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The growing threat of drug resistance has inspired a surge in evolution-based strategies for optimiz-

ing the efficacy of antibiotics. One promising approach involves harnessing collateral sensitivity–the

increased susceptibility to one drug accompanying resistance to a different drug–to mitigate the

spread of resistance. Unfortunately, because the mechanisms of collateral sensitivity are diverse

and often poorly understood, the systematic design of multi-drug treatments based on these evo-

lutionary trade-offs is extraordinarily difficult. In this work, we provide an extensive phenotypic

characterization of collateral drug effects in E. faecalis, a gram-positive species among the leading

causes of nosocomial infections. By combining parallel experimental evolution with high-throughput

dose-response measurements, we provide quantitative profiles of collateral sensitivity and resistance

for a total of 900 mutant-drug combinations. We find that collateral effects are pervasive but diffi-

cult to predict, as even mutants selected by the same drug can exhibit qualitatively different profiles

of collateral sensitivity. Overall, variability in collateral profiles is strongly correlated with the fi-

nal level of resistance to the selecting drug. In addition, collateral effects to certain drugs (e.g.

ceftriaxone) are considerably more variable than those to other drugs (e.g. fosfomycin), even for

drugs from the same class. Remarkably, however, the sensitivity profiles cluster into statistically

similar groups characterized by selecting drugs with similar mechanisms. To exploit the underlying

statistical structure in the collateral profiles, we develop a simple mathematical framework based

on a Markov decision process (MDP) to identify optimal antibiotic cycling policies that maximize

expected collateral sensitivity. Importantly, these cycles can be tuned to optimize long-term treat-

ment outcomes, leading to drug sequences that may produce long-term collateral sensitivity at the

expense of short-term collateral resistance.
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I. INTRODUCTION

The rapid emergence of drug resistance is an urgent threat to effective treatments for bac-

terial infections, cancers and many viral infections1–6. Unfortunately, the development of

novel drugs is a long and arduous process, underscoring the need for alternative approaches

to forestall resistance evolution. Recent work has highlighted the promise of evolution-based

strategies for optimizing and prolonging the efficacy of established drugs, including optimal

dose scheduling7–9, antimicrobial stewardship10,11, drug cycling12–14, consideration of spatial

dynamics15,16, cooperative dynamics17–20, or phenotypic resistance21–23, and judicious use

of drug combinations24–31. In a similar spirit, a number of recent studies have suggested

exploiting collateral sensitivity as a means for slowing or even reversing antibiotic resis-

tance32–35. Collateral evolution occurs when a population evolves resistance to a target drug

while simultaneously exhibiting increased sensitivity or resistance to a different drug. From

an evolutionary perspective, collateral effects are reminiscent of the trade-offs inherent when

organisms are required to simultaneously adapt to different tasks, an optimization that is

often surprisingly simple because it takes place on a low-dimensional phenotypic space36,37.

If similarly tractable dynamics occur in the evolution of multi-drug resistance, systematic

optimization of drug deployment has the promise to mitigate the effects of resistance.

Indeed, recent studies in bacteria have shown that the cyclic38–40 or simultaneous41 de-

ployment of antibiotics with mutual collateral sensitivity can sometimes slow the emergence

of resistance. Unfortunately, collateral profiles have also been shown to be highly hetero-

geneous42,43 and often not repeatable44, potentially complicating the design of successful

collateral sensitivity cycles. The picture that emerges is enticing, but complex; while collat-

eral effects offer a promising new dimension for optimizing therapies, the ultimate success of

these approaches will require quantitative and predictive understanding of both the preva-

lence and repeatability of collateral sensitivity profiles across species.

