplot2 package in R.  794 
 795 
Confidence interval estimation in Overlap plots 796 

We define the plots used in Figure 1 as “overlap plots”, meaning an overlap of two running 797 
average plots that shows intra-sample variation between control samples (WT) and inter-sample variation 798 
between two genotypes or conditions. To determine the amount of intra-sample variation, we computed 799 
the standard deviation of the genes in the same sliding window. By definition, 95% confidence interval 800 
for the mean is sample mean plus minus 1.96 times of the standard deviation.  In all our overlap plots for 801 
the Mecp2 datasets, however, the confidence interval of KO/WT (or Tg/WT or D/V or RTT/WT) and 802 
WT/WT completely overlap.  For the sake of legibility, we plotted only half of one standard deviation of 803 
the mean for each bin in the comparison of WT/WT and KO/WT (or Tg/WT or D/V or RTT/WT), which 804 
is denoted by the blue and red ribbon, respectively. Two-sample Student t-test was applied to each of the 805 
bins between KO/WT (or Tg/WT or D/V or RTT/WT) and WT/WT, followed by multiple hypothesis 806 
adjustment using the Benjamini-Hochberg method (FDR). The significant bins (FDR < 0.05) are denoted 807 
by red and non-significant bins are denoted by grey. The overlap plots were created using cowplot 808 
package in R. 809 
 810 
Distribution of differentially expressed genes in Mecp2 datasets 811 

To measure the distribution of long gene bias among differentially expressed genes, we extracted 812 
published lists of genes found to be significantly activated or repressed by Mecp2 across different brain 813 
region. The published lists of differentially expressed genes were downloaded from the supplementary 814 
files in each study. Because of the frequent changes in gene name and annotation, we used MGI batch 815 
query (Eppig et al., 2015) to facilitate uniform comparison between these gene lists. The genomic 816 
locations were obtained for mm10/GRCm38. The original fold-change and FDR thresholds reported by 817 
respective publications were used. In case of microarray datasets, genes were plotted against their length. 818 
In the case of the RNA-Seq dataset, the calculation was done based on UCSC transcript IDs. Long genes 819 
(gene length > 100 Kb) were represented as red and short genes were represented as blue. The numbers of 820 
the upregulated and downregulated long/short genes are shown in four different quadrants.  821 

 822 
Analysis of SEQC dataset 823 

We measured the long gene fold-change bias in RNA-Seq and microarray benchmark datasets, 824 
using the RNA-Seq datasets generated by all the Illumina HiSeq 2000 sites and microarray datasets 825 
generated by USF using Affymetrix Human Gene 2.0 ST Array in the SEQC consortium. The RNA-Seq 826 
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raw count files and microarray PrimeView normalized file were accessed from the Gene Expression 827 
Omnibus database (GEO) (Barrett et al., 2013). The GEO accession IDs for the RNA-Seq and microarray 828 
datasets are GSE47774 and GSE56457, respectively. Raw count files from the Australian Genome 829 
Research Facility (AGR), Beijing Genomics Institute (BGI), Weill Cornell Medical College (CNL), City 830 
of Hope (COH), Mayo Clinic (MAY) and Novartis (NVS) were normalized using the DESeq2 method. 831 
Principal Component Analysis (PCA) and Multidimensional scaling plots (using Euclidean distance) were 832 
used to do a sanity check for a nominal amount of batch effects.  833 

For further downstream analysis, we decided to use the Novartis dataset, as it had a minimal 834 
amount of non-biological variation (data not shown). The Novartis dataset consisted of 64 technical 835 
samples each of A (Universal Human Reference RNA), B (Human Brain Reference RNA), C (3A:1B) 836 
and D (1A:3B). We did not use sample type E (Ambion ERCC Spike-In Control Mix 1) or F (Ambion 837 
ERCC Spike-In Control Mix 2) in our analysis. For consistency with the SEQC consortium, we used 838 
hg19 iGenome NCBI/RefSeq annotation (build 27.2). The transcripts and exon functions in 839 
GenomicFeatures Bioconductor package (Lawrence et al., 2013) were used to obtain the gene and 840 
transcript length respectively, from the hg19 GTF file. Since a small number of genes or transcripts have 841 
multiple different genomic locations, genes or transcripts with the longest length were used. Expression 842 
values for genes with multiple transcript clusters were averaged across all transcript clusters 843 
corresponding to each gene. Similarly, for the microarray USF PrimeView dataset, sanity checks were 844 
performed using boxplot and MDS plots. Boxplots were used to check if the dataset was properly 845 
normalized and MDS plots were used to confirm that the dataset had a nominal amount of batch effects or 846 
non-biological variation.  847 
 848 
Library size normalization using Total Count and Trimmed Mean of M-values 849 

