Page **1**

1	Title:	Scaling of G1 duration with population doubling time by a cyclin in Saccharomyces
2		cerevisiae
3		
4	Authors:	Heidi M. Blank [*] , Michelle Callahan [*] , Ioannis P.E. Pistikopoulos [*] , Aggeliki O. Polymenis ^{*†}
5		and Michael Polymenis [*]
6		
7	Affiliations:	* Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
8		77843, U.S.A.
9		† Present address: Department of Physics and Astronomy, University of California, Los
10		Angeles, CA 90095

Page 2

11	Running Title:	Scaling G1 with doubling time
12	Keywords:	cell size / growth law / START / chemostat
13	Correspondence:	Heidi M. Blank or Michael Polymenis
14		Department of Biochemistry and Biophysics, Texas A&M University
15		300 Olsen Blvd., College Station, TX, 77843-2128
16		<u>HeidiBlank@tamu.edu</u> (H.M.B);
17		Tel: 979-458-3259

Page 3

18 ABSTRACT

19	The longer cells stay in particular phases of the cell cycle, the longer it will take these cell populations to
20	increase. However, the above qualitative description has very little predictive value, unless it can be
21	codified mathematically. A quantitative relation that defines the population doubling time (T $_d$) as a
22	function of the time eukaryotic cells spend in specific cell cycle phases would be instrumental for
23	estimating rates of cell proliferation and for evaluating introduced perturbations. Here, we show that in
24	human cells the length of the G1 phase (T_{G1}) regressed on T_d with a slope of ≈ 0.75 , while in the yeast
25	Saccharomyces cerevisiae the slope was slightly smaller, at \approx 0.60. On the other hand, cell size was not
26	strongly associated with T_d or T_{G1} in cell cultures that were proliferating at different rates. Furthermore,
27	we show that levels of the yeast G1 cyclin Cln3p were positively associated with rates of cell
28	proliferation over a broad range, at least in part through translational control mediated by a short uORF
29	in the CLN3 transcript. Cln3p was also necessary for the proper scaling between T_{G1} and T_{d} . In contrast,
30	yeast lacking the Whi5p transcriptional repressor maintained the scaling between T_{G1} and T_{d} . These data
31	reveal fundamental scaling relations between the duration of eukaryotic cell cycle phases and rates of
32	cell proliferation, point to the necessary role of Cln3p in these relations in yeast and provide a
33	mechanistic basis linking Cln3p levels to proliferation rates and the scaling of G1 with doubling time.

Page 4

34 INTRODUCTION

35	Recurring shapes and patterns in nature are sometimes described with mathematical relationships. As a
36	result, these natural processes can be predicted and understood better. Regarding patterns of
37	eukaryotic cell division, one could ask: How are the lengths of eukaryotic cell cycle phases related to
38	each other and to the total doubling time of the population? Can such relations be described
39	mathematically, in the form of a scaling formula? If so, what are the molecular mechanisms that govern
40	the scaling? A scaling relation that describes eukaryotic cell division would be a significant advance. For
41	example, it could serve as a point of reference against which the effects of genetic or other
42	perturbations can be evaluated.
43	The 'textbook' view in the coordination of growth and division in the eukaryotic cell cycle (e.g., see
44	Fig. 10-26 in (Morgan 2007)) is that expansion of the G1 phase of the eukaryotic cell cycle accounts for
45	most, if not all, of the lengthening of the cell cycle in slower proliferating cells, in budding yeast
46	(Јонмsтом <i>et al.</i> 1977; Brauer <i>et al.</i> 2008) or humans (Baserga 1985; Fisher 2016). However, there is no
47	report in the literature of a quantitative relation that defines the doubling time (T_d) as a function of the
48	time yeast or human cells spend in the G1 phase (T_{G1}). Here, based on all the available data for budding
49	yeast and human cell populations, we derived for the first time in the field scaling relations between T_{G1}
50	and T_{d} . These scaling relations also allowed us to critically evaluate the role of cell cycle regulators in
51	yeast cells proliferating at different rates.
52	Two key regulators of the length of the G1 phase in S. cerevisiae are the Cln3p and Whi5p proteins.
53	The G1 cyclin Cln3p promotes initiation of DNA replication (CRoss 1988; NASH <i>et al.</i> 1988). In contrast,
54	the transcriptional repressor Whi5p acts analogously to the retinoblastoma gene product in animals, to

55 inhibit the G1/S transition (COSTANZO *et al.* 2004; DE BRUIN *et al.* 2004; PALUMBO *et al.* 2016). It has been

reported that while synthesis of Cln3p parallels cell size, the synthesis of Whi5p is independent of cell

- 57 size (SCHMOLLER et al. 2015), arguing that dilution of Whi5p as cells get bigger in G1 governs the length of
- the G1 phase (Schmoller and Skotheim 2015; Schmoller *et al.* 2015).
- 59 Here, we obtained the first measurements of Cln3p and Whi5p levels as a function of proliferation
- 60 rates in steady-state cultures. The levels of Cln3p varied over a broad range, due to a uORF affecting
- 61 translation of *CLN3*. Our data also show that loss of Whi5p does not significantly affect the scaling
- 62 relation between T_d and T_{G1}. Instead, we provide strong evidence for the functional and molecular basis
- 63 for the necessary role of Cln3p in this process.

Page 6

64 MATERIALS AND METHODS

65	Strains. Unless stated otherwise, <i>S. cerevisiae</i> wild-type, <i>cln3</i> Δ and <i>whi5</i> Δ strains were in the BY4741
66	background (NCBI Taxon 559292; <i>MAT</i> a, <i>his3Δ1, leu2Δ0, ura3Δ0, met15Δ0</i>) and they have been
67	described previously (Soma <i>et al.</i> 2014). For protein surveillance, we constructed an otherwise wild type
68	strain that carried epitope-tagged WHI5 and CLN3 alleles at their endogenous chromosome locations.
69	First, a commercially available WHI5-TAP::HIS3 strain (BY4741 otherwise; GE Healthcare) was
70	backcrossed three times into the W303 background (NCBI Taxon 580240; MATα leu2-3,112 trp1-1 can1-
71	100 ura3-1 ade2-1 his3-11,15). Then, it was crossed with an otherwise wild-type strain carrying a CLN3-
72	13MYC allele (W303 background) described elsewhere (THORBURN et al. 2013), and kindly provided by
73	Dr. A. Amon (MIT and HHMI). The resulting diploid was sporulated and dissected, to obtain MATa
74	haploid segregants carrying both the epitope-tagged WHI5 and CLN3 alleles (strains HB94/97; MATa
75	<i>CLN3-13MYC::TRP⁺ WHI5-TAP::HIS⁺ leu2 ura3 met15</i>), which were used in the experiments shown in
76	Figure 4. We verified expression of Whi5p-TAP and $Cln3p$ -(Myc) ₁₃ in this strain (see Supplementary File
77	1), and their absence in <i>whi5</i> Δ or <i>cln3</i> Δ strains, respectively. We also generated a derivative of this
78	strain, which lacks the uORF in the 5'-leader of the <i>CLN3</i> mRNA. To this end, we used plasmid A-315T-
79	pMT10 we had described previously (POLYMENIS AND SCHMIDT 1997), as a template in a PCR reaction with
80	forward (5'-CAAGAACTACCATTCGACAGG-3') and reverse primers (5'-CGTACAGAAAGCGTATCAAA-3') to
81	generate a product that carries in the 5'-leader of CLN3 the URA3-marked A-315T mutation that
82	inactivates the uORF. We then used this PCR product to transform strain HB94 (WHI5-TAP, CLN3-
83	13MYC). Genomic DNA of transformants was sequenced to verify the presence of the A-315T mutation.
84	Confirmed A-315T mutants were then backcrossed with wild type (W303) to segregate away possible
85	secondary mutations at other loci. The resulting heterozygote was sporulated and dissected to isolate a
86	WHI5-TAP, A-315T-CLN3-13MYC segregant (HB104), which was used in the experiments shown in Figure
87	4.