In this work, we provide an extensive quantitative look at collateral drug effects in E. fae-

calis, a gram-positive species often implicated in nosocomial infections, including bacteremia,

native and prosthetic valve endocarditis, and medical device infections45–48. By combining

parallel experimental evolution of E. faecalis with high-throughput dose-response measure-

ments, we provide collateral sensitivity and resistance profiles for 60 strains evolved to 15

different antibiotics, yielding a total of 900 mutant-drug combinations. We find that col-
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lateral resistance and collateral sensitivity are pervasive in drug-resistant mutants, though

patterns of collateral effects can vary significantly, even for mutants evolved to the same

drug. Variability in collateral profiles is correlated with the final level of resistance to the

selecting drug. In addition, collateral effects to certain drugs (e.g. ceftriaxone) are con-

siderably more variable than those to other drugs (fosfomycin), even for drugs from the

same class. Remarkably, however, the sensitivity profiles cluster into groups characterized

by selecting drugs from similar drug classes, indicating the existence of large scale statistical

structure in the collateral sensitivity network. Finally, we develop a simple mathematical

framework based on Markov Decision Processes (MDP) to identify optimal antibiotic cycling

policies that maximize expected collateral sensitivity. These cycles can be tuned to optimize

either short-term or long-term evolutionary outcomes and yield strikingly different protocols

depending on the time horizon for treatment.

II. RESULTS

A. Collateral effects are pervasive and heterogeneous

To investigate collateral drug effects in E. faecalis, we exposed four independent popula-

tions of strain V583 to increasing concentrations of a single drug over 8 days (approximately

60 generations) using serial passage laboratory evolution (Figure 1A, Methods). We repeated

this evolution for a total of 15 commonly used antibiotics spanning a wide range of clinically

relevant classes and mechanisms of action (Table 1). After approximately 60 generations,

we isolated a single colony from each population and measured its response to all 15 drugs

using replicate dose-response experiments (Figure 1B). To quantify resistance, we estimated

the half maximal inhibitory concentration (IC50) for each mutant-drug combination using

nonlinear least squares fitting to a Hill-like dose response function (Methods; see Figure S1

for examples). A mutant strain was deemed collaterally sensitive (resistant) to an antibiotic

if its IC50 decreased (increased) by more than 3σWT , where σWT is the uncertainty (standard

error across replicates) of the IC50 measured in the wild-type strain. As a measure of collat-

eral resistance / sensitivity, we then calculate C ≡ log2 (IC50,Mut/IC50,WT ), the (log-scaled)

fold change in IC50 of each mutant relative to wild-type (WT); values of C > 0 indicate

collateral resistance, while values of C < 0 indicate collateral sensitivity (Figure 1C). For
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FIG. 1. Collateral effects are pervasive and vary across parallel evolution experiments in E. faecalis. A. E.

faecalis strain V583 was exposed to increasing concentrations of a single antibiotic over an 8-day serial passage experiment with

daily 200-fold dilutions (≈60 generations total; see Methods). The evolution was performed in quadruplicate for each drug

and repeated for a total of 15 drugs. After 8 days, a single mutant was isolated from each population. B. The half maximal

inhibitory concentration (IC50) for each of 15 drugs was estimated for all 60 mutants by nonlinear fitting of a dose response

curve (relative OD) to a Hill-like function (Methods). C. Main panel: resistance (red) or sensitivity (green) of each evolved

mutant (horizontal axis; 15 drugs x 4 mutants per drug) to each drug (vertical axis) is quantified by the log2-transformed

relative increase in the IC50 of the testing drug relative to that of wild-type (V583) cells. While the color scale ranges from

a 4x decrease to a 4x increase in IC50, it should be noted that both resistance to the selecting drug (diagonal blocks) and

collateral effects can be significantly higher. Each column of the heat map represents a collateral sensitivity profile for one

mutant. Bottom panel: enlarged (and rotated) column from main panel. Mutants isolated from replicate populations evolved

to daptomcyin exhibit diverse sensitivity profiles. While all mutants are resistant to the selecting drug (daptomycin), mutants

may exhibit either sensitivity or resistance to other drugs. For example, replicates 1 and 4 exhibit collateral resistance to

ceftriaxone (cef), while replicate 2 exhibits collateral sensitivity and replicate 3 shows little effect.

each mutant, we refer to the set of 15 C values (one for each testing drug) as its collateral

sensitivity profile C̄.

