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Abstract

We introduce a simple and computationally efficient method for fitting the admixture model of
genetic population structure, called ALStructure. The strategy of ALStructure is to first estimate
the low-dimensional linear subspace of the population admixture components and then search for
a model within this subspace that is consistent with the admixture model’s natural probabilistic con-
straints. Central to this strategy is the observation that all models belonging to this constrained
space of solutions are risk-minimizing and have equal likelihood, rendering any additional optimiza-
tion unnecessary. The low-dimensional linear subspace is estimated through a recently introduced
principal components analysis method that is appropriate for genotype data, thereby providing a
solution that has both principal components and probabilistic admixture interpretations. Our ap-
proach differs fundamentally from other existing methods for estimating admixture, which aim to
fit the admixture model directly by searching for parameters that maximize the likelihood function
or the posterior probability. We observe that ALStructure typically outperforms existing methods
both in accuracy and computational speed under a wide array of simulated and real human geno-
type datasets. Throughout this work we emphasize that the admixture model is a special case of
a much broader class of models for which algorithms similar to ALStructure may be successfully
employed.
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1 Introduction

Understanding structured genetic variation in human populations remains a foundational problem in

modern genetics. Such an understanding allows researchers to correct for population structure in

GWAS studies, enabling accurate disease-gene mapping (KNOWLER et al., 1988; MARCHINI et al.,

2004; SONG et al., 2015). Additionally, characterizing genetic variation is important for the study of

human evolutionary history (CAVALLI-SFORZA et al., 1988; ESTEBAN et al., 1998; LI et al., 2008).

To this end, much work has been done to develop methods to estimate what ALEXANDER et al.

(2009) term global ancestry. In the global ancestry framework, the goal is to simultaneously estimate

two quantities:

(i) the allele frequencies of ancestral populations

(ii) the admixture proportions of each modern individual

Many popular global ancestry estimation methods have been developed within a probabilistic frame-

work. In these methods, which we will refer to as likelihood-based approaches, the strategy is to fit

a probabilistic model to the observed genomewide genotype data by either maximizing the likelihood

function (ALEXANDER et al., 2009; TANG et al., 2005) or the posterior probability (GOPALAN et al., 2016;

PRICHARD et al., 2000; RAJ et al., 2014). The probabilistic model fit in each of these cases is the

admixture model, described in detail in Section 2.1, in which the global ancestry quantities (i) and (ii)

are explicit parameters to be estimated.

A related line of work relies on principal component analysis (PCA) and other eigendecomposition

methods, rather than directly fitting probabilistic models; as such, we will refer to them collectively

as PCA-based approaches. These methods find many of the same applications as global ancestry

estimates while obviating a direct computation of global ancestry itself. For or example, the EIGENSTRAT

method of PATTERSON et al. (2006) and PRICE et al. (2006) uses the principal components of observed

data to correct for population stratification in GWAS, avoiding altogether the estimation of admixture

proportions or ancestral allele frequencies. Similarly, HAO et al. (2016) observe that many important

applications of global ancestry really only require individual-specific allele frequencies. In a sense,

individual-specific allele frequencies are simpler than global ancestry; while global ancestry specifies

all of the individual-specific allele frequencies, the converse is not true. Therefore, HAO et al. (2016)

introduce a simple truncated-PCA method that accurately and efficiently estimates individual-specific

allele frequencies alone.

Both likelihood-based and PCA-based methods have distinct merits and drawbacks. The PCA-

based methods are computationally efficient and accurate in practice. It is shown, for instance, that

the individual-specific allele frequencies obtained by truncated-PCA are empirically more accurate than

those obtained by likelihood-based methods (HAO et al., 2016). Another attractive feature of PCA-based

methods is that they make minimal assumptions about the underlying data-generative model. However,

as mentioned before, PCA-based methods do not provide the full global ancestry estimates that their

corresponding likelihood-based methods do. Most notably, they do not provide direct estimates of
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admixture proportions, which are often of primary interest in some applications. Additionally, the PCA-

based methods, as they are not supported by the statistical theory of likelihood, often have weaker

theoretical justifications.

In this paper, we show that the distinction between likelihood-based and PCA-based methods is an

unnecessary dichotomy, as others have investigated (BRISBIN et al., 2012; ZHENG and WEIR, 2016).

The method that we develop here, which we call ALStructure, can be viewed as a unification of these

two approaches. While computationally similar to PCA-based methods, ALStructure is shown to fit the

probabilistic admixture model, thereby providing estimates of global ancestry. Our basic strategy will

be to eliminate the primary shortcomings of PCA-based methods while retaining their important advan-

tages over likelihood-based methods. In particular we extend the approach taken in HAO et al. (2016) in

two ways. First, we replace classical PCA with the closely related method of latent subspace estimation

(LSE) (CHEN and STOREY, 2015). In so doing, we will make mathematically rigorous the empirically

effective truncated-PCA method of HAO et al. for estimating individual-specific allele frequencies. Sec-

ond, we use the method of alternating least squares (ALS) (PAATERO and TAPPER, 1994) to transform

the individual-specific allele frequencies obtained via LSE into estimates of global ancestry.

We perform a body of simulations and analyze several globally sampled human studies to demon-

strate the performance of the proposed method, showing that ALStructure typically outperforms ex-

isting methods both in terms of accuracy and speed. We also discuss its implementation and the

trade-offs between theoretical guarantees and run-time. We conclude that ALStructure is a computa-

tionally efficient and statistically accurate method for modeling admixture and decomposing systematic

variation due to population structure.

2 Proposed method

In this section we present the ALStructure method and detail some of its mathematical underpin-

nings. In Section 2.1, we define the admixture model : the underlying probabilistic model assumed

by ALStructure. Section 2.2 describes the overall strategy of ALStructure as an optimality search

subject to constraints rather than navigating a complex likelihood surface. Section 2.3 describes how

the constraints can be used to estimate individual-specific allele frequencies. In Section 2.4 we present

a mathematical result from CHEN and STOREY (2015) upon which the ALStructure algorithm heavily

relies. Section 2.5 describes why estimating global ancestry, given the individual-specific allele frequen-

cies, is equivalent to a constrained matrix factorization problem. An efficient algorithm based on the

method of alternating least squares (ALS) is also provided in this section for performing the constrained

matrix factorization. The complete ALStructure algorithm is then presented in Section 2.6.