Page 7

88

89	Datasets for population-based cell cycle parameters. All the obtained variables we report here
90	represent population averages. They do not resolve intergenerational differences in cell cycle
91	progression of the same cells in successive cell cycles. In the context of this study, population averages
92	hold significant advantages: First, they are easily obtained; Second, they are ubiquitously used and
93	reported in the literature; Third, they allow straightforward comparisons between different systems, for
94	example between yeast and human cells (see Figure 1).
95	For yeast, the data we collected (Table S1) were from wild type strains from various backgrounds,
96	except in the few cases where they carried temperature-sensitive alleles, such as cdc mutations
97	(JAGADISH AND CARTER 1977), to estimate the length of the G1 phase upon transfer to the non-permissive
98	temperature. The methods used to calculate the fraction of G1 cells included: measurements of the DNA
99	content of the cells by flow cytometry (Slater <i>et al.</i> 1977; JOHNSTON <i>et al.</i> 1980; Guo <i>et al.</i> 2004; BRAUER
100	et al. 2008; Henry et al. 2010); budding (Tyson et al. 1979; Rivin and Fangman 1980); sensitivity to cell
101	cycle arrest before DNA replication by pheromone (Hartwell and Unger 1977; Jagadish and Carter
102	1977), or <i>cdc</i> (JAGADISH AND CARTER 1977) mutations. In this study, to obtain the fraction of G1 cells (e.g.,
103	see Figures 3, 4), we used DNA content measurements by flow cytometry, as described previously
104	(Hoose <i>et al.</i> 2012; Hoose <i>et al.</i> 2013).
105	For human cells, earlier studies employed ³ H-thymidine pulses or division waves after thymidine
106	block (BASERGA 1985). The doubling times of the NCI-60 human cancer cell lines we included in Table S2
107	are known (Ross et al. 2000; SCHERF et al. 2000; POLYMENIS 2017), but there was no quantitative cell cycle

108 data for most of the cell lines. However, images of DNA content profiles for the NCI-60 panel, albeit with

109 no quantification, have been published (GARNER AND EASTMAN 2011). We requested and obtained high-

110 resolution files of these images from Dr. Alan Eastman (Geisel School of Medicine - Dartmouth College).

Page 8

111	From the entire DNA content histogram, to quantify the fraction of cells in G1, we used imaging
112	software to measure the area on the left side of the G1 peak (from peak to valley) and multiplied this
113	area by two, as has been described previously (JOHNSTON <i>et al.</i> 1980). This approach avoids
114	complications from heavy right side tails due to S phase cells and yields an acceptable estimate of the
115	relative G1 length as a fraction of total cell cycle time. We then combined these values with all others
116	available from human cells, cancerous and normal (SISKEN AND KINOSITA 1961; DEFENDI AND MANSON 1963;
117	Lennartz and Maurer 1964; Aoki and Moore 1970; Baserga 1985; Kumei <i>et al.</i> 1989; Brons <i>et al.</i> 1992;
118	LUCIANI <i>et al.</i> 2001; Нанм <i>et al.</i> 2009), to compile a dataset of 96 values for G1 length (T _{G1}) and doubling
119	time (T_d) for human cells, shown in Table S2.
120	
121	Estimates of G1 length. The values we show in Tables S1 and S2 were obtained from studies reporting
122	on the <i>relative</i> duration of the G1 phase. To estimate the <i>absolute</i> length of the G1 phase, T_{G1} , we
123	multiplied the relative G1 length by T $_{ m d}$ (Tables S1, S2). This simple equation is the appropriate one to use
124	with chemostat data when as many cells are removed as are being produced in the culture (HOFFMAN
125	1949). Subtracting T_{G1} from T_d yields the duration of the rest of the cell cycle phases (T_{nonG1}). For non-
126	chemostat data, other more elaborate equations could be used, especially for the asymmetric patterns
127	of division of budding yeast (Hartwell and Unger 1977; Јонnston <i>et al.</i> 1980). However, for simplicity
128	
129	and ease of comparison across systems, we uniformly applied the simple equation mentioned above.
	and ease of comparison across systems, we uniformly applied the simple equation mentioned above. Furthermore, inaccuracies in the absolute values of T _{G1} may only affect the intercept of the linear
130	
	Furthermore, inaccuracies in the absolute values of T_{G1} may only affect the intercept of the linear
130	Furthermore, inaccuracies in the absolute values of T_{G1} may only affect the intercept of the linear relation between T_d and T_{G1} , but not the slope that describes the fundamental scaling between T_d and

Рa	g	е	9
----	---	---	---

134	Lastly, a limitation of the non-chemostat data in yeast and all the data from human cells is that it is
135	assumed that cell death contributes negligibly to the doubling time of the population. This assumption is
136	reasonable in yeast because young cells vastly outnumber older ones approaching senescence.
137	However, it may be of concern in mammalian culture systems. Hence, our data with human cells should
138	be interpreted with caution, because the fraction of growing cells in the culture may be significantly
139	lower than one. Also, although we are looking at trends that seemingly hold across a multitude of
140	human cell types, the data were overwhelmingly derived from cancer cell lines, which in many cases
141	have altered cell cycles.
142	
143	Chemostat cultures. The experiments were done using a New Brunswick BioFlo (BF-110) reactor with a
144	working volume of 880 mL. The reactor was run at room temperature, as described earlier (HENRY <i>et al.</i>
145	2010). In each experiment and at each dilution rate the reactor was sampled several times to measure
146	protein levels by immunoblots, the DNA content with flow cytometry, and the cell size and cell density
147	of the culture using a Beckman Z2 channelyzer (HENRY <i>et al.</i> 2010; HOOSE <i>et al.</i> 2012), as indicated. We
148	measured the cell density at every sampling, to ensure that we never reached 'wash-out' conditions at
149	the high dilution rates. In every experiment the cell density remained >1E+07 cells/ml and did not vary
150	more than 3-fold between the lowest and highest dilution rates.

151

Protein surveillance. Proteins were resolved onto 4-12% Tris-Glycine gels (Thermo Scientific, Cat#:
 XP04125BOX). Cln3p-(Myc)₁₃ was detected with an anti-Myc antibody (Abcam, Cat #: ab13836). All other
 procedures for TAP-tagged protein detection, extract preparation for immunoblots and their analysis
 have been described elsewhere (BLANK *et al.* 2017).

156

Page | **10**

157	Statistical analysis. Data were analyzed and displayed with R language packages. All R functions, the
158	corresponding packages, and their use are listed in Table S3. To build the linear models we described
159	using the values for the yeast (Table S1) and human (Table S2) datasets, we first examined if the
160	assumptions for building simple, linear parametric models were satisfied. The diagnostic residual plots
161	evaluating whether the errors were independent of each other, normally distributed around a mean of
162	zero and equal variance, are shown in Figure S2. In both the yeast and human datasets, the existence of
163	a few outlier points appeared to violate the necessary assumptions (Figure S2; p<0.05 for assessment of
164	the assumptions using the global test on four degrees-of-freedom (PENA AND SLATE 2006)). Hence, we
165	opted for non-parametric, robust linear regression models based on Siegel repeated medians (Table 1).
166	For the meta-analysis of cell size data (see Figure 2) we used the <i>metafor</i> R language package
167	(VIECHTBAUER 2010). Briefly, the correlation coefficients from each study were transformed using Fisher's
168	z transformation. An unbiased random-effects analysis, as opposed to a fixed-effects one, was then
169	performed using this index, and the summary values were converted back to correlations and displayed
170	as such with forest plots (Figure 2, Table S3).
171	
172	Data availability. Strains and plasmids are available upon request. The authors affirm that all data
173	necessary for confirming the conclusions of the article are present within the article, figures, and tables.
174	Figure S1 shows goodness-of-fit plots for lognormal distribution of yeast and human T_{G1} values. Figure
175	S2 shows diagnostic plots of simple linear regression models for T_d and T_{G1} values of yeast and human
176	cells. Figure S3 shows additional chemostat experiments with <i>whi5</i> Δ and <i>cln3</i> Δ cells. Table S1 lists all the
177	cell cycle values for yeast cells from the literature. Table S2 lists all the cell cycle values for human cells
178	from the literature. Table S3 lists all R functions, the corresponding packages, and their use. File S1
170	a stain all more increases blat increases and and used in this study. All supplementary figures, tables

179 contains all raw immunoblot images generated and used in this study. All supplementary figures, tables

180 and files can be found at (<u>10.6084/m9.figshare.7011275</u>).