Our results indicate that collateral effects–including sensitivity–are pervasive, with ap-

proximately 73 percent (612/840) of all (collateral) drug-mutant combinations exhibiting

a statistically significant change in IC50. The mutants in our study exhibit collateral sen-

sitivity to a median of 4 drugs, with only 3 of the 60 mutants (5 percent) exhibiting no

collateral sensitivity at all; by contrast, mutants selected by ceftriaxone (cef) and fosfomycin

(fos) exhibit particularly widespread collateral sensitivity. Collateral resistance is similarly

prevalent, with only 2 strains failing to exhibit collateral resistance to at least one drug.
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Somewhat surprisingly, 56 of 60 mutants exhibit collateral resistance to at least one drug

from a different class (e.g. all mutants evolved to ciprofloxacin, a DNA synthesis inhibitor,

show increased resistance ceftriaxone, an inhibitor of cell wall synthesis).

In addition, collateral effects can be quite large. For example, we measure 8 instances of

collateral sensitivity where the IC50 decreases by 16 fold or more. We also observe a strong,

repeatable collateral sensitivity to rifampicin when mutants were selected by inhibitors of

cell wall synthesis, an effect that–to our knowledge–has not been reported elsewhere. More

typically, however, collateral effects are smaller than the direct effects to the selecting drug,

with 46 percent (384/840) exhibiting more than a factor 2 change in IC50 and only 7 percent

(61/840) exhibiting more than a factor 4 change.

B. Variation in collateral profiles is correlated with resistance to selecting

drug and prevalence of large collateral effects to testing drug.

Our results also indicate that collateral profiles can vary significantly even when mutants

are evolved in parallel to the same drug (Figure 1C). For example, all 4 mutants selected by

daptomycin exhibit high-level resistance to the selecting drug, but replicates 1 and 4 exhibit

collateral resistance to ceftriaxone (cef), while replicate 2 exhibits collateral sensitivity and

replicate 3 shows little effect (Figure 1C, bottom panel).

To quantify the variation between replicates selected by the same drug, we viewed the

collateral profile of each mutant (i.e. a column of the collateral sensitivity matrix in Figure

1) as a vector in 15-dimensional drug resistance space. Then, for each set of replicates, we

defined the variability V ≡
∑m

i=1 di/m, where m = 4 is the number of replicates and di is the

Euclidean distance between mutant i and the centroid formed by all vectors corresponding

to a given selecting drug (Figure 2A). Variability differs for different selecting drugs, with

daptomycin and rifampicin showing the largest variability and nitrofurantoin the smallest

(Figure 2B). Interestingly, we find that the observed variability is significantly correlated

with average resistance to the selecting drug (Figure S2). This correlation persists even when

one removes contributions to variability from the selecting drug (Figure 2C), indicating that

collateral (rather than direct) effects underlie the correlation. We do note, however, that

selection by spectinomcyin represents a notable exception to this trend.

While resistance to the selecting drug is correlated with profile variability, it is not clear
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FIG. 2. Variation in collateral profiles is correlated with resistance to selecting drug and prevalence of

large collateral effects to testing drug. A. Variability in collateral profiles between mutants selected by the same drug is

defined by first representing each mutant’s collateral profile as a vector C̄ in 15-dimensional drug space. Dimension i represents

the log2-scaled fold increase in IC50 (relative to wild-type) for drug i. The variability for a set of mutants evolved to the same

drug is then given by the average Euclidean distance di for a mutant from the centroid. B. Variability in replicates (defined

in panel A) for all 15 drugs used for selection. C. Scatter plot between the variability calculated in (B)–now with effects of