Throughout this work, we adhere to the following notational convention: for a matrix A, we denote

the i row vector of A by ai•, the j column vector of A as a•j , and the (i, j) element of A as aij .
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2.1 The admixture model

The observed data X is an m × n matrix in which m (the number of SNP’s) is typically much larger

than n (the number of individuals). An element xij ofX takes values 0, 1, or 2 according to the number

of reference alleles in the genotype at locus i for individual j.

ALStructure makes the assumption common to all likelihood-based methods that the data are

generated from the admixture model. Under this model, there is an unobserved m × n matrix F that

encodes the complete individual-specific allele frequencies. The genotypes are generated indepen-

dently according to xij |fij ∼ Binomial(2, fij). F is of rank d such that d � n � m, where d carries

the interpretation of being the number of ancestral populations from which the observed population is

derived. F then admits a factorization F = PQ in which P and Q have the following properties:

P ∈ Rm×d with pij ∈ [0, 1] ∀(i, j)
Q ∈ Rd×n with qij ≥ 0 ∀(i, j) and

∑
i qij = 1 ∀j

The matrices P and Q have the following interpretations: (i) each row pi• of P represents the frequen-

cies of a single SNP for each of the d ancestral populations and (ii) each column q•j ofQ represents the

admixture proportions of a single individual. Together, P andQ encode the global ancestry parameters

of the observed population; the goal of existing likelihood-based methods is to estimate these matrices.

By contrast, the truncated-PCA method of HAO et al. (2016) is focused on estimating F and not its

factors. Eq. 1 summarizes the admixture model.
F


m× n

=


P


m× d

 Q


d× n

(1)

The model introduced in PRICHARD, STEPHENS and DONNELLY (2000), which we refer to as the

PSD model, is an important special case of the admixture model. It additionally assumes the following

prior distributions1 on P and Q:

pij ∼ Balding-Nichols(Fi, pi)

q•j ∼ Dirichlet(α)

The Balding-Nichols distribution (BALDING and NICHOLS, 1995) is a reparameterization of the Beta dis-

tribution in which Fi is the FST (WEIR and COCKERHAM, 1984) at locus i and pi is the population minor
1What we will refer to as the PSD model is not exactly the same as the original formulation in PRICHARD et al. (2000).

They utilize uniform priors pij ∼ Beta(1, 1) and q•j ∼ Dirichlet(1) .
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allele frequency at locus i. Specifically, Balding-Nichols(F, p) = Beta
(
1−F
F p, 1−FF (1− p)

)
. Existing

Bayesian likelihood-based methods (GOPALAN et al., 2016; PRICHARD et al., 2000; RAJ et al., 2014) fit

the PSD model specifically, while the frequentist likelihood-based methods (ALEXANDER et al., 2009;

TANG et al., 2005) and ALStructure require only the admixture model assumptions.

2.2 Optimal model constraints

Most existing methods for fitting the admixture model employ various optimization techniques to search

for the maximum likelihood parameters in the frequentist setting (ALEXANDER et al., 2009; PRICHARD

et al., 2000) or the maximum a posteriori estimate in the Bayesian setting (GOPALAN et al., 2016; RAJ

et al., 2014). Our approach has a fundamentally different character: rather than searching through a

rough likelihood landscape in pursuit of an optimal solution, the ALStructure algorithm optimizes over

a set of feasible solutions subject to a set of optimal constraints. Any solution meeting these constraints

is a risk-minimizing solution up to the inherent non identifiability of the admixture model; consequently,

any further optimization is unnecessary.

There are several constraints that any reasonable estimate of the parameters of the admixture

model must obey. The first is simply that the parameter estimates F̂ , P̂ , and Q̂ obey the relationship

F̂ = P̂ Q̂. We will refer to this constraint as the “Equality" constraint. The second obvious requirement

is that entries of matrices P̂ and Q̂ obey the probabilistic constraints of the admixture model:

pij ∈ [0, 1] ∀(i, j) (2)

qij ≥ 0 ∀(i, j) (3)∑
i

qij = 1 ∀j (4)

As we will encounter these constraints frequently, we refer to Eq. (2) as the “�" constraint, and Eq. (3)

and (4) as the “4" constraint. This is simply because the constraints on P demarcate the boundaries

of a d-dimensional unit cube (the generalization of a square) whereas the constraints on Q demarcate

a d-dimensional simplex (the generalization of an equilateral triangle). Together we refer to the � and

4 constraints as the “Boundary" constraints.

The final constraint we require is that the row vectors of F̂ lie in the linear subspace spanned by the

rows vectors ofQ. If we denote 〈A〉 to be the rowspace of a matrixA, we can summarize this condition

as:

〈F̂ 〉 = 〈Q〉 (5)

We will refer to Eq. 5 as the “LS" (linear subspace) constraint. The LS constraint is the only nontrivial

constraint that ALStructure enforces. The fact that 〈F 〉 = 〈Q〉 is a simple consequence of the linearity

of the admixture model; indeed, all rows of F are linear combinations of rows of Q since F = PQ.

The LS constraint thus requires the same property for our estimate F̂ . It is important to note that the

LS constraint is not the same as requiring that 〈F̂ 〉 = 〈Q̂〉: this is ensured by the Equality constraint.

Rather, the LS constraint requires that the row vectors of F̂ belong to the rowspace of the trueQmatrix.
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The apparent challenge of enforcing the LS constraint is that a priori, one does not have access to 〈Q〉.
However, ALStructure takes advantage of a recent result from CHEN and STOREY (2015) that 〈Q〉 can

be consistently estimated directly from the data matrixX in the asymptotic regime of interest, when the

number of SNP’s m grows large. The result of CHEN and STOREY (2015) is in fact much more general

than is needed in our setting and therefore will likely be useful in many other problems. Because of its

importance to this work, we further discuss this result in the context of the admixture model in Section

2.4, and show that a modified PCA of X consistently recovers 〈Q〉.

2.3 Leveraging constraints to estimate F̂

The key step in ALStructure is to note that enforcing the LS constraint provides us with an immediate

estimate for F . To motivate our estimator, first observe that the simple estimate F̃ = 1
2X is in some

sense a reasonable approximation of F : it is unbiased since fij = 1
2 E[xij ] under the admixture model.