Page | 11

181 **RESULTS**

182 Rationale

183 The rationale for the experiments we describe was the following: First, use all the available values from 184 the literature to derive a quantitative relationship of the population doubling time (T_d) as a function of 185 the time eukaryotic cells spend in the G1 phase of the cell cycle (T_{G1}) (Figure 1). Second, based on the 186 same datasets and analyses, examine if cell size is also related to T_d or T_{G1}, because cell size is often used 187 as a proxy for the control of cell division by nutrients (Figure 2). Third, use the linear relation linking T_d 188 and T_{G1} as a metric to evaluate the contributions of Whi5p and Cln3p, two proteins that govern the G1/S 189 transition in budding yeast (Figure 3). Fourth, if Cln3p or Whip5p impinges on the relation between T_d 190 and T_{G1} , then provide a mechanistic understanding of its role (Figure 4). 191

192 **T**_{G1} values are distributed lognormally, consistent with exponential patterns of growth

193 We compiled the available values for T_d and T_{G1} from the literature for budding yeast (Table S1) and 194 human (Table S2) cells (see Materials and Methods). With the dataset of T_{G1} values at hand, we next 195 examined their distribution. Knowing how the T_{G1} values are distributed will inform how to better model 196 T_{G1} against T_d and offer some insight into the processes that determine G1 length. We found that T_{G1} 197 values were not normally distributed for yeast (p = 4.434E-14, Shapiro-Wilk test) or human cells (p =198 1.039E-07, Shapiro-Wilk test). Instead, T_{G1} values fit better a lognormal distribution. For example, for 199 yeast T_{G1} values, the Anderson-Darling statistic was the lowest for the lognormal distribution (0.347), 200 compared to other distributions (Weibull: 1.693; gamma: 1.521; exponential: 2.462). As expected for 201 lognormal distributions, log-transformed values of T_{G1} were normally distributed for yeast (Figure S1A-D, 202 p = 0.1871, Shapiro-Wilk test) and human cells (Figure S1E-H, p = 0.3099, Shapiro-Wilk test). The 203 apparent lognormal distribution of T_{G1} values is consistent with a multiplicative process of many,

Page | **12**

204	positive, independent random variables that determine the G1 length (Косн 1966). Lognormal
205	distributions are very common in biological growth processes (MOSIMANN 1988). In cell proliferation,
206	lognormality has been proposed to reflect exponential patterns of growth in mass. Despite fluctuations
207	in the growth rate constant, the growth of the overwhelming majority of cellular components is
208	influenced similarly, leading to lognormality (Косн анд Schaechter 1962; Косн 1966). In budding yeast
209	and other cell types there is evidence for exponential patterns of protein synthesis (ELLIOTT AND
210	McLAUGHLIN 1978; DI TALIA et al. 2007; TZUR et al. 2009) and increase in mass in the cell cycle (BRYAN et al.
211	2012; SON <i>et al.</i> 2012). Such considerations accommodate the lognormality of T_{G1} values we describe
212	here.
213	
214	Strong association between T_{G1} and T_{d} , but non-G1 phases also expand in lower proliferation rates
215	To test for association between T_{G1} and T_d we used the distribution-free Spearman's and Kendall's tests
216	for independence based on ranks. We used these non-parametric, distribution-free tests because of the
217	existence of outliers even in log-transformed T_{G1} values (e.g., see Figure S1). The high values (> 0.75) of
218	the rank correlation coefficients ($ au$ for Kendall's and r for Spearman's; see Table 1) show a strong
219	positive association between T_{G1} and T_{d} , for both yeast (Figure 1A) and human (Figure 1C) cells.
220	Interestingly, however, the duration of the non-G1 phases (T_{nonG1}) of the cell cycle were also positively
221	correlated with T _d (Figures 1B, D; and Table 1) in both organisms, albeit less so in yeast (τ =0.398; Figure
222	1B) than in human cells (τ=0.579; Figure 1D). Overall, our data document the strong association between
223	T_{G1} and T_{d} (Figures 1A, C). Additionally, they suggest that growth requirements for cell division are not
224	registered exclusively in G1, but also later in the cell cycle (see Figures 1B, D), in agreement with
225	observations from other groups (ANASTASIA et al. 2012; FERREZUELO et al. 2012; DOWLING et al. 2014;
226	Soifer and Barkai 2014; Cerulus <i>et al.</i> 2016; Mayhew <i>et al.</i> 2017; Garmendia-Torres <i>et al.</i> 2018).

Page **13**

227 A scaling relation between T_{G1} and T_d

228	To estimate a predictive and quantitative relation between T_{G1} and T_d we derived non-parametric,
229	robust linear regression models using the Siegel repeated median estimates (SIEGEL 1982), (Figure 1 and
230	Table 1; see also Materials and Methods). The intercepts of the linear T_{G1} vs. T_d plots reflect the
231	apparent minimum duration of the S+G2+M phases in yeast (1.4 h; Table 1) and human (7.6 h; Table 1)
232	cells. The slopes in the linear relations indicate how much T_d is affected by T_{G1} , or T_{nonG1} . For example, if
233	non-G1 phases were not expanding in slower proliferating cells, then one would expect a vertical line
234	parallel to the y-axis in T_{nonG1} vs. T_d plots. We noticed that the slope of the regression of T_{G1} on T_d
235	appeared to slightly differ between the yeast and human datasets (Figure 1 and Table 1). Applying the
236	non-parametric Sen-Adichie test for parallelism confirmed that the difference in the slopes of the
237	regression lines of T_{G1} on T_{d} between yeast and human cells was statistically significant (V statistic =
238	7.324, p-value = 0.007). Although the T_{G1} distributions themselves are lognormal, log-transformation is
239	not necessary for any of our conclusions, since we used a non-parametric, ordinal-based analysis in all
240	our statistical tests. Nonetheless, we display regression plots using log-transformed data to improve
241	visualization, because data points appear more evenly on these graphs. Furthermore, log-transformed
242	values are often incorporated in scaling relations between the measured variables in the literature (CHAN
243	AND MARSHALL 2010). The quantitative relations we identified linking T_{G1} with T_d are significant because
244	they provide a framework to interpret experimental perturbations in cell cycle progression and cell
245	proliferation, as we will describe for yeast cells.
246	

246

247 Nutrient-specific, but not growth rate-dependent association between cell size and T_{G1}, or T_d.

248 Control of cell size has frequently been used synonymously with growth control of G1 transit in the cell

249 cycle, especially in budding yeast. Daughter cells of *S. cerevisiae* are born smaller than their mother is,

and they will not initiate a new round of cell division until they reach a size characteristic of the culture

Page | 14

251	medium. The rate at which daughter cells increase in volume has been reported to contribute to the size
252	at which they will initiate a new round of cell division (FERREZUELO et al. 2012). Note that unless indicated
253	otherwise, here we use the term 'growth rate' to describe the rate at which cells proliferate, and not the
254	rate at which they increase in size in a given cell cycle. As the cell cycle is prolonged in poor nutrients, it
255	is also widely assumed that the cells get smaller (e.g., see Fig. 10-26 in (MORGAN 2007)). To test the
256	strength of the association between cell size and T_{G1} or T_{d_7} we combined the available data from
257	previous studies ((Tyson <i>et al.</i> 1979; Guo <i>et al.</i> 2004; BRAUER <i>et al.</i> 2008); see Table S1). From such an
258	unbiased but unweighted analysis (Figure 2A, D), it appeared that the size of yeast cells was not
259	significantly associated with T_d (p-value= 0.171, based on Kendall's test; Figure 2A) or T_{G1} (p-value=
260	0.2449, based on Kendall's test; Figure 2D).
261	Unlike the strong association of T_{G1} with T_d , which was consistent across studies (see Figure 1 and
262	Materials and Methods), the association between cell size and T_{G1} or T_d appeared to vary among the
263	relevant studies. Given the different number of samples analyzed in each study and their associated
264	variance, we calculated the effect sizes from each study separately, based on the non-parametric
265	Spearman's and Kendall's correlation coefficients. These study-specific correlation coefficients then
266	served as the effect size index, to standardize the different studies and arrive at a summary correlation

267 (BORENSTEIN 2009). The results were visualized in typical 'forest' plots (Figures 2B, C, E, F). A negative

 $268 \qquad association \ between \ size \ and \ rates \ of \ cell \ proliferation, \ with \ cells \ getting \ smaller \ with \ larger \ T_d \ values,$

was only evident at a moderate level in batch cultures ($\tau = -0.52$, r = -0.64; see Figures 2E, F), where

270 different nutrients were used to achieve different doubling times (TYSON *et al.* 1979). In contrast, in

271 other studies (GUO *et al.* 2004; BRAUER *et al.* 2008), which employed chemostats to alter the population

doubling time independently of the limiting nutrient, there was no correlation between cell size and T_d

273 or T_{G1} (Figure 2). Importantly, within these chemostat studies, cell size measurements were internally

274 calibrated. Hence, the lack of any correlation between cell size and T_d or T_{G1} cannot be attributed to