selecting drug removed–and the (log2-scaled) fold increase in IC50 to the selecting drug (Spearman correlation of 0.58, p = 0.03

including the spc mutants; 0.82, p < 10−3 without the spc mutants.). To remove effects from the selecting drug, variability

is calculated in the 14-dimensional space defined by removing the selecting drug. D. Main panel: heatmap of variance in

resistance level (log2-scaled fold increase in IC50 relative to wild-type) across populations selected by the same drug. Right

panel: mean variance to each selecting drug (mean across rows in heatmap). E. Scatter plot between mean variance (calculated

in D) and the fraction of all mutants exhibiting large collateral effects. A large collateral effect is defined to be a change in

resistance to a non-selecting drug leading to a greater than 2-fold change in IC50 (Spearman correlation 0.84). Inset: expanded

view of main plot. Dashed line: best linear fit (excluding ceftriaxone mutants).
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whether a similar relationship exists between repeatability (across replicates) and certain

testing drugs. To investigate this question, we calculated the variance of C (see Figure 1C)

across replicates for each combination of selecting and testing drug (Figure 2D). We find that

the majority of the variance values are less than 0.5, through rare instances of larger variance

occur. To determine whether variance is related to the drug used for testing, we calculated

the mean variance across all selecting drugs (Figure 2D, right panel). Interestingly, the

average variance for some drugs (most notably ceftriaxone) is considerably higher than for

others (e.g. fosfomycin), and this variance is strongly correlated with the prevalence of

large collateral effects (i.e. the fraction of mutants exhibiting greater than 2-fold change in

IC50). Notably, however, the collateral effects to ceftriaxone and fosfomycin are qualitatively

(direction-wise) almost identical, despite the large differences in magnitude.

Overall, these results suggest that the repeatability of collateral effects is sensitive to

both the drug used for selection and the drug used for testing. As a result, certain drugs

may be more appropriate for establishing robust antibiotic cycling profiles.

C. Collateral Resistance Threatens the Efficacy of Daptomycin

Daptomycin is a lipopeptide antibiotic that is often used as a last line of defense against

gram-positive bacterial infections, including vancomycin resistant enterococcus (VRE).

While daptomycin resistance was initially believed to be quite rare49, it has become increas-

ingly documented in clinical settings50. Given the clinical importance of daptomycin, it is

perhaps surprising that resistance to daptomycin is particularly common when populations

are selected by other antibiotics. Specifically, we found that 66 percent of all evolved lin-

eages display collateral resistance to daptomycin, while only 9 percent of lineages display

collateral sensitivity (Figure 3A).

D. Selection by linezolid leads to higher chloramphenicol resistance than

direct selection by chloramphenicol

Surprisingly, we found that mutants selected by linezolid (lin) developed higher resistance

to chloramphenicol (cam) than mutants selected directly by cam (Figure 3B). To investi-

gate this phenomenon, we isolated linezolid-selected mutants at days 2, 4, 6 and 8 of the
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A B

Resistant
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FIG. 3. Collateral resistance threatens the efficacy of daptomycin and can magnify resistance to chloram-

phenicol. A. Estimated dose response curves (fit to Hill-like function) for all mutants tested against daptomycin. Strains

evolved to daptomycin (blue) and all other drugs (red) frequently exhibit increased resistance to daptomycin relative to wild-

type (black, individual replicates; dotted green line, mean IC50). Right inset: Approximately 66 percent of all drug-evolved

mutants exhibit increased daptomycin resistance, while only 9 percent exhibit collateral sensitivity. B. Fractional change in

chloramphenicol (cam) IC50 for mutants evolved to linezolid (blue). The width of the green line represents the confidence

interval (± 3 standard errors of the mean measured over 8 replicate measurements) for the (normalized) choramphenicol IC50

in wild-type cells. For comparison, the red lines represent the final (day 8) cam resistance achieved in populations evolved

directly to cam. Inset: Schematic depicting two paths to different cam resistance maximums. The green circle represents the

sensitive wild-type. Evolution can occur to cam directly (red line) or to cam collaterally through lin resistance (blue line). The

lin evolution depicts early collateral sensitivity before ultimately achieving a higher total resistance.

