Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Precautionary Coherence Unravels Dose Escalation Designs

David C. Norris
doi: https://doi.org/10.1101/240846
David C. Norris
Precision Methodologies, LLC, Seattle WA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

Background Coherence notions have a long history in statistics, as rhetorical devices that support the critical examination of statistical doctrines and practices. Within the special domain of dose-finding methodology, a widely-discussed coherence criterion has been advanced as a means to guard the conceptual integrity of formal dose-finding designs from ad hoc tinkering. This is not, however, the only possible coherence criterion relevant to dose finding. Indeed, a new coherence criterion emerges naturally when the near-universal practice of cohort-wise dose escalation is examined from a clinical perspective.

Methods The practice of enrolling drug-naive patients into an escalation cohort is considered from a realistic perspective that acknowledges patients’ heterogeneity with respect to pharmacokinetics and pharmacodynamics. A new coherence criterion thereby emerges, requiring that an escalation dose be tried preferentially in participants who have already tolerated a lower dose, rather than in new enrollees who are drug-naive. The logical implications of this ‘precautionary coherence’ (PC) criterion are worked out in the setting of a 3+3 design. A ‘3+3/PC’ design that satisfies this criterion is described and visualized. A simulation study is performed, evaluating the long-run performance of this new design, relative to optimal 1-size-fits-all dosing.

Results Under the PC criterion, the 3+3 dose-escalation design necessarily transmutes into a dose titration design. Two simple rules suffice to enable abandonment of low starting doses, and termination of escalation. The process of conducting the 3+3/PC trial itself models the application of a dose titration algorithm (DTA) that carries over readily into clinical care. The 3+3/PC trial also yields an interval-censored ‘dose-survival curve’ having a semantics that should prove familiar to oncology trialists. Simulated 3+3/PC trials yield DTAs over a median of 6 dose levels, achieving 50% improved population-level efficacy compared to optimal 1-size-fits-all dosing.

Conclusions Dose individualization can be accomplished within a trial conducted along ‘algorithmic’ lines resembling those of the inveterate 3+3 design. The dose-survival curve arising from this ‘3+3/PC’ design has semantics that should prove familiar and conceptually accessible to oncology trialists, and also seems capable of supporting more formal statistical treatments of the design. In the presence of sufficient heterogeneity in individualized optimal dosing, a 3+3/PC trial outperforms any conceivable 1-size-fits-all dose-finding design. This fact eliminates the rationale for the latter designs, and should put an end to the further development and promulgation of 1-size-fits-all dose finding.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted December 29, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Precautionary Coherence Unravels Dose Escalation Designs
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Precautionary Coherence Unravels Dose Escalation Designs
David C. Norris
bioRxiv 240846; doi: https://doi.org/10.1101/240846
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Precautionary Coherence Unravels Dose Escalation Designs
David C. Norris
bioRxiv 240846; doi: https://doi.org/10.1101/240846

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Pharmacology and Toxicology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4087)
  • Biochemistry (8766)
  • Bioengineering (6480)
  • Bioinformatics (23346)
  • Biophysics (11751)
  • Cancer Biology (9149)
  • Cell Biology (13255)
  • Clinical Trials (138)
  • Developmental Biology (7417)
  • Ecology (11370)
  • Epidemiology (2066)
  • Evolutionary Biology (15088)
  • Genetics (10402)
  • Genomics (14011)
  • Immunology (9122)
  • Microbiology (22050)
  • Molecular Biology (8780)
  • Neuroscience (47373)
  • Paleontology (350)
  • Pathology (1420)
  • Pharmacology and Toxicology (2482)
  • Physiology (3704)
  • Plant Biology (8050)
  • Scientific Communication and Education (1431)
  • Synthetic Biology (2209)
  • Systems Biology (6016)
  • Zoology (1250)