However, this estimate leaves much to be desired — most importantly, the estimate F̃ will in general be

of full rank (n) rather than of low rank (d) and it will have a large variance. Assuming, for now, that we

are provided with the true rowspace 〈Q〉 of F , a natural thing to try will be to project the rows of 1
2X

onto this linear subspace. Below we show that this estimator has some appealing properties.

Let us denote the the operator Proj〈S〉(X) such that the rows of the matrixX are projected onto the

linear subspace 〈S〉.2 If we are given an orthonormal basis {si} of the k-dimensional linear subspace

〈S〉, then:

Proj〈S〉(X) ≡X

(
k∑
i=1

sis
T
i

)

We will now show that the estimate

F̂ =
1

2
Proj〈Q〉(X) (6)

is both unbiased and has minimal risk (as defined below) among all projections.

To see that F̂ is unbiased, we simply note that:

E[F̂ ] =
1

2
E[Proj〈Q〉(X)]

=
1

2
Proj〈Q〉(E[X])

= Proj〈Q〉(F )

= F

Between the first and second line, we note that the projection operator is linear and take advantage

of linearity of expectation. Between second and third line, we used the observation that 1
2 E[X] = F .

Finally, Proj〈Q〉F = F since all rows of F belong to 〈Q〉. From an identical argument one can see that

2The notation Proj〈S〉(X) typically refers to projection of the columns of X onto the linear subspace 〈S〉, but here we use
this notation to denote projection of the rows of X onto 〈S〉.
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for projection onto any other subspace 〈S〉, the corresponding estimator F̂ S ≡ 1
2Proj〈S〉(X) will have

the property that

E[F̂ S ] = Proj〈S〉(F )

It is clear that if 〈Q〉 ⊆ 〈S〉, then Proj〈S〉(F ) = F since the projection operators act as the identity

operator for vectors belonging to the subspace 〈S〉. However, if 〈Q〉 6⊆ 〈S〉 then E[F̂ S ] 6= F in general.

In conclusion, we make the following simple observation.

Lemma 1. For a rank d matrix F that admits a factorization F = PQ and a random matrixX such that
1
2 E[X] = F , any estimator of F of the form F̂ S ≡ 1

2Proj〈S〉(X) is unbiased if and only if 〈Q〉 ⊆ 〈S〉.

We now show that among all unbiased estimators constructed by projecting X onto a linear sub-

space, the projection onto 〈Q〉 has the minimal risk, where our loss function is defined as the distance

between F̂ and F via the squared Frobenius matrix norm (the squared sum of matrix elements):

L(F , F̂ ) ≡ ||F̂ − F ||2

= Tr[(F̂ − F )T (F̂ − F )]

= Tr[F̂
T
F̂ ]− 2Tr[F̂

T
F ] + Tr[F TF ] (7)

First let us compute the risk of our projection estimator F̂ . Suppose we have an orthonormal basis {vi}
of 〈Q〉. Using the definition of F̂ from Eq. 6 and the fact that the rows of both F belong to 〈Q〉, we note

that we can write any row of either matrix in terms of the basis vectors {vi}:

f i• =
∑
j

〈fTi• ,vj〉vTj (8)

f̂ i• =
1

2

∑
j

〈xTi• ,vj〉vTj (9)

By rewriting the matrices F̂ and F with respect to the basis {vi} and using Eq. 8 and 9, it is a

straightforward calculation to show that

Tr[F TF ] =

m∑
i=1

k∑
j=1

〈fTi• ,vj〉2

Tr[F̂
T
F̂ ] =

m∑
i=1

k∑
j=1

〈1
2
xTi• ,vj〉2

Substituting this result into Eq. 7 and taking expectations, we have the following expression for our loss
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function:

R(F , F̂ ) = E[L(F , F̂ )]

= E
[
Tr[F̂

T
F̂ ]− 2Tr[F̂

T
F ] + Tr[F TF ]

]
= E

[
Tr[F̂

T
F̂ ]− Tr[F TF ]

]
=

m∑
i=1

k∑
j=1

E

[
〈1
2
xTi• ,vj〉2

]
− 〈fTi• ,vj〉2

=
1

4

m∑
i=1

k∑
j=1

Var[〈xTi• ,vj〉] (10)

By studying Eq. 10, we can see the estimator F̂ has several favorable properties. First note that the

risk is a sum of m × k nonnegative numbers since Var[Z] ≥ 0 for any random variable Z. If we were

to project onto a larger subspace 〈S〉 ⊃ 〈Q〉, we would add terms to Eq. 10 and consequently increase

our risk. If we were to project onto a smaller subspace 〈S〉 ⊂ 〈Q〉, then the risk may decrease, however

our new estimator will now be biased by Lemma 1. From these observations, we conclude that F̂ is

optimal in the sense described in the following Lemma 2.

Lemma 2. For a rank d matrix F that admits a factorization F = PQ and a random matrix X such

that 1
2 E[X] = F , the estimator F̂ ≡ 1

2Proj〈Q〉(X) is an unbiased estimator of F and has the smallest

risk of any unbiased estimator of the form F̃ ≡ 1
2Proj〈S〉(X).

We note that this strategy is related to the strategy taken in HAO et al. (2016) in which F was

estimated by projecting 1
2X onto the space spanned by the first d principal components. In that work, it

was observed that this simple strategy of estimating F̂ typically outperformed existing methods in terms

of estimating F . We will see in Section 2.4 that the space spanned by the first d principal components

is a good estimator for 〈Q〉 itself, but it can be improved practically and with theoretical guarantees by

performing a modified PCA. Therefore, Lemma 2 provides a theoretical justification for the empirically

accurate method put forward in HAO et al. (2016).

2.4 Latent subspace estimation

We have shown that the linear subspace 〈Q〉 can be leveraged to provide a desirable estimate of F .

Here we show how we can compute a consistent estimate of 〈Q〉 from the observed data X using a

general technique developed in CHEN and STOREY (2015), which we will refer to as Latent Subspace

Estimation (LSE).

PCA, a popular technique to apply to population genetic data, is a method for identifying linear

combinations of variables that sequentially maximize variance explained in the data (JOLLIFFE, 2002).