Page | 15

275	experimental variabilities of different studies incorporated in our meta-analysis of the literature. Lastly,
276	the lack of a significant association between T_{G1} and cell size agrees with a genome-wide survey of single
277	gene deletions (HOOSE et al. 2012), which found no pattern of correlation between cell size and the
278	relative duration of the G1 phase. Hence, although cell size can be modulated by changes in nutrient
279	composition in yeast ((Tyson et al. 1979; SOMA et al. 2014); and others), our data suggest that it is more
280	likely that these are nutrient-specific effects, not causally linked to changes in cell proliferation rates.
281	
282	Cln3p, but not Whi5p, is required for the strong association between T_{G1} and T_d
283	To understand how the relation between the length of the G1 phase and doubling time is established in
284	budding yeast, we next examined the role of the Cln3p and Whi5p proteins, which regulate the G1/S
285	transition in this organism. It has been proposed that dilution of Whi5p as cells get bigger in G1 is the
286	key event controlling the timing of the G1/S transition (SCHMOLLER AND SKOTHEIM 2015; SCHMOLLER et al.
287	2015). Since in cells proliferating at different rates there is not a significant correlation with cell size
288	(Figure 2, Table S1), it is not clear how the inhibitor dilution model would apply to the conditions we
289	examine in this study. To our knowledge, the kinetics of cell cycle progression in cells lacking Cln3p or
290	Whi5p have not been examined previously in steady-state cultures proliferating at different rates. To
291	test the role of Cln3p and Whi5p in the relation between T_{G1} and T_d , we examined the cell cycle profile
292	of <i>cln3</i> Δ or <i>whi5</i> Δ cells in continuous, steady-state chemostat cultures. We measured T _{G1} in <i>cln3</i> Δ or
293	whi5 Δ cells from the DNA content of the cultures under glucose (0.08% $^{ m w}/_{ m v}$) limitation and at different
294	dilution rates (0.038 h^{-1} to 0.348 h^{-1} ; corresponding to T_d values between 18 h and 2 h, respectively). As
295	expected, cells lacking Whi5p were very small ($pprox$ 18 fL), and their size did not change significantly as a
296	function of T_d (Figures 3E and S3D). Furthermore, the intercept of the linear fit between the log-
297	transformed T_d and T_{G1} values of <i>whi5</i> Δ cells was significantly higher than the intercept of the linear fit
298	of these parameters in wild-type cells (1.17 vs. 0.92; see Table 1), consistent with the shortened G1

Page | **16**

319	Cln3p levels are strongly and positively associated with cell proliferation rates
318	
317	important than Whi5p for imposing the proper scaling relation of $T_d \propto T_{G1}$ in wild type cells.
316	weaker ($\tau < 0.5$) for slower proliferating <i>cln3</i> Δ cells (LnT _d > 1.5). These data suggest that Cln3p is more
315	1.5 (corresponding to T_d values < 4.5 h). In contrast, the linear relation between T_d and T_{G1} is significantly
314	cells (τ > 0.8, based on Kendall's non-parametric test). The same is true for <i>cln3</i> Δ cells at values of LnT _d <
313	found that at all doubling times tested the linear relation between T _d and T _{G1} remains strong for <i>whi5</i> Δ
312	3C, and S3B,C). Even when combining all data points from the individual experiments for each strain, we
311	independent experiments, the linear relation breaks down at slower proliferating $cln3\Delta$ cultures (Figures
310	linearly, albeit with a higher slope (e.g., Figure S3C; slope = 0.7685). More importantly, in all three
309	<i>cln3</i> Δ cells. At shorter division times (T _d < 5 h), the T _d and T _{G1} values of <i>cln3</i> Δ cultures were related
308	(Figures 3C, and S3B,C), T_{G1} did not even have a straightforward linear relation with T_d in cultures of
307	In contrast, cells lacking CIn3p had an abnormal behavior. In three independent experiments
306	between T_d and T_{G1} .
305	environments, displaying minimal changes in their scaling of the expected proportional changes
304	shortened G1 phase and small size, whi5 Δ cells nonetheless remain responsive to different
303	whi5 Δ cells (Fig. 3B)). These data suggest that in different physiological states, and despite their
302	separate, independent experiment performed in this study (0.6723 in wild type (Fig. 3A) vs. 0.6166 in
301	Adichie V statistic = 1.775, p-value = 0.183), albeit slightly smaller than the slope of wild type cells from a
300	similar to what we observed in the aggregate analysis of wild-type cells (Figure 1A, and Table 1; Sen-
299	phase of whi5 Δ cells. The slope of the linear relation between T _d and T _{G1} in whi5 Δ cells (Figure 3B) was

Given the important role of Cln3p in establishing the proper relation between T_d and T_{G1} (Figures 3 and S3), we sought to measure the levels of Cln3p and Whi5p as a function of T_d . There are no reports of the steady-state levels of Cln3p or Whi5p in cell populations proliferating at different rates in chemostats.

Page | 17

323 To measure Whi5p and Cln3p levels from the same cells, we generated a strain that carries WHI5-TAP 324 and CLN3-13MYC alleles, providing the only source of these gene products in the cells, expressed from 325 their endogenous chromosomal locations (Figure 4A, see Materials and Methods). The expressed 326 proteins were epitope-tagged, but otherwise un-mutated, wild type Whi5p-TAP and Cln3p-(Myc)₁₃. 327 These cells were then cultured in continuous, steady-state chemostat cultures under glucose (0.08% $^{W}/_{v}$) 328 or leucine (0.0015% $^{\rm w}/_{\rm v}$) limitation. Although the CLN3-13MYC allele provides the means for reliable 329 detection of otherwise wild type Cln3p, it is known to be slightly hypermorphic, stabilizing the Cln3p 330 protein somewhat and shortening the G1 phase of the cell cycle (THORBURN et al. 2013). Indeed, the 331 intercept of the linear fit between the log-transformed T_d and T_{G1} values of this strain (HB94; WHI5-TAP, 332 CLN3-13MYC) was slightly higher than the intercept of the linear fit of these parameters in wild-type 333 cells (0.97 vs. 0.92; see Table 1), consistent with a shortened G1 phase. The slope of the linear relation 334 between the log-transformed values of T_d and T_{G1} was increased somewhat for these cells compared to 335 the aggregate analysis of wild-type cells (0.68 vs. 0.6; see Table 1). Importantly, these cells still displayed 336 a strong, linear, positive association between T_d and T_{G1} (τ =0.77; r=0.92; see Table 1), at all dilution rates 337 we tested. Hence, we concluded that the relation between T_d and T_{G1} was only minimally affected in this 338 strain, and we proceeded to quantify the levels of both Whi5p-TAP and $Cln3p-(Myc)_{13}$, from separate 339 chemostat experiments under glucose or leucine limitation, each run at ≥ 5 dilution rates (Figure 4; see 340 Materials and Methods).

The levels of Whi5p-TAP were not increased in slower proliferating cells (Figure 4A, B). Previously, (LIU *et al.* 2015) reported that Whi5p abundance increases \approx 3-fold in cells growing in poorer carbon sources, although this was not seen in a more recent study by (DORSEY *et al.* 2018). In any case, several variables were different between the (LIU *et al.* 2015) study and ours, which could account for the disagreement in the findings: First, different epitope-tagged alleles were used (*WHI5-tdTomato* vs. *WHI5-TAP*). Second, different detection methods were applied (fluorescence live cell imaging vs.