laboratory evolution and measured the resistance of each to chloramphenicol. Interestingly,

we see that early-stage (days 4-6) mutants exhibit low level chloramphenicol sensitivity just

prior to a dramatic increase in collateral resistance around day 8. These findings suggest

linezolid selection drives the population across a chloramphenicol fitness valley, ultimately

leading to levels of resistance that exceed those observed by direct chloramphenicol selec-

tion (Figure 3B, inset). While temporally dynamic collateral responses have been recently

measured in cancer43,51, this represents, to our knowledge, the first evidence of temporally

dynamic collateral responses in bacteria.
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FIG. 4. Hierarchical clustering of collateral sensitivity profiles partitions mutants into groups selected by

known drug classes A. Each circle represents a single mutant. Color depicts drug used for selection. Low-level clustering

is largely characterized by grouping of mutants evolved to the same drug (i.e. replicate evolution experiments). However, in

several cases mutants selected by one drug (e.g. tigecycline, Tig) cluster with mutants selected by a different drug (doxycycline,

Dx) of the same class. B. At later stages of clustering, mutants evolved to drugs from a similar class–or with similar mechanisms

of action– tend to cluster together.

E. Sensitivity profiles cluster into groups based on known classes of selecting

drug

Our results indicate that there is significant heterogeneity in collateral sensitivity pro-

files, even when parallel populations are selected on the same antibiotic. While the genetic

networks underlying these phenotypic responses are complex and, in many cases, poorly

understood, one might expect that selection by chemically or mechanistically similar drugs

would lead to profiles with shared statistical properties. For example, previous work showed

(in a different context) that pairwise interactions between simultaneously applied antibiotics

can be used to cluster drugs into groups that interact monochromatically with one another;

strikingly, these groups correspond to known drug classes52, highlighting statistical structure

in drug interaction networks that appear, on the surface, to be extremely heterogeneous.

Similarly, we asked whether collateral sensitivity profiles can be used to cluster resistant mu-
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tants into statistically similar classes. To answer this question, we performed hierarchical

clustering on collateral sensitivity profiles for all mutants (52 total) that achieved high-level

resistance (at least a mean 2-fold increase in IC50) to the selecting drug (Methods; note that

we excluded mutants selected by Cam and Nitro, which did not achieve high-level resistance,

but we repeated the analysis with those drugs included in Figure S3). Initially, mutants se-

lected by the same drugs or by drugs within the same drug class (e.g. Dox and Tet, Dox

and Tig, Lev and Cip, etc) cluster together (Figure 3A; Figure S4 for dendograms), Strik-

ingly, despite the heterogeneity in collateral profiles, the clustering eventually partitions

mutants into groups characterized–almost exclusively–by selecting drugs from established

drug classes. For example, inhibitors of cell wall synthesis (amp, ceft, fos, ox) cluster into

one group, while tetraclycine-like drugs (tet, dox, tig) cluster into another. At the same

time, this analysis does separate some drugs with similar mechanisms (e.g. tetracycline

and spectinomycin, both of which target the 30S ribosomal subunits), and it therefore may

help identify mechanistically similar drugs likely to generate statistically distinct sensitivity

profiles.

F. A Markov decision process (MDP) model predicts optimal drug policies

Our results indicate that collateral sensitivity is pervasive, and while collateral sensitivity

profiles are highly heterogeneous, clustering suggests the existence of statistical structure in

the data. Nevertheless, because of the stochastic nature of the sensitivity profiles, it is not

clear how to best utilize this information to design optimal treatment protocols. To address

this problem, we develop a simple mathematical model based on a Markov decision process

(MDP) to predict optimal drug cycles. MDP’s are widely used in applied mathematics

and finance and have a well-developed theoretical basis53. In a MDP, a system transitions

stochastically between discrete states. Each state is assigned a particular “cost” (or value),

and at each time step, we must make a decision (called an “action”) that potentially influ-

ences which state will occur next. The goal of the MDP is develop a policy–a set of actions

corresponding to each state–that will optimize some objective function (e.g. minimize the

expected cost) over some time period.