To ensure that our normalization methods were not obscuring a genuine long gene bias, we 850 
normalized the raw counts from Novartis RNA-Seq dataset based on two other methods apart from 851 
DESeq2 (Love et al., 2014): a) Total Counts (Dillies et al., 2013) and b) the Trimmed Mean of M-values 852 
(TMM) method implemented in edgeR (Robinson et al., 2010; Robinson and Oshlack, 2010). For Total 853 
Counts, scaling factors were computed such that the normalized read counts across all samples are equal. 854 
In the case of the TMM method, we used the calcNormFactors function in the edgeR Bioconductor 855 
package to get the scaling factors and normalized read counts. 856 
 857 
SEQC NanoString sample preparation and analysis 858 

We purchased Universal Human Reference RNA from Agilent Technologies, Inc., and Human 859 
Brain Reference RNA from Life Technologies, Inc. For the nCounter experiments, we used the same 860 
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RNA sample types as SEQC. We assessed RNA purity and integrity with Bioanalyzer (Agilent 861 
Technologies, Inc.) prior to use in the nCounter assays. Sample preparation and analysis were done using 862 
a nCounter Prep Station 5s and a nCounter Digital Analyzer 5s. Expression of 770 genes (~730 genes 863 
with ~40 housekeeping genes and positive and negative controls) was assessed using the nCounter 864 
Human PanCancer Pathways Panel. A second PanCancer Pathways Panel was run using the same samples 865 
submitted to the first panel to assess the effect of batches on nCounter results. We used NanoStringNorm 866 
function (Waggott et al., 2012)in the R NanoStringNorm package to normalize the dataset. Boxplots and 867 
MDS plots were used for sanity checks. The two-sided Wilcoxon rank sum test was used to compare the 868 
distribution of the fold-change between long and short genes across the three different platforms.  869 

 870 
RNA isolation, sequencing and nanostring analysis from mouse cerebellum  871 

We performed RNA extraction and purification from the cerebellum of male mice 8 to 9 weeks of 872 
age (three biological replicates of wild-type and Mecp2-null) using the Aurum™ Total RNA Fatty and 873 
Fibrous Tissue Kit (Bio-Rad 7326830) per the manufacturer’s instructions. Genomic DNA was 874 
eliminated using an on-column DNase digestion step. RNA quality was assessed using the Agilent 2100 875 
Bioanalyzer system prior to library preparation for deep sequencing or use of the total RNA for 876 
Nanostring nCounter quantification.  877 

RNA sequencing was performed using Illumina HiSeq 2000. All sequencing was done by the 878 
Genomic and RNA Profiling Core at the Baylor College of Medicine. For each sample, about 90 to 110 879 
million pairs of 100 bp reads were generated.  Raw reads were aligned to the Mus musculus genome 880 
(Gencode mm10; version M10) using STAR aligner v2.4.2a (Dobin et al., 2013) with default parameters. 881 
The overall mappability for all 6 samples was above 90% (Table 2). The read counts per gene were 882 
obtained using the quantMode function in STAR. These read counts are analogous to the expression level 883 
of the gene. Using the obtained raw counts, normalization and differential gene analysis were carried out 884 
using the DESeq2 package in the R environment. DESeq2 allows us to test for gene expression changes 885 
between samples in different conditions using more robust shrinkage estimation for dispersion and fold 886 
changes (Love et al., 2014). The default negative binomial generalized linear model with Wald test 887 
implemented in the package was used to identify significant differential expressed genes. Log fold -888 
change was calculated using both the classic method and shrinkage estimates calculated by DESeq2. 889 

For the nCounter experiments, sample preparation and quality analysis were done using a 890 
nCounter Prep Station 5s and an nCounter Digital Analyzer 5s. Expression of 784 genes (750 endogenous 891 
genes with 34 housekeeping genes and positive and negative controls) was assessed using the nCounter 892 
Mouse PanCancer Pathways Panel. We used NanoStringNorm function (Waggott et al., 2012) in the R 893 
NanoStringNorm package to normalize the dataset and DESeq2 for differential expression analysis. 894 
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