We would like to employ SNP-wise PCA to estimate 〈Q〉. A standard SNP-wise PCA applied to X

computes the singular value decomposition of the n × n sample covariance matrix, 1
mX

TX (perhaps

9

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 29, 2017. ; https://doi.org/10.1101/240812doi: bioRxiv preprint 

https://doi.org/10.1101/240812
http://creativecommons.org/licenses/by-nd/4.0/


by first mean centering SNP-wise). However, we can calculate that

Var[xij ] = Var[E[xij |fij ]] + E[Var[xij |fij ]]

= Var[2fij ] + E[2fij(1− fij)]

Cov[xij , xik] = Cov[E[xij |fij ],E[xik|fik]] + E[Cov[xij , xik|fij , fik]]

= Cov[2fij , 2fik]

The information about 〈Q〉 is contained in terms composed of Var[2fij ] and Cov[2fij , 2fik], but not

E[2fij(1 − fij)]. As fully detailed in CHEN and STOREY (2015), the term E[2fij(1 − fij)] captures

variation specific to xij , so we must correct for E[2fij(1− fij)] in the PCA.

Let δij = E[2fij(1 − fij)], and let ∆ be a diagonal matrix with jth element equal to 1
m

∑n
i=1 δij .

Also, let {v1, . . . ,vd} corresponding to the top d eigenvalues of the matrix Γ = 1
mX

TX −∆. CHEN

and STOREY (2015) shows that

lim
m→∞

〈{v1, . . . ,vd}〉4〈Q〉 = ∅

with probability 1, where4 denotes the symmetric set difference.

However, since we don’t know the term E[2fij(1− fij)], we must estimate it. Since E[2xij − x2ij ] =
E[2fij(1−fij)], CHEN and STOREY (2015) further show the following theorem (which we have re-written

to reflect our special case).

Theorem 1 (CHEN and STOREY (2015)). Let us define δ̂j = 1
m

∑
i 2xij − x2ij and let D be the di-

agonal matrix with jth entry equal to δ̂j . The d eigenvectors {v1, . . . ,vd} corresponding to the top d

eigenvalues of the matrix G = 1
mX

TX −D span the latent subspace 〈Q〉 in the sense that

lim
m→∞

〈{v1, . . . ,vd}〉4〈Q〉 = ∅

with probability 1, where4 denotes the symmetric set difference. Further, the smallest n− d eigenval-

ues of G conerge to 0 with probability 1.

The row space 〈Q〉 is therefore estimated by

〈̂Q〉 = V T
(1:d) (11)

where V 1:d are the first d columns from the singular value decomposition of G. We note that the

singular value decomposition isG = VWV T , where the diagonal matrixW contains the eigenvalues

and the columns of V are the eigenvectors.

Importantly, the first d rows of

W 1/2V T (12)

are the top d principal components ofG. These capture the systematic variation in the rowspaces ofX

and F due to Q. These are the principal components of interest for understanding structure, not those

calculated directly from X.
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CHEN and STOREY (2015) also provides results on the distribution of the eigenvalues of G as

m → ∞, along with results on how to determine d. We stress that the general form of Theorem 1

from CHEN and STOREY (2015) makes LSE applicable to a vast array of models beyond factor models

and the admixture model discussed here. As a further benefit to the LSE methodology, it is both

easy to implement and computationally appealing. The entire computation of 〈̂Q〉 requires a single

eigendecomposition of an n× n matrix where the accuracy depends only on large m.

2.5 Leveraging constraints to estimate P and Q

Now that we have a method for obtaining the estimate F̂ by leveraging the LS constraint, what remains

is to find estimates for P and Q. Since the estimate F̂ has several appealing properties, as outlined in

Section 2.3, the approach of ALStructure is simply to keep F̂ fixed and seek matrices P̂ and Q̂ that

obey the Equality and Boundary constraints of the admixture model. Below we discuss some of the

general properties of this approach: namely the question of existence and uniqueness of solutions. We

will briefly discuss the general problem of nonidentifiability in the admixture model and provide simple

and interpretable conditions under which the admixture model is identifiable. Finally, we will provide

simple algorithms for computing P̂ and Q̂ from F̂ based on the method of Alternating Least Squares

(ALS).

Existence, uniqueness, and anchor conditions. First we develop some terminology. We will say

that an m × n matrix A admits an admixture-factorization if the following feasibility problem has a

solution:

find: (B,C) (13)

subject to: A = BC and (�,4)

In words, the feasibility problem in Eq. 13 simply seeks a factorization of A that obeys the Equality

and Boundary constraints from Section 2.2 imposed by the admixture model. The smallest integer d for

which (B,C) is a solution to Eq. 13 withB an m×d matrix andC a d×n matrix is the admixture-rank

of A, which we denote rankADM(A). By seeking a rank d admixture-factorization of F̂ , ALStructure

converts a problem of high-dimensional statistical inference to a matrix factorization problem.

This simple approach has two apparent shortcomings:

(i) A rank d admixture-factorization of F̂ may not exist.

(ii) If a valid factorization exists, it will not be unique.

Item (i) is a technical problem; though F admits a rank d admixture factorization by assumption,

the same is not true for F̂ in general. Even though the rank of F̂ is d by construction, rank(F̂ ) 6=
rankADM(F̂ ) in general. ALStructure avoids this problem changing the feasibility problem expressed

in Eq. 13 to the following optimization problem:

minimize
(B,C)

||A−BC||

subject to: (�,4) (14)
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It is important to note that (ii) is not a problem unique to ALStructure, but is a fundamental limitation

for any maximum likelihood (ML) method as well. This is because the likelihood function depends on

P̂ and Q̂ only through their product F̂ ; more formally, the admixture model is non-identifiable. One

unavoidable source of nonidentifiability is that any solution (P̂ , Q̂) to the matrix factorization problem in

Eq. 13 will remain a valid solution after applying a permutation to the columns of P̂ and the rows of Q̂.

A natural question to ask is: “When is there a unique factorization F̂ = P̂ Q̂ up to permutations?"

Two important types of sufficient conditions under which unique factorizations exist up to permuta-

tions are (i) anchor SNPs and (ii) anchor individuals. We note that the concept of anchors has been

previously employed in the field of topic modeling, where anchor words are of interest (ARORA et al.,

2013). In the case of anchor SNP’s, every ancestral population has at least one SNP for which the

allele frequency is nonzero in that particular population but fixed in all other ancestral populations.

Analogously, in the case of anchor individuals, there exists at least one individual per ancestral pop-

ulation whose entire genome is inherited from that population. The fact that either a set of d anchor

SNPs or d anchor individuals makes the admixture model identifiable up to permutations follows from

a simple argument found in Appendix B. For the special case of d = 3, Fig. 1 graphically displays the

anchor conditions. It is important to remember that ALStructure does not require anchors to function.