Page | **18**

347	immunoblots). Third, (LIU <i>et al.</i> 2015) use cells in the W303 background, which are larger than cells of
348	the BY background we use here, possibly leading to differences in cell size regulation. Fourth, and most
349	significantly, nutrient-specific effects could not be separated from growth rate-specific ones in (LIU <i>et al.</i>
350	2015). As we discussed earlier (see Figure 2), chemostats provide the only experimental approach for
351	properly studying how rates of cell proliferation may affect a given output, separately from any effects
352	unique to particular nutrients.
353	We observed a significant and disproportionate reduction of $Cln3p$ -(Myc) ₁₃ levels in slower-
354	proliferating cells (Figure 4A, B). With $Cln3p$ -(Myc) ₁₃ levels normalized against the total cellular protein
355	content, the fastest proliferating populations had >10-fold higher levels of $Cln3p-(Myc)_{13}$ compared to
356	the slowest proliferating cells (Figure 4A, B). Furthermore, because these estimates rely on the
357	hypermorphic CLN3-13MYC allele that produces a slightly stabilized Cln3p protein (THORBURN et al.
358	2013), the dynamic range of Cln3p levels as a function of doubling time is likely even broader.
359	
359 360	A uORF in <i>CLN3</i> adjusts the levels of Cln3p at different cell proliferation rates
	A uORF in <i>CLN3</i> adjusts the levels of Cln3p at different cell proliferation rates What is the mechanism that underpins the growth-dependent control of Cln3p abundance? We had
360	
360 361	What is the mechanism that underpins the growth-dependent control of Cln3p abundance? We had
360 361 362	What is the mechanism that underpins the growth-dependent control of Cln3p abundance? We had predicted that a uORF in <i>CLN3</i> could inhibit its translational efficiency in poor media disproportionately
360 361 362 363	What is the mechanism that underpins the growth-dependent control of Cln3p abundance? We had predicted that a uORF in <i>CLN3</i> could inhibit its translational efficiency in poor media disproportionately (POLYMENIS AND SCHMIDT 1997). However, predictions of a growth-dependent role of the uORF had not
360 361 362 363 364	What is the mechanism that underpins the growth-dependent control of Cln3p abundance? We had predicted that a uORF in <i>CLN3</i> could inhibit its translational efficiency in poor media disproportionately (POLYMENIS AND SCHMIDT 1997). However, predictions of a growth-dependent role of the uORF had not been accompanied with measurements of Cln3p levels. A kinetic model of protein synthesis (LODISH
360 361 362 363 364 365	What is the mechanism that underpins the growth-dependent control of Cln3p abundance? We had predicted that a uORF in <i>CLN3</i> could inhibit its translational efficiency in poor media disproportionately (POLYMENIS AND SCHMIDT 1997). However, predictions of a growth-dependent role of the uORF had not been accompanied with measurements of Cln3p levels. A kinetic model of protein synthesis (LODISH 1974) forecasts that removing the uORF would de-repress synthesis of Cln3p in slowly dividing cells
360 361 362 363 364 365 366	What is the mechanism that underpins the growth-dependent control of Cln3p abundance? We had predicted that a uORF in <i>CLN3</i> could inhibit its translational efficiency in poor media disproportionately (POLYMENIS AND SCHMIDT 1997). However, predictions of a growth-dependent role of the uORF had not been accompanied with measurements of Cln3p levels. A kinetic model of protein synthesis (LODISH 1974) forecasts that removing the uORF would de-repress synthesis of Cln3p in slowly dividing cells when the ribosome content of the cell is low. In contrast, removing the <i>CLN3</i> uORF would have minimal
360 361 362 363 364 365 366 367	What is the mechanism that underpins the growth-dependent control of Cln3p abundance? We had predicted that a uORF in <i>CLN3</i> could inhibit its translational efficiency in poor media disproportionately (POLYMENIS AND SCHMIDT 1997). However, predictions of a growth-dependent role of the uORF had not been accompanied with measurements of Cln3p levels. A kinetic model of protein synthesis (LODISH 1974) forecasts that removing the uORF would de-repress synthesis of Cln3p in slowly dividing cells when the ribosome content of the cell is low. In contrast, removing the <i>CLN3</i> uORF would have minimal effects in cells that proliferate fast, when the ribosome content is high. To test this model, we

Page **19**

to the ones we used here, the levels of wild type *CLN3* mRNA do not change significantly as a function of
growth rate (BRAUER *et al.* 2008).

373 The effects of the uORF were evident in slower proliferating cultures ($T_d > 4h$), where the dynamic 374 range of Cln3p levels was much narrower (3-4 fold) in A-315T cells, and very different from the range of 375 Cln3p levels (10-fold) in their wild type counterparts at these longer doubling times (p = 0.03648, based 376 on the non-parametric Kolmogorov-Smirnov test), and indistinguishable from the range of Whi5p levels 377 (Figure 4A, B and File S1). We note that although the range of Cln3p levels is narrower in slower 378 proliferating CLN3 uORF mutant cells (Figure 4), it is not flattened, arguing for additional mechanisms 379 that could adjust the levels of Cln3p at different growth rates. Nonetheless, an independent piece of 380 functional evidence further strengthened a growth-dependent role of the CLN3 uORF. A hallmark 381 phenotypic readout of gain-of-function CLN3 alleles is a reduction in cell size (NASH et al. 1988). Cells 382 that lack the CLN3 uORF were smaller than their wild type counterparts were, and this effect was T_d-383 dependent (see Figure 4C, D). Especially in leucine-limited cells, which displayed pronounced 384 enlargement as they proliferated slower, removing the CLN3 uORF reduced their size substantially 385 (Figure 4D). These results are consistent with a de-repression of Cln3p synthesis upon removal of the 386 CLN3 uORF. 387 These data argue that translational control contributes to the disproportionate reduction of Cln3p

388 levels as a function of T_d. Note also that loss of Cln3p severely perturbs the linear relation between T_d

and T_{G1} (Figures 3 and S3). In summary, our results underscore the critical role of the G1 cyclin Cln3p in

the physiological coupling between growth and division.

Page | 20

391 **DISCUSSION**

392	The scaling relations between G1 length and population time in yeast and human cells we report are
393	significant for several reasons. First, if the duration of G1 is estimated, they allow predictions of
394	proliferation rates, which could be useful in diverse settings, such as in tissues at an organismal level.
395	Second, they serve as benchmarks against which the effects of genetic or other perturbations can be
396	evaluated, as we demonstrated for Whi5p and Cln3p, two cell cycle regulators in yeast. Third, scaling
397	relations of cellular physiology may ultimately point to general, physical mechanisms that organize life at
398	the cellular level. In the next paragraphs, we discuss our findings in relation to current models of how
399	cell division is controlled by cellular biosynthetic capacity, with emphasis on the roles of Whi5p and
400	CIn3p.
401	
402	What is the context of this study in relation to others?
403	Our results pertain to cell cycle kinetics of steady-state cultures that proliferate at different rates, not to
404	cell cycle adjustments immediately after nutrient shifts (Tokiwa <i>et al.</i> 1994; LEITAO AND KELLOGG 2017).
405	We also did not examine G1 progression in a particular cell cycle, where small daughter cells will not
406	initiate a new round of cell division until they reach a size characteristic of the culture medium
407	(HARTWELL AND UNGER 1977; JOHNSTON et al. 1977). Hence the scaling of G1 duration between populations
408	with different doubling times may not necessarily be controlled by the same mechanism that controls
409	how G1 duration is regulated to maintain size homeostasis within a population of cells that proliferates
410	at a given rate. This interpretation is consistent with the findings that cell size is not associated with
411	rates of cell proliferation (Figure 2), at least in experimental settings of steady-state chemostat cultures,
412	which separate nutrient-specific effects from the impact of different rates of cell proliferation. For
413	example, note the very different sizes of cells in glucose vs. leucine-limited cultures at the same dilution
414	rate (compare Figures 4C and 4D), offering yet another demonstration of how particular nutrients may

Page **21**

415 affect cell size independently of any changes in rates of cell proliferation. Furthermore, in leucine-416 limited cultures, the cells were not only bigger than cells in glucose-limited chemostats at all dilution 417 rates tested, but they also got even bigger as they divided slower (Figure 4). These observations argue 418 against the widely-held assumptions that cells get smaller the slower they proliferate. Instead, they 419 support the notion that nutrient effects on cell size may be particular to specific nutrients, and not 420 associated with changes in rates of cell proliferation.

421

422 How do our results mesh with models of G1 control?

423 As we noted above, our data were from cells dividing at different rates, which was not addressed in the 424 Whi5p dilution model of (SCHMOLLER et al. 2015). Hence, the two studies are not directly comparable. 425 The Whi5p dilution model, however, was constructed on the basis that while Whi5p levels were 426 disproportionately lower than expected from cell growth, Cln3p levels were roughly constant and 427 proportional to the increase in size from birth to START (SCHMOLLER et al. 2015). Given the 428 disproportionate dependency of Cln3p levels on cell proliferation rates that we reported here and had 429 predicted earlier (POLYMENIS AND SCHMIDT 1997), could the uORF-mediated translational control of CLN3 430 affect Cln3p synthesis in the G1 phase from birth to START? We think this is unlikely because the uORF-431 mediated translational control we described operates when the concentration of active ribosomes in 432 the cell changes (LODISH 1974), for example in poor vs. rich nutrients. Hence, while such translational 433 control mechanisms provide excellent conduits to disproportionately alter gene expression and 434 communicate growth-related inputs to downstream mRNA targets, to our knowledge, there is no report 435 of cell cycle-dependent changes in ribosome content. Other mechanisms, not due to changes in the 436 translational efficiency of CLN3, may contribute to significant, periodic changes in Cln3p abundance in 437 G1, within a given cell cycle.