For our system, the state sti at time step ti = 0, 1, 2, ... is defined by the collateral

sensitivity profile C̄ describing the current (mutant) population as well as the current drug,
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FIG. 5. Drug sequences can be chosen to maximize collateral sensitivity over different timescales. A. Schematic:

markov decision process (MDP) for maximizing collateral sensitivity. The state sti at time step ti is defined by the sensitivity

profile of the current mutant and the current drug. The action ati that determines the drug at the next time step. The system

transitions between states according to the conditional probability P (sti+1|sti , ati ), which is estimated from lab evolution

experiments (e.g. Figure 1). The cost function rti at time ti is either -1, 0, or 1 depending on whether the sensitivity

profile shows sensitivity, no effect, or resistance, respectively, to the current drug. The optimal policy Π is chosen to minimize

R(s) ≡ 〈
∑∞

ti=0 γ
tirti 〉, where brackets indicate an expectation value conditioned on the initial state s0 and the choice of policy

Π. The parameter 0 ≤ γ < 1 is a discount factor that determines the timescale for the optimization. B. Heat map indicates the

probability of collateral sensitivity to the next drug (rows) given a particular selecting drug (columns). Black stars: optimal

short term policy (instant gratification; γ = 0)); blue circles: optimal long-term policy (γ = 0.95). White squares indicate

maximum of each column. C. Left panels: optimal drug cycles, starting from drug 1 (Dap), for long term (upper panel) and

instant gratification (lower panel) strategies. Long-term strategy asymptotically approaches a cycle between drugs 5 (Fos), 8

(Tig), and 9 (Spc); the instant gratification strategy approaches a cycle between drug 2 (Amp), 13 (Rif), and 7 (Dox). Right

panel: mean collateral effects (cumulative) for the long-term strategy (black), instant gratification strategy (blue), and random

drug cycles (red, dashed). The mean (cumulative) collateral effect at time step ti is given by 〈
∑ti

t=0
rt

ti+1
〉, where brackets

indicate an average over 1000 independent simulations of the MDP. Here rt is -1, 0, or 1 if the profile at the current time step

is sensitive to, not affected by, or resistant to the current drug, respectively.
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Dti . As in the previous section, we exclude mutants selected by Cam and Nit, which did

not achieve high-level resistance to the selecting drug and may therefore be preferentially

(and trivially) selected by the optimization algorithm. At each time step, an action ati is

chosen that determines the drug used at the next time step, ati → Dti+1
. The system–which

is assumed to be Markovian–then transitions with probability P (sti+1
|sti , ati) to a new state

sti+1
, and the transition probabilities are estimated from evolutionary experiments (or any

available data). The cost function rti ≡ rti(sti) defines a cost associated with each state

and can be chosen to represent–for example–the level of collateral sensitivity of the current

mutant to the current drug. The optimal policy Π is a mapping Π : sti → ati from each

state to the optimal action (i.e. the optimal next drug). The policy is chosen to minimize

R(s) ≡ 〈
∑∞

ti=0 γ
tirti〉, where brackets indicate an expectation value conditioned on the initial

state s0 and the choice of policy Π. The parameter γ < 1 is a discount factor that determines

the timescale for the optimization; γ ≈ 1 leads to long-time optimal solution, while γ ≈ 0

leads to solutions that maximize near-term success.