Rather, anchors provide interpretable conditions under which solutions provided by ALStructure, or

any likelihood based method, can be meaningfully compared to the underlying truth.

Figure 1: Summary of sufficient conditions for a factorization F = PQ to be unique for d = 3. Axes

represent the components of the row vectors of P and the column vectors of Q respectively. (left)

Anchor SNP’s: there is at least one row of P on each on each of the red lines. (right) Anchor genotypes:

there is at least one column of Q on each of the red dots.

The anchor SNP and anchor individual conditions are not necessarily the only sufficient conditions

for ensuring identifiability of the admixture model and indeed to the best or our knowledge, there is not

currently a complete characterization of conditions for which the admixture model is identifiable. We
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regard this as an important open problem. In practice, ALStructure is capable of retrieving solutions

remarkably close to the underlying truth even in simulated scenarios far from satisfying the anchor

conditions, including conditions which are challenging for existing methods.

Computation. Here we present two simple algorithms for solving the optimization problem:

minimize
(P ,Q)

||F̂ − PQ||

subject to: (�,4) (15)

The first algorithm, which we call cALS (constrained Alternating Least Squares) has the advantage that

it is guaranteed to converge to a stationary point of the objective function in (15). While theoretically

appealing, this algorithm relies on solving many constrained quadratic programming problems and is

consequently potentially slow. To overcome this problem, we introduce a second algorithm called uALS

(unconstrained Alternating Least Squares), which simply ignores the problematic quadratic constraints

in cALS. Though lacking a theoretical guarantee of convergence, the increase in speed is significant

and the outputs of the two algorithms are often practically indistinguishable. We note that a similar

approach was taken in BERRY et al. (2007) for the problem of nonnegative matrix factorization (NNMF).

An algorithm with provable convergence. While problem (15) is nonconvex as stated, the following

two subproblems are convex:

minimize
P

||F̂ − PQ|| (16)

subject to: �

minimize
Q

||F̂ − PQ|| (17)

subject to: 4

That (16) and (17) are convex problems is clear; norms are always convex functions and � and 4 are

convex constraints. In particular (16) and (17) are both members of the well-studied class of Quadratic

Programs (QP) for which many efficient algorithms exist (BOYD and VANDENBERGHE, 2009). We pro-

pose as our procedure for factoring F̂ the following simple alternating procedure, called the Constrained

ALS Algorithm.

Algorithm 1 Constrained ALS Algorithm

1: procedure cALS(F̂ , d)

2: Initialize P̂ arbitrarily.

3: repeat
4: Solve (17) with P = P̂ and return Q̂.

5: Solve (16) with Q = Q̂ and return P̂ .

6: until Convergence of P̂ and Q̂

7: return (P̂ , Q̂)

Despite the original problem being nonconvex, Algorithm 1 is guaranteed to converge to a stationary

point of the objective function in (15) as a result of the following theorem from GRIPPO and SCIANDRONE

(2000).
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Theorem 2. For the two block problem,

minimize
P ,Q

f(P ,Q)

if {P i} and {Qi} are a sequence of optimal solutions to the two subproblems:

minimize
P

f(P ,Qi)

minimize
Q

f(P i,Q)

then any limit point (P ,Q) will be a stationary point of the original problem. 3

An efficient heuristic algorithm. If we remove all constraints on P and Q from Eq. 16 and 17, the

resulting optimization problems are simple linear least squares (LS).

minimize
P

||F − PQ|| (18)

minimize
Q

||F − PQ|| (19)

Our algorithm proceeds by alternating between solving the unconstrained LS problems (18) and (19).

After each step, the optimal solution will not necessarily obey the constraints of problem (15). To

keep our algorithm from converging on an infeasible point, we truncate the solution to force it into the

feasible set. More precisely, each element of the solution P ∗ to (18) is truncated to satisfy � and

each entry of the solution Q∗ to (19) is projected to the closest point on the simplex defined by the 4
constraints. Simplex-projection is nontrivial, however it is a well-studied optimization problem. Here we

use a particularly simple and fast algorithm from CHEN and YE (2011). This algorithm, which we call

the Unconstrained ALS Algorithm, works as follows.

Algorithm 2 Unconstrained ALS Algorithm

1: procedure uALS(F̂ , d)

2: Initialize P̂ arbitrarily.

3: repeat
4: Solve (19) with P = P̂ , and return the simplex-projected solution Q̂.

5: Solve (18) with Q = Q̂ and return the truncated solution P̂ .

6: until Convergence of P̂ and Q̂

7: return (P̂ , Q̂)

An example dataset. Figure 2 displays the output of cALS and uALS on a dataset from the PSD

model with the parameters: m = 100 000, n = 500, k = 3, α = (0.1, 0.1, 0.1). As can be seen, the

output fits for Q provided by cALS and uALS are practically indistinguishable to the eye and are both

excellent approximations of the ground truth. The cALS algorithm performed slightly better than the

3The result from GRIPPO and SCIANDRONE (2000) is actually more general than this. We reproduce the special case
above in order to make clear the connection to our problem.
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uALS algorithm (6.9 × 10−3 and 7.1 × 10−3 mean absolute error, respectively). However, cALS took

3.9 hours to complete while uALS terminated in under 2 minutes. Because of the significant gains in

efficiency, we use uALS exclusively throughout the remainder of this paper. The analyst who requires

theoretical guarantees can, of course, use the cALS algorithm instead.

Figure 2: Biplots of the first two rows of Q (left), Q̂uALS (middle) and Q̂cALS (right). Blue points are

provided as a visual aid and delineate a common subset of individuals.

2.6 The ALStructure algorithm

In this section we briefly outline the entire ALStructure method whose components were motivated in

depth in Sections 2 above. In order to fit the admixture model, we obtain estimates F̂ , P̂ , and Q̂ from

the SNP matrix X through the following three part procedure:

(i) Estimate the linear subspace 〈Q〉 from the data X.

(ii) Project 1
2X onto the estimate 〈̂Q〉 to obtain an estimate of F .

(iii) Factor the estimate F̂ subject to the Equality and Boundary constriants to obtain P̂ and Q̂.

For convenience, we detail the entire ALStructure algorithm in Algorithm 3 and annotate each of the

three steps described above 4.