Page | 22

438	There are conflicting reports in the literature about whether Cln3p 'cycles' in the cell cycle. Cln3p is
439	of such low abundance that cannot be properly measured in the single-cell microscopy methods of
440	(SCHMOLLER et al. 2015), because mutant CLN3 alleles had to be used, producing extremely stabilized and
441	dysfunctional Cln3p protein that accumulates at very high, but non-physiological levels, so that it can be
442	visible with microscopy. The initial report claiming that Cln3p-HA levels were constant in the cell cycle
443	did not interrogate the early G1 phase (TYERS <i>et al.</i> 1993). In that report, although early G1, small (25 fL),
444	elutriated daughter cells were collected, Cln3p levels were not measured until much later in G1 (at 35 fL,
445	when by 40 fL 25% of the cells were already budded in that experiment; see Fig. 4 in (TYERS <i>et al.</i> 1993)).
446	Based on that result, it had been assumed for decades that Cln3p levels were constant in the cell cycle.
447	Recently, however, two independent studies by the Amon (THORBURN <i>et al.</i> 2013) and Kellogg (ZAPATA <i>et</i>
448	al. 2014) labs, assayed elutriated synchronous cells carrying epitope-tagged, but otherwise wild type
449	CLN3 alleles. Both studies showed that Cln3p levels change >10-fold in G1. Cln3p is absent in early G1
450	cells, while it rises dramatically before START. We also used the same CLN3-13MYC allele to monitor
451	CIn3p levels at different rates of cell proliferation (see Figure 4). The CLN3-13MYC allele is known to
452	produce a slightly stabilized Cln3p protein (THORBURN <i>et al.</i> 2013). Note that, on the face of the slight
453	stabilization of the Cln3p-(Myc) $_{13}$, the dynamic range of Cln3p levels as a function of growth rate we
454	report is likely even broader, not narrower. Hence, our conclusions are strengthened, not weakened by
455	the slight stabilization of the Cln3-Myc we used. For the same reasons, the changes in Cln3p levels in G1
456	observed previously (THORBURN et al. 2013; ZAPATA et al. 2014) are likely even greater than indicated in
457	these reports.
458	Overall, although a 2-fold dilution of Whi5p is observed in G1 (SCHMOLLER <i>et al.</i> 2015), the changes in
459	CIn3p levels are likely more pronounced (THORBURN et al. 2013; ZAPATA et al. 2014), through
460	transcriptional (ZAPATA <i>et al.</i> 2014), or other mechanisms. In this context, it is perhaps unsurprising that

461 we found Cln3p to be more important than Whi5p in the relation between T_d and T_{G1} . It is important to

Page 23

462	stress, however,	that any changes	of Cln3p levels in (G1 do not affect the k	ey aspect of the inhibitor
-----	------------------	------------------	----------------------	------------------------	----------------------------

- dilution model, namely that Whi5p levels are reduced by cell growth. Hence, we may be dealing with a
- 464 more complex, 'mixed' model of inhibitor dilution *and* activator accumulation. It is possible that the
- levels of additional proteins may behave analogously to Cln3p and Whi5p, contributing to a broader
- 466 network of factors whose antagonistic relations control the timing of initiation of cell division.
- 467 Regardless of the identity of those proteins, in yeast and other models, the fundamental relation
- 468 between T_{G1} and T_d we describe in this report will serve as a useful metric to evaluate the role of these
- 469 protein(s) in the control of cell division by growth inputs.

470 ACKNOWLEDGEMENTS

- 471 Author Contributions: Methodology, H.M.B., M.P.; Formal Analysis, H.M.B., M.P.; Investigation, H.M.B.,
- 472 M.C., I.P.E.P., A.O.P., M.P.; Resources, M.P.; Data Curation, H.M.B., M.P.; Writing Original Draft, M.P.,
- 473 Writing Review and Editing, H.M.B., M.P.; Visualization, H.M.B., M.P.; Supervision, H.M.B., M.P.,
- 474 Funding Acquisition, M.P.
- 475 This work was supported from the NIH (grant GM123139 to M.P.). M.C. was supported by a National
- 476 Science Foundation REU award (DBI-1358941). The authors declare no conflicts of interest.

477 LITERATURE CITED

- Anastasia, S. D., D. L. Nguyen, V. Thai, M. Meloy, T. MacDonough *et al.*, 2012 A link between mitotic
 entry and membrane growth suggests a novel model for cell size control. J Cell Biol 197: 89-104.
- Aoki, Y., and G. E. Moore, 1970 Comparative study of mitotic stages of cells derived from human
 peripheral blood. Exp Cell Res 59: 259-266.
- 482 Baserga, R., 1985 The Biology of Cell Reproduction.
- Blank, H. M., R. Perez, C. He, N. Maitra, R. Metz *et al.*, 2017 Translational control of lipogenic enzymes in
 the cell cycle of synchronous, growing yeast cells. EMBO J 36: 487-502.
- Borenstein, M., 2009 Introduction to meta-analysis. John Wiley & Sons, Chichester, U.K.
- Brauer, M. J., C. Huttenhower, E. M. Airoldi, R. Rosenstein, J. C. Matese *et al.*, 2008 Coordination of
 growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19: 352367.
- Brons, P. P., J. M. Raemaekers, M. J. Bogman, P. E. van Erp, J. B. Boezeman *et al.*, 1992 Cell cycle kinetics
 in malignant lymphoma studied with in vivo iododeoxyuridine administration, nuclear Ki-67
 staining, and flow cytometry. Blood 80: 2336-2343.
- Bryan, A. K., A. Engler, A. Gulati and S. R. Manalis, 2012 Continuous and long-term volume
 measurements with a commercial Coulter counter. PLoS One 7: e29866.
- 494 Cerulus, B., A. M. New, K. Pougach and K. J. Verstrepen, 2016 Noise and Epigenetic Inheritance of Single-495 Cell Division Times Influence Population Fitness. Curr Biol 26: 1138-1147.
- Chan, Y. H., and W. F. Marshall, 2010 Scaling properties of cell and organelle size. Organogenesis 6: 8896.
- Costanzo, M., J. L. Nishikawa, X. Tang, J. S. Millman, O. Schub *et al.*, 2004 CDK activity antagonizes Whi5,
 an inhibitor of G1/S transcription in yeast. Cell 117: 899-913.
- 500 Cross, F. R., 1988 DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of 501 Saccharomyces cerevisiae. Mol Cell Biol 8: 4675-4684.
- de Bruin, R. A., W. H. McDonald, T. I. Kalashnikova, J. Yates, 3rd and C. Wittenberg, 2004 Cln3 activates
 G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117: 887 898.
- 505 Defendi, V., and L. A. Manson, 1963 Analysis of the life-cycle in mammalian cells. Nature 198: 359-361.
- 506 Di Talia, S., J. M. Skotheim, J. M. Bean, E. D. Siggia and F. R. Cross, 2007 The effects of molecular noise 507 and size control on variability in the budding yeast cell cycle. Nature 448: 947-951.
- 508 Dorsey, S., S. Tollis, J. Cheng, L. Black, S. Notley *et al.*, 2018 G1/S Transcription Factor Copy Number Is a 509 Growth-Dependent Determinant of Cell Cycle Commitment in Yeast. Cell Syst 6: 539-554.e511.
- 510 Dowling, M. R., A. Kan, S. Heinzel, J. H. Zhou, J. M. Marchingo *et al.*, 2014 Stretched cell cycle model for 511 proliferating lymphocytes. Proc Natl Acad Sci U S A 111: 6377-6382.
- 512 Elliott, S. G., and C. S. McLaughlin, 1978 Rate of macromolecular synthesis through the cell cycle of the 513 yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 75: 4384-4388.
- 514 Ferrezuelo, F., N. Colomina, A. Palmisano, E. Gari, C. Gallego *et al.*, 2012 The critical size is set at a single-515 cell level by growth rate to attain homeostasis and adaptation. Nat Commun 3: 1012.
- Fisher, R. P., 2016 Getting to S: CDK functions and targets on the path to cell-cycle commitment.
 F1000Research 5: 2374.
- 518 Garmendia-Torres, C., O. Tassy, A. Matifas, N. Molina and G. Charvin, 2018 Multiple inputs ensure yeast 519 cell size homeostasis during cell cycle progression. Elife 7.
- 520 Garner, K. M., and A. Eastman, 2011 Variations in Mre11/Rad50/Nbs1 status and DNA damage-induced 521 S-phase arrest in the cell lines of the NCl60 panel. BMC Cancer 11: 206:201-213.