To apply the MDP framework to collateral sensitivity profiles, we must infer from our

data a set of (stochastic) rules for transitioning between states (i.e. we must estimate

P (sti+1
|sti , ati)). While many choices are possible–and these choices may be refined as ad-

ditional data is collected–in what follows we consider a simple model where the system can

transition only to a state corresponding to one of the four sensitivity profiles experimen-

tally measured under selection to the current drug Dti (but see Figure S5 and Figure S6

for similar calculations using a model where transitions can occur to any sensitivity profile

with resistance to the current drug). For example, if the current drug is daptomycin, the

sensitivity profile at the next step will be chosen (with uniform probability) to be one of

those measured for the four replicates selected by daptomycin (see Figure 1C, bottom panel).

Each time step is therefore assumed to cover approximately 60 generations, similar to the

evolution time in our experiments. In addition, this model implicitly assumes sufficiently

strong selection that, at each step, the state of the system is fully described by a single

collateral sensitivity profile (rather than, for example, a heterogeneous ensemble of profiles

that would be required to model clonal interference).

To maximize the effect of collateral sensitivity, we first choose the cost function rti to be

-1, 0, or 1 if the profile at the current time step is sensitive to, not affected by, or resistant

to the current drug, respectively. Intuitively, the goal is to reward drug choices that lead to
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sensitivity while punishing those associated with resistance. Interestingly, the drug policy Π

that minimizes R(s) varies significantly depending on the value of γ–that is, on the timescale

of the optimization (Figure 5B). The “instant gratification” policy (γ = 0) optimizes short

term success and therefore tends to maximize the probability of achieving collateral sensi-

tivity at the next time step (Figure 5B, blue circles; Note that because the MDP minimizes

cost rather than maximizing probability of sensitivity, even the short-term solution does

not always maximize the probability of sensitivity at the next step). On the other hand,

the longer term optimization (γ = 0.95) may forgo short-term success for longer-term gain.

For example, if the population is currently exposed to daptomycin, the instant gratification

policy prescribes tetracycline as the next drug, which maximizes the probability of collateral

sensitivity (i.e. all four mutants selected by daptomycin were sensitive to tetracycline). On

the other hand, the long-term optimal policy prescribes rifampicin as the next drug, even

though the probability of sensitivity to rifampicin is lower.

G. Optimal drug cycles depend on timescale for optimization process

Once an optimal policy has been found, one can consider a treatment starting from

any drug and iteratively determine the sequence of drugs that should follow. Consider a

treatment that starts with daptomycin (drug 1). The instant gratification policy leads to

a drug sequence of daptomycin (1), tetracycline (6), ampicillin (2), rifampicin (13), and

doxycyline (7) before settling into a long-term cycle between the latter 3 drugs (Figure 5C,

lower left panel). By contrast, the long-term policy leads to a sequence of daptomycin (1) and

rifampicin (13) before settling into a long-term cycle between spectinomycin (9), fosfomycin

(5), and tigecycle (8) (Figure 5C, upper left panel). To compare the expected results of

both policies, we simulated the MDP and calculated the mean (cumulative) collateral effect

at time step ti, which is given by 〈
∑ti

t=0
rt
ti+1
〉, where brackets indicate an average over 1000

independent simulations of the MDP. While both policies perform significantly better than

random drug cycling, the long-term solution leads to the most collateral sensitivity on longer

time scales, despite performing worse than the instant gratification on the first time step

(Figure 5C, right panel).
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FIG. 6. Maximizing collateral sensitivity values may lead to cycles between drugs without mutual collateral

sensitivity. A. Heat map indicates the mean value (over replicates) of collateral sensitivity to the next drug (rows) given a

particular selecting drug (columns). Black stars: optimal short term policy (instant gratification; γ = 0)); blue circles: optimal

long-term policy (γ = 0.95). Red squares indicate minimum of each column. Note that the scale is much larger than in Figure