We emphasize here that ALStructure’s estimate of global ancestry Q̂ is ultimately derived from

the LSE-based estimate of the latent subspace 〈̂Q〉. As the method of LSE is closely linked to PCA, we

consider ALStructure to be a unification of PCA-based and likelihood-based approaches.

Perhaps the most striking feature of Algorithm 3 is its brevity. One advantage of this simplicity is its

ease of implementation. Although Algorithm 3 has been implemented in the R package ALStructure,

it can clearly be reimplemented in any language quite easily. Equally important is that all of the oper-

ations in Algorithm 3 are very standard. The only two computationally expensive components are (i) a

single eigendecomposition (line 6) if n is large and (ii) QR decompositions to find linear least squares
4We note that we have decided to use the uALS function rather than the cALS function in our definition of the ALStructure

algorithm, valuing the speed advantage of uALS over the theoretical guarantees of cALS. If desired, one could of course
choose to use the cALS function instead without making any other alterations to the ALStructure.
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Algorithm 3 ALStructure

1: procedure ALStructure(X, d)

2: for j = 0 to n do . (i)

3: δ̂j ← 1
m

∑m
i=1 2xij − x2ij

4: D ← diag({δ̂1, . . . , δ̂n})
5: G← 1

mX
TX −D

6: Compute eigendecomposition G = VWV T

7: F̂ ← 1
2Proj〈̂Q〉(X) = 1

2XV (1:d)V
T
(1:d) . (ii)

8: (P̂ , Q̂)← uALS(F̂ , d) . (iii)

9: return (F̂ , P̂ , Q̂)

(LLS) solutions in the uALS algorithm. Both of these problems have a rich history and consequently

have many efficient algorithms. It is likely that the ALStructure implementation of Algorithm 3 can

be significantly sped up by utilizing approximate or randomized algorithms for the eigendecomposition

and/or LLS computations. In its current form, ALStructure simply uses the base R functions eigen()

and solve() for the eigendecomposition and LLS computations respectively. Despite this, the current

implementation of ALStructure is typically faster than existing algorithms as can be seen in Sections

3 and 4 below.

For choosing the dimensionality of the model d, we recommend utilizing the recently proposed

structural Hardy-Weinberg equilibrium (sHWE) test (HAO and STOREY, 2017). This test can perform a

genomewide goodness of fit test to the assumptions made in the admixture model over a range of d.

It then identifies the minimal value of d that obtains the optimal goodness of fit. There are other ways

to choose d, such as by using the theory and methods in CHEN and STOREY (2015) or by using other

recent proposals (HAO et al., 2016; PATTERSON et al., 2006).

3 Results from simulated data

3.1 Simulated data sets

In this section we compare the performance of ALStructure to three existing methods for global ances-

try estimation, Admixture, fastSTRUCTURE and terastructure. Admixture, developed by ALEXAN-

DER et al. (2009), is a popular algorithm which takes a maximum-likelihood approach to fit the admix-

ture model. Both fastSTRUCTURE (RAJ et al., 2014) and terastructure (GOPALAN et al., 2016) are

Bayesian methods that fit the PSD model using variational Bayes approaches. We abbreviate these

methods as ADX, FS, and TS in the plots. A comparison among these three methods appears in

GOPALAN et al. (2016), so we will focus on how they compare to ALStructure.

To this end, we first tested all algorithms on a diverse array of simulated datasets. The bulk of

our simulated data sets come from the classical PSD model (defined in Section 2.1) in which columns

of Q are distributed according to the Dirichlet(α) distribution and the rows of P are drawn from the
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m 105, 5× 105

n 5× 102, 103, 5× 103, 104

d 3, 6, 9

α-prototypes

(10, 10, 10)

(1, 1, 1)

(0.1, 0.1, 0.1)

(10, 1, 0.1)

Table 1: Parameters of all simulated datasets

Balding-Nichols distribution. We varied the following parameters in our simulated datasets: m, n, d,

and α. Of particular note is the variation of α. For this we used four α-prototypes: α1 = (10, 10, 10),

α2 = (1, 1, 1), α3 = (0.1, 0.1, 0.1), and α4 = (10, 1, 0.1). These four prototypes were chosen because

they represent four qualitatively different distributions on the Dirichlet simplex as shown in Fig. 3: i) α1

corresponds to points distributed near the center of the simplex, ii) α2 corresponds to points distributed

evenly across the simplex, iii) α3 corresponds to points distributed along the edges of the simplex, and

iv) α4 corresponds to an asymmetric distribution in which points are concentrated around one of the

corners of the simplex.

Figure 3: Examples of typical random samples from the four different α-prototypes. As can be seen,

only α2 and α3 approximately obey the “anchor-individuals" condition.

When we produced datasets with d > 3, we extended the prototypes in the natural way; for example

for d = 6, the α4 is becomes (10, 10, 1, 1, 0.1, 0.1). Table 1 lists all of the parameters we used to

generate data under the Dirichlet model, for a total of 96 distinct combinations.

The parameters of the Balding-Nichols distributions from which rows of the P matrix were drawn

were taken from real data, following the same strategy taken in GOPALAN et al. (2016). Specifically, Fi
and pi were estimated for each SNP in the Human Genome Diversity Project (HGDP) dataset (CAVALLI-

SFORZA, 2005). Then for each simulated dataset,m random samples are taken (with replacement) from

the HGDP parameter estimates.

In addition to simulating Q matrices from the classical Dirichlet(α) distribution with many different
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parameters α, we also simulated data from the a spatial model of admixture developed in OCHOA and

STOREY (2016). We deliberately chose to study this model because it is ill-suited for ALStructure;

while ALStructure relies on the estimation of the d-dimensional linear subspace 〈Q〉, the columns of

Q produced under the spatial model lie on a one-dimensional curve within 〈Q〉. Despite this funda-

mentally challenging scenario, we see that ALStructure is still often capable of recovering an accurate

approximation.