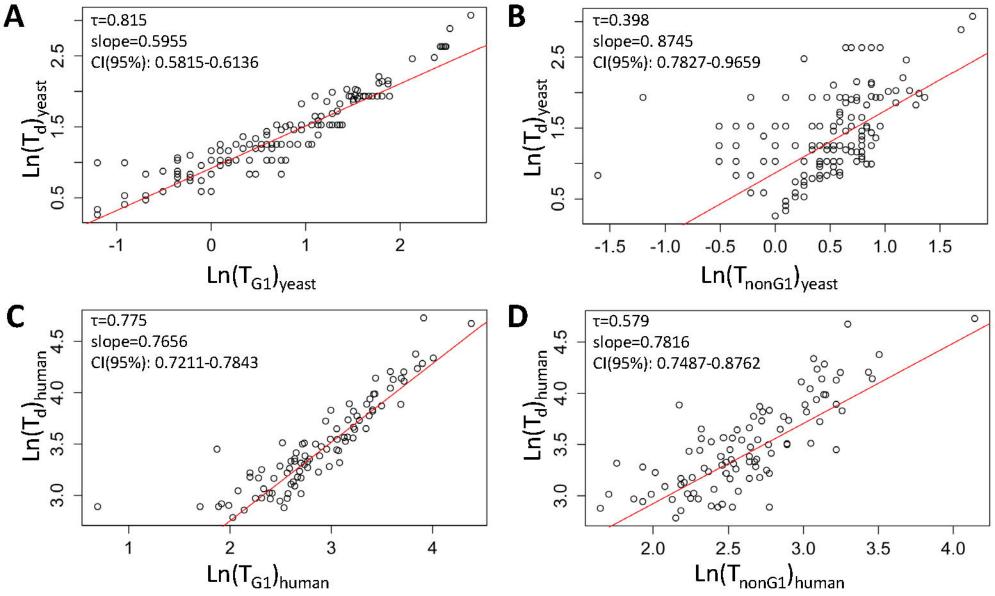
522 523	Guo, J., B. A. Bryan and M. Polymenis, 2004 Nutrient-specific effects in the coordination of cell growth with cell division in continuous cultures of Saccharomyces cerevisiae. Arch Microbiol 182: 326-
524 525	330.
525 526	Hahn, A. T., J. T. Jones and T. Meyer, 2009 Quantitative analysis of cell cycle phase durations and PC12
526 527	differentiation using fluorescent biosensors. Cell Cycle 8: 1044-1052.
527 528	Hartwell, L. H., and M. W. Unger, 1977 Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol 75: 422-435.
528 529	Henry, K. A., H. M. Blank, S. A. Hoose and M. Polymenis, 2010 The unfolded protein response is not
529 530	necessary for the G1/S transition, but it is required for chromosome maintenance in
531	Saccharomyces cerevisiae. PLoS One 5: e12732.
532	Hoffman, J. G., 1949 Theory of the mitotic index and its application to tissue growth measurement. Bull
533	Math Biophys 11: 139-144.
534	Hoose, S. A., J. A. Rawlings, M. M. Kelly, M. C. Leitch, Q. O. Ababneh et al., 2012 A systematic analysis of
535	cell cycle regulators in yeast reveals that most factors act independently of cell size to control
536	initiation of division. PLoS Genet 8: e1002590.
537	Hoose, S. A., J. T. Trinh, M. C. Leitch, M. M. Kelly, R. F. McCormick et al., 2013 Saccharomyces cerevisiae
538	deletion strains with complex DNA content profiles. FEMS Microbiol Lett 345: 72-76.
539 540	Jagadish, M. N., and B. L. Carter, 1977 Genetic control of cell division in yeast cultured at different growth rates. Nature 269: 145-147.
541	Johnston, G., R. Singer, S. Sharrow and M. Slater, 1980 Cell division in the yeast Saccharomyces
542	cerevisiae growing at different rates. Microbiology 118: 479-484.
543	Johnston, G. C., J. R. Pringle and L. H. Hartwell, 1977 Coordination of growth with cell division in the
544	yeast Saccharomyces cerevisiae. Exp Cell Res 105: 79-98.
545	Koch, A. L., 1966 The logarithm in biology. 1. Mechanisms generating the log-normal distribution exactly.
546	J Theor Biol 12: 276-290.
547	Koch, A. L., and M. Schaechter, 1962 A model for statistics of the cell division process. J Gen Microbiol
548	29: 435-454.
549	Kumei, Y., T. Nakajima, A. Sato, N. Kamata and S. Enomoto, 1989 Reduction of G1 phase duration and
550	enhancement of c-myc gene expression in HeLa cells at hypergravity. Journal of Cell Science 93:
551	221-226.
552	Leitao, R. M., and D. R. Kellogg, 2017 The duration of mitosis and daughter cell size are modulated by
553	nutrients in budding yeast. The Journal of Cell Biology 216: 3463-3470.
554	Lennartz, K. J., and W. Maurer, 1964 Autoradiographische Bestimmung der Dauer der DNS-Verdopplung
555	und der Generationszeit beim Ehrlich-Ascitestumor der Maus durch Doppelmarkierung mit 14C-
556	und 3H-Thymidin. Zeitschrift für Zellforschung und Mikroskopische Anatomie 63: 478-495.
557	Liu, X., X. Wang, X. Yang, S. Liu, L. Jiang <i>et al.</i> , 2015 Reliable cell cycle commitment in budding yeast is
558	ensured by signal integration. Elife 4.
559 560	Lodish, H. F., 1974 Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature 251: 385-388.
561	Luciani, A. M., A. Rosi, P. Matarrese, G. Arancia, L. Guidoni <i>et al.</i> , 2001 Changes in cell volume and
562	internal sodium concentration in HeLa cells during exponential growth and following lonidamine
563	treatment. Eur J Cell Biol 80: 187-195.
564	Mayhew, M. B., E. S. Iversen and A. J. Hartemink, 2017 Characterization of dependencies between
565	growth and division in budding yeast. J R Soc Interface 14.
566	Morgan, D. O., 2007 Control of Cell Proliferation and Growth, pp. 221 in <i>The Cell Cycle</i> . New Science
567	Press Ltd, London, UK.
568	Mosimann, J. E., Campbell, G., 1988 Applications in Biology: Simple Growth Models, pp. 287-302 in
569	Lognormal distributions: theory and applications
	/ //