3.2 Results from the PSD model

In order to give a representative picture of the relative performance of ALStructure against existing

algorithms, we first plot the fits of all of the algorithms for two particular data sets out of the total 96

model data sets: (i) the data set in which ALStructure performs the best and (ii) the data set in which

ALStructure performs the worst. We measure the quality of fit as the mean absolute error between

the Q̂ and Q:
1

dn

d∑
k=1

n∑
j=1

|q̂kj − qkj |

In Fig. 4a, we see that all four algorithms perform very well for the data set in which ALStructure

performs best, which comes from the α1-prototype. In Fig. 4b, the dataset was generated from the

α4-prototype. We see that while ALStructure certainly deviates substantially from the truth, so does

every algorithm. Both fastSTRUCTURE and terastructure provide results that are qualitatively very

different from the truth; where fastSTRUCTURE compresses all columns of Q onto a single edge of

the simplex, terastructure spreads them out through the interior of the simplex. Both Admixture

and ALStructure provide solutions qualitatively similar to the truth. While the points in the Admixture

solution extend much further along the edge of the simplex than the true model, the ALStructure

solution spreads into the interior of the simplex more than the true model.

Fig. 8a and 8b summarize the performance of ALStructure against the existing algorithms on

all simulated datasets. Fig. 8a shows the distributions of quality of fit (measured by the mean ab-

solute difference between Q and Q̂) for each algorithm on all modeled datasets. Fig. 8b shows the

distributions of run times for each algorithm on all modeled datasets. It is clear that ALStructure is

competitive with respect to both model fit and time. While Admixture is closest to ALStructure in

accuracy, terastructure is closest to ALStructure in speed; no single competitor algorithm is com-

petitive with ALStructure in both accuracy and time. Furthermore, ALStructure has both the smallest

median error and run time among all methods.

3.3 Results from the spatial model

As a challenge to ALStructure, we simulate data from a model developed in OCHOA and STOREY

(2016), which we will refer to as the spatial model. This model mimics an admixed population that was

generated by a process of diffusion in a one-dimensional environment. There are d unmixed ancestral

populations equally spaced at positions {x0, x0+1, . . . , x0+ d− 1} on an infinite line. If all populations
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(a) Dataset with best ALStructure fit. (b) Dataset with worst ALStructure fit.

Figure 4: Model fits by ALStructure, Admixture, fastSTRUCTURE, terastructure on the two par-

ticular simulated datasets. Each point represents a column of the Q matrix and is plotted by the first

and second coordinates. Blue points are plotted as a visual aid and delineate a common subset of

individuals.
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(a) Comparison of quality of fit (b) Comparison of run time

Figure 5: Summary of performance of ALStructure and existing algorithms. The points are colored by

α-prototype.

begin to diffuse at time t = 0 at the same diffusive rate, then population i will be distributed as a

Gaussian with mean µi = x0 + i− 1 and standard deviation σ. Therefore, under the Spatial model, an

individual sampled from position x will have admixture proportions:

(q1(x), q2(x), . . . , qd(x)) =

(
f(µ1,σ)(x)∑d
i=1 f(µi,σ)(x)

,
f(µ2,σ)(x)∑d
i=1 f(µi,σ)(x)

, . . . ,
f(µd,σ)(x)∑d
i=1 f(µi,σ)(x)

)
(20)

where f(µ,σ) denotes the Gaussian distribution with parameters (µ, σ).

Although this is just a special case of the admixture model, one would expect the spatial model

to be particularly challenging for ALStructure because the admixture proportions belong to a one-

dimensional curve parameterized by x, and ALStructure necessitates the estimation of a d-dimensional

linear subspace in Rn. The challenge is much more pronounced when the populations are highly ad-

mixed (large σ). Fig. 6 shows the model fits provided by ALStructure. Indeed, for large values of σ

(σ = 2), ALStructure fails to correctly capture the admixture proportions. However, for smaller values

of σ (σ = {1, 0.5}), it can be seen that the fits provided by ALStructure are excellent. In all simulations

m = 105, n = 103, and d = 3.

We note that GOPALAN et al. (2016) tested Admixture, fastSTRUCTURE, and terastructure on

data drawn from the spatial model (which they refer to as “Scenario B”). They found this model to pose

a significant challenge for all three methods, but found terastructure to perform the best.
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Figure 6: ALStructure of datasets from the Spatial model. (left) Stacked barplots of ALStructure fits.

(right) Bi-plots of ALStructure fits. The parameter σ was set to 2, 1, and 0.5 for the top, middle and

bottom rows, respectively. Blue points are plotted as a visual aid and delineate corresponding columns

of Q and Q̂.
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4 Applications to global human studies

Here we apply ALStructure and existing methods to three globally sampled human genotype datasets:

the Thousand Genomes Project (TGP), Human Genome Diversity Project (HGDP), and Human Origins

(HO) datasets (CAVALLI-SFORZA, 2005; LAZARIDIS et al., 2014; THE 1000 GENOMES PROJECT CON-

SORTIUM, 2015). Table 2 summarizes several basic parameters of each of the datasets and Appendix

A details the procedures used for building each dataset. Although we recommend using sHWE from

HAO and STOREY (2017) for choosing d, here we take directly from GOPALAN et al. (2016) the number

of ancestral populations d so that our results can be compared to those.

Dataset m n d m× n

TGP 520036 1716 8 ∼ 8.9× 108

HGDP 550303 940 10 ∼ 5.2× 108

HO 372446 2248 14 ∼ 8.4× 108

Table 2: Dataset parameters.

Fig. 7 shows scatterplots of the first two rows of Q̂ for each of the three datasets provided by

each of the four fits. To disambiguate the inherent non-identifiability (see section 2.5), we ordered the

rows of the fits Q̂ by decreasing variation explained: s2i = ||Xq̂
T
i• ||2. Perhaps the most striking aspect

of Fig. 7 is the difference between the fits produced by each method. With the notable exception

that Admixture and ALStructure have similar fits for the TGP and HGDP datasets, every pair of

comparable scatterplots (i.e., within a single row of Fig. 7) are qualitatively different.

Next we compare the performance of ALStructure to existing methods both in terms of efficiency

and accuracy. Unlike in the case of simulated datasets where the ground truth is known, here we

cannot directly compare the quality of model fits across methods. Instead, we assess the quality of

each method by its performance on data simulated from real data fits. For concreteness, we briefly

outline the process below:

(i) Fit each dataset with each of the four methods to obtain 12 model fits.

(ii) Simulate datasets from the admixture model using parameters obtained in the previous step.

(iii) Fit each of the 12 simulated datasets with each of the four datasets (48 fits) and compute error

measures.

The process above treats each of the four methods symmetrically, evaluating each method based on

its ability to fit data simulated from both its own model fits as well as every other methods’ model fits.

Fig. 8a shows that every method performs similarly on datasets simulated from real data fits, how-

ever it is notable that ALStructure has the smallest error in terms of minimum, median, and maximum.

Fig. 8b demonstrates that ALStructure performs significantly faster than preexisting methods
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Figure 7: Bi-plots of the first two rows of Q (ranked by variation explained) of the fits of the TGP

(top), HGDP (middle), and HO (bottom) datasets for each algorithm. Individuals are colored by coarse

subpopulation from which they are sampled.

(a) Comparison of quality of fit (b) Comparison of run time

Figure 8: Summary of performance of ALStructure and preexisting algorithms on datasets simulated

from the fits of real datasets. Horizontal bar represents median value.
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5 Discussion

In this work we have introduced ALStructure, a new method to fit the admixture model from observed

genotypes. Our method attempts to find common ground between two previously distinct approaches to

understanding genetic variation: likelihood-based approaches and PCA-based approaches. ALStructure

features important merits from both. Like the likelihood-based approaches, ALStructure is grounded in

the probabilistic admixture model and provides full estimates of global ancestry. However, operationally

the ALStructure method closely resembles PCA-based approaches. In particular, ALStructure’s es-

timates of global ancestry are derived from a PCA-based estimate of the underlying low-dimensional

latent subspace of the data. In this way, ALStructure can be considered a unification of likelihood-

based and PCA-based methods.

Because ALStructure is operationally similar to PCA-based methods, it is computationally efficient.

Specifically, the only computationally expensive operations required by the ALStructure algorithm are

singular value and QR decompositions. Both of these computations have been extensively studied and

optimized. Although ALStructure already performs favorably compared to preexisting algorithms in

computational efficiency, it is likely that by applying more sophisticated eigendecomposition techniques

ALStructure may see significant improvements in speed.

The high-level strategy of ALStructure is to take advantage of the inherent nonidentifiability of

the admixture model to obviate many computationally expensive procedures of likelihood-based ap-

proaches. As such, rather than searching for over a rough likelihood landscape for optimal solutions,

the ALStructure algorithm is based on a pursuit of feasible solutions subject to a set of optimal con-

straints. It is a simple, but central observation of the strategy of ALStructure that any element of the

derived feasible set is a risk-minimizing solution up to the inherent non identifiability of the admixture

model; consequently, any further optimization is unnecessary. Perhaps more important than its appeal-

ing theoretical and computational properties, ALStructure typically outperforms preexisting algorithms

both in terms of accuracy and time. This observation holds under a wide array datasets, both simulated

and real.

Finally, the basic approach is quite general. In particular, the set of models that satisfy the underlying

assumptions of LSE is large, subsuming the admixture model as well as many other probabilistic models

with low intrinsic dimensionality. Consequently, we expect that the ALStructure method can be trivially

altered to apply to many similar problems beyond the estimation of global ancestry.
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Appendices

A HGDP, TGP, and HO dataset details

In Section 4 we analyze human genotype data from globally-sampled individuals. These data come

from three public sources: HGDP (CAVALLI-SFORZA, 2005), TGP (THE 1000 GENOMES PROJECT

CONSORTIUM, 2015), HO (LAZARIDIS et al., 2014). The various pre-processing steps are detailed

below for each dataset:

TGP: The 1000 Genomes Project dataset (TGP) samples globally from 26 populations and is available

here: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_

chip/. Related individuals and SNPs with minor allele frequency < 5% are removed. The dimensions

of this dataset are 1,716 individuals and 520,036 SNPs.

HGDP: The Human Genome Diversity Project dataset (HGDP) samples globally from 51 populations

and is available here: http://www.hagsc.org/hgdp/files.html. Individuals with first- or second-

degree relatives and SNPs with minor allele frequency < 5% are removed. The dimensions of this

dataset are 940 individuals and 550,303 SNPs.

HO: The Affymetrix Human Origins dataset (HO) samples globally from 147 populations and is avail-

able here: http://genetics.med.harvard.edu/reich/Reich_Lab/Datasets.html. Nonhuman or

ancient samples and SNPs with < 5% minor allele frequency are removed. The dimensions of this

dataset are 2,248 individuals and 372,446 SNPs.

B Proof of sufficiency of anchors

Here we show that either a set of anchor SNPs or a set of anchor individuals is sufficient to specify a

unique factorization F = PQ up to the non identifiability associated with row permutations.

Proposition 1.

For a rank d matrix F with a factorization F = PQ, if there is a set S of d rows of P such that for each

i ∈ {1, 2, . . . , d} there exists a row vector pi• ∈ S such that pi• = δiei for δi 6= 0, then the factorization

is unique up to permutation. When such a set S exists, we say that we have “anchor SNP’s."

Proof. Let us denote the matrixD = diag(δ1, δ2, . . . , δd). Without loss of generality, let us assume that

S is the first d rows of P and are ordered such that

P =

(
D

A

)

28

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 29, 2017. ; https://doi.org/10.1101/240812doi: bioRxiv preprint 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_ chip/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_ chip/
http://www.hagsc.org/hgdp/files.html
http://genetics.med.harvard.edu/reich/Reich_Lab/Datasets.html
https://doi.org/10.1101/240812
http://creativecommons.org/licenses/by-nd/4.0/


for some (m− d)× d matrixA. Then there is a uniqueQ for this F matrix (up to permutation) which is

Q =D−1F 1:d

The matrix A is also uniquely determined by F once Q is fixed. To see this, note that

f j• = pj•Q

where f j• and pj• denote the j row of F and P respectively. Since f j• is fixed and Q is unique under

the anchor SNP assumption, there is a unique solution for pj• by the linear independence of the rows

of Q.

The interpretation of the anchor SNP’s assumption is that every ancestral population has at least

one SNP that appears only in it. Presence of such an SNP is therefore a guarantee that the individual

is a member of a particular population. Note that an identical argument could be made when we have

a set S of d columns of Q that have exactly one nonzero entry at unique locations. When such a set

exists, we say that we have “anchor individuals." Under the admixture model, the simplex constraint

requires that the nonzero entry of each anchor genotype is exactly one. In this scenario, there exists

at least one individual from each ancestral population whose entire genome was inherited by a single

ancestral population. We summarize these results in the following corollary and visualize the anchor

SNP and anchor genotype scenarios in Fig. 1.

Corollary 1. Whenever a rank d matrix F admits a factorization F = PQ such that there are either a

set of anchor SNP’s or a set of anchor genotypes, the factorization is unique up to permutation.
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