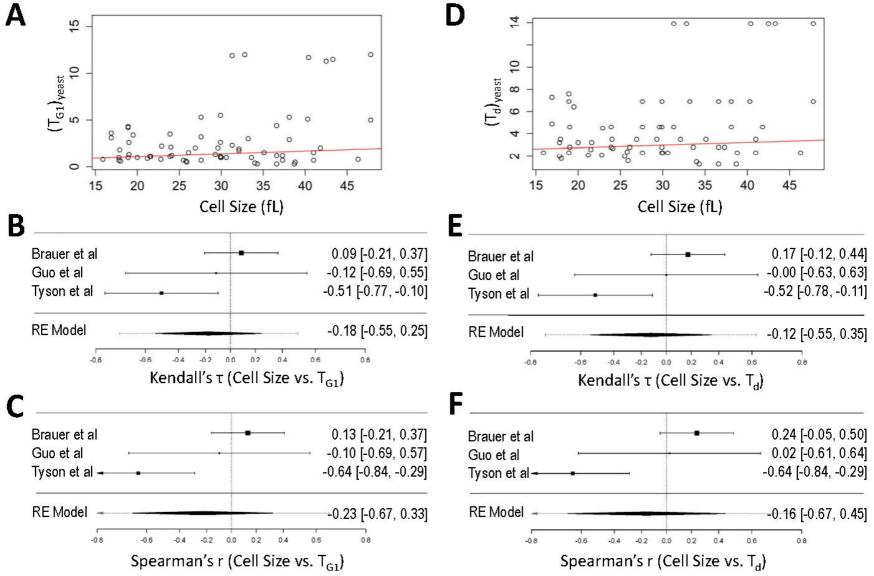
Page 27

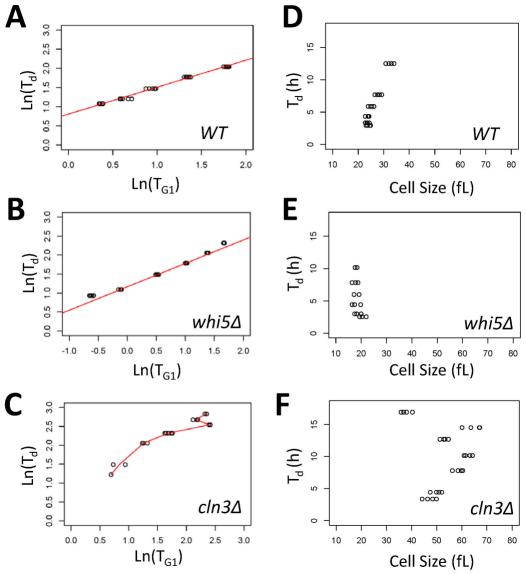
- 570 edited by E. Crow, L., Shimizu, K. Marcel, Dekker, Inc., New York.
- 571 Nash, R., G. Tokiwa, S. Anand, K. Erickson and A. B. Futcher, 1988 The WHI1+ gene of Saccharomyces 572 cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 7: 4335-4346.
- 573 Palumbo, P., M. Vanoni, V. Cusimano, S. Busti, F. Marano *et al.*, 2016 Whi5 phosphorylation embedded 574 in the G1/S network dynamically controls critical cell size and cell fate. Nat Commun 7: 11372.
- Pena, E. A., and E. H. Slate, 2006 Global Validation of Linear Model Assumptions. J Am Stat Assoc 101:
 341.
- Polymenis, M., 2017 Proteins associated with the doubling time of the NCI-60 cancer cell lines. Cell
 Division 12: 6.
- Polymenis, M., and E. V. Schmidt, 1997 Coupling of cell division to cell growth by translational control of
 the G1 cyclin CLN3 in yeast. Genes Dev 11: 2522-2531.
- 581Rivin, C. J., and W. L. Fangman, 1980 Cell cycle phase expansion in nitrogen-limited cultures of582Saccharomyces cerevisiae. J Cell Biol 85: 96-107.
- Ross, D. T., U. Scherf, M. B. Eisen, C. M. Perou, C. Rees *et al.*, 2000 Systematic variation in gene
 expression patterns in human cancer cell lines. Nat Genet 24: 227-235.
- 585 Scherf, U., D. T. Ross, M. Waltham, L. H. Smith, J. K. Lee *et al.*, 2000 A gene expression database for the 586 molecular pharmacology of cancer. Nat Genet 24: 236-244.
- 587 Schmoller, K. M., and J. M. Skotheim, 2015 The Biosynthetic Basis of Cell Size Control. Trends Cell Biol 588 25: 793-802.
- Schmoller, K. M., J. J. Turner, M. Koivomagi and J. M. Skotheim, 2015 Dilution of the cell cycle inhibitor
 Whi5 controls budding-yeast cell size. Nature 526: 268-272.
- 591 Siegel, A. F., 1982 Robust regression using repeated medians. Biometrika 69: 242-244.
- 592 Sisken, J. E., and R. Kinosita, 1961 TIMING OF DNA SYNTHESIS IN THE MITOTIC CYCLE IN VITRO. J Biophys 593 Biochem Cytol 9: 509-518.
- Slater, M. L., S. O. Sharrow and J. J. Gart, 1977 Cell cycle of Saccharomycescerevisiae in populations
 growing at different rates. Proc Natl Acad Sci U S A 74: 3850-3854.
- 596 Soifer, I., and N. Barkai, 2014 Systematic identification of cell size regulators in budding yeast. Molecular 597 systems biology 10.
- 598Soma, S., K. Yang, M. I. Morales and M. Polymenis, 2014 Multiple metabolic requirements for size599homeostasis and initiation of division in Saccharomyces cerevisiae. Microb Cell 1: 256-266.
- 600Son, S., A. Tzur, Y. Weng, P. Jorgensen, J. Kim *et al.*, 2012 Direct observation of mammalian cell growth601and size regulation. Nature methods 9: 910-912.
- Thorburn, R. R., C. Gonzalez, G. A. Brar, S. Christen, T. M. Carlile *et al.*, 2013 Aneuploid yeast strains
 exhibit defects in cell growth and passage through START. Mol Biol Cell 24: 1274-1289.
- Tokiwa, G., M. Tyers, T. Volpe and B. Futcher, 1994 Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature 371: 342-345.
- 606Tyers, M., G. Tokiwa and B. Futcher, 1993 Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3607may be an upstream activator of Cln1, Cln2 and other cyclins. Embo j 12: 1955-1968.
- 608Tyson, C. B., P. G. Lord and A. E. Wheals, 1979 Dependency of size of Saccharomyces cerevisiae cells on609growth rate. J Bacteriol 138: 92-98.
- Tzur, A., R. Kafri, V. S. LeBleu, G. Lahav and M. W. Kirschner, 2009 Cell growth and size homeostasis in
 proliferating animal cells. Science 325: 167-171.
- Viechtbauer, W., 2010 Conducting meta-analyses in R with the metafor package. J Stat Softw 36: 1-48.
- Zapata, J., N. Dephoure, T. Macdonough, Y. Yu, E. J. Parnell *et al.*, 2014 PP2ARts1 is a master regulator of
 pathways that control cell size. J Cell Biol 204: 359-376.
- 615

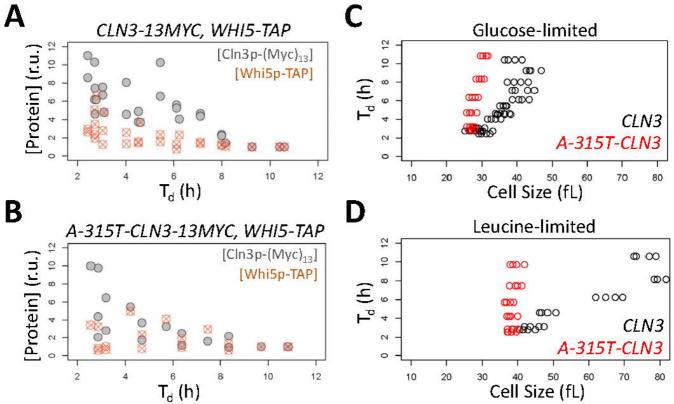
Page **28**

616 **FIGURE LEGENDS**


638


617	Figure 1. Linking the length of the G1 phase with population doubling time. Scatter plots of T_{G1} (A, C) or
618	T_{nonG1} (B, D) values on the x-axis, against T_d values (y-axis). All plots used the natural logarithms of the
619	values for yeast (A, B) and human (C, D) cells from Tables S1 and S2, respectively. The Kendall's (τ) rank
620	correlation coefficient is shown in each case. In red are regression lines of the Siegel repeated medians.
621	The slope and the associated 95% confidence intervals of the linear model are shown in each case.
622	Additional statistical parameters associated with these plots are shown in Table 1.
623	Figure 2. Cell size does not correlate with T_d or T_{G1} in yeast. Scatter plots of cell size values (x-axis)
624	against T_d (A) or T_{G1} (D) values (y-axis) from the data shown in Table S1. In red are regression lines of the
625	Siegel repeated medians. Forest plots of the measure of effect for each of the studies included in the
626	analysis (TYSON <i>et al.</i> 1979; GUO <i>et al.</i> 2004; BRAUER <i>et al.</i> 2008), based on the Kendall's (τ) rank
627	correlation coefficients (B, E), or Spearman's (r) rank correlation coefficients (C, F), are shown in each
628	case, for cell size vs. T_{G1} (B, C) and cell size vs. T_d (E, F). The confidence intervals from each study are
629	shown in parentheses and represented by horizontal whisker lines. In the studies in which the
630	confidence intervals overlap with the vertical line at the 0 point on the x-axis, their effect sizes do not
631	differ from no effect. The meta-analyzed measure of the effect is shown at the bottom of each plot,
632	based on random effects (RE) models.
633	Figure 3. Cln3p, but not Whi5p, imposes the proper relation between T_{G1} and T_{d} . Scatter plots of T_{G1}
634	values on the x-axis, against T_d values (y-axis). All plots used the natural logarithms of the values for wild
635	type (A) whi5 Δ (B) or cln3 Δ (C) cells, sampled from chemostat cultures several times at each dilution
636	rate, as indicated. For wild type and whi5 Δ cells, in red are regression lines of the Siegel repeated
637	medians, and the slope of the linear models are shown (additional statistical parameters are in Table 1).


For $cln3\Delta$ cells, the red line shown simply connects the average values at each dilution rate. There is no


Page | 29

639	regression line because the relation between T_d and T_{G1} breaks down, especially at longer generation
640	times. Scatter plots of the relation of cell size and T_d in wild type (D) or cells lacking Whip5 (E) or Cln3p
641	(F), with cell size values (x-axis) plotted against T_d (y-axis) from the same cultures described in (A-C). All
642	the strains were in the BY4741 background (see Materials and Methods).
643	Figure 4. The levels of the G1 cyclin Cln3p vary over a broad range as a function of T_d , due to a uORF
644	affecting translation of CLN3. Scatter plots of the relative abundance (y-axis) of Cln3p-(Myc) ₁₃ and
645	Whi5p-TAP in otherwise wild type CLN3-13MYC, WHI5-TAP cells (A), or CLN3 uORF (A-315T-CLN3)
646	mutant cells (B), against T_d (x-axis). Each data point in the scatter plots is the average of immunoblot
647	signal intensities run in duplicate, and detected with antibodies against the Myc or TAP epitopes (see
648	Materials and Methods). All the raw immunoblots used to quantify protein levels are shown in the
649	Source Data (File S1). Before averaging, each individual signal intensity value was normalized against
650	loading in the corresponding immunoblot lane (visualized with Ponceau staining, see File S1 and
651	Materials and Methods). For each Cln3p-(Myc) $_{13}$ or Whi5p-TAP relative unit (r.u.) shown in the
652	scatterplots (A, B), the normalized, averaged intensities were scaled by the lowest value (set to 1) for
653	each protein in the given chemostat experiment run at different dilution rates. Scatter plots of the
654	relation of cell size (x-axis) and T_d (y-axis) in the indicated strains, cultured under glucose (C) or leucine
655	(D) limitation, from the same cultures described in (A) and (B).