1 to highlight large sensitivity values relevant for drug cycles. B. Left panels: optimal drug cycles, starting from drug 1 (Dap),

for long term (upper panel) and instant gratification (lower panel) strategies. Long-term strategy asymptotically approaches a

cycle between drugs 5 (Fos) and 13 (Rif); the instant gratification strategy approaches a cycle between drugs 4 (Cef) and 13

(Rif). Right panel: mean collateral effects (cumulative) for the long-term strategy (black), instant gratification strategy (blue),

and random drug cycles (red, dashed). The mean (cumulative) collateral effect at time step ti is given by 〈
∑ti

t=0
rt

ti+1
〉, where

brackets indicate an average over 1000 independent simulations of the MDP. Here rt is the value C of collateral sensitivity or

resistance to the current drug.

H. Optimal cycles do not always involve drugs with mutual collateral

sensitivity

The cost function in the previous section was chosen to reward collateral sensitivity

and punish collateral resistance, but it did not account for the magnitude of the effects. To

incorporate these magnitudes, we repeated the MDP analysis with rti chosen to be the value

C of the collateral profile against the current drug. As before, the instant gratification (γ =

0) strategy led to a different policy and, in turn, to different optimal cycles than the long-

term optimization (γ = 0.95). While the instant gratification strategy leads to a long-term

cycle between drugs with–on average–mutual collateral sensitivity (Figure 6; ceft (4) and

rifampicin (13)), the long-term policy involves a cycle between fosfomycin (5) and rifampicin
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(13), despite the fact that mutants selected by rifampicin do not show appreciable collateral

sensitivity to fosfomycin. Intuitively, the long-term optimal makes a single sub-optimal step

(rifampicin→ fosfomycin)–and one that can sometimes lead to collateral resistance– because

the long term cycle between the two drugs is dominated by the large collateral sensitivity

imparted by the reverse step (fosfomycin → rifampicin; Figure 5B, right panel).

III. DISCUSSION

Our work provides an extensive quantitative study of phenotypic collateral drug effects in

E. faecalis. We have shown that collateral resistance and collateral sensitivity are widespread

but heterogeneous, with patterns of collateral effects often varying even between mutants

evolved to the same drug. Our results contain a number of surprising, drug-specific observa-

tions; for example, we observed a strong, repeatable collateral sensitivity to rifampicin when

mutants were selected by inhibitors of cell wall synthesis. Additionally, cross-resistance to

daptomycin, often viewed as a last line of defense for dangerous clinical infections, is par-

ticularly common when cells are selected by other frequently used antibiotics. Because the

FDA/CLSI breakpoint for daptomycin resistance is not dramatically different than the MIC

distributions found in clinical isolates prior to daptomycin use54, one may speculate that

even small collateral effects could have potentially harmful consequences for clinical treat-

ments involving daptomycin. In addition, we found that selection by one drug (linezolid)

led to higher overall resistance to chloramphenicol than direct selection by chlorampheni-

col, illustrating how indirect selection may drive a population across a fitness valley to an

otherwise inaccessible fitness peak.

Our findings also point to global trends in collateral sensitivity profiles. For example,

we found that the repeatability of collateral effects is sensitive to both the drug used for

selection and the drug used for testing, meaning that some drugs may be better than others

for establishing robust antibiotic cycling profiles. On the other hand, despite the apparent

unpredictability of collateral effects at the level of individual mutants, the sensitivity profiles

for mutants selected by drugs from known classes tend to cluster into statistically similar

groups. The clustering also points to systematic differences between phenotypes exhibiting

resistance to some drugs (e.g. tetracycline and spectinomycin) with similar mechanisms

of action; the process therefore provides a powerful functional classification of drugs that
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complements known molecular mechanisms and may, in the long term, inform clinical deci-

sions about drug choices. In addition, clustering may help to characterize sensitivity profiles

of new chemotherapeutic agents even without detailed molecular information on potential

resistance mechanisms. Finally, we show how these profiles can be incorporated into a rig-

orous MDP framework that optimizes drug cycling protocols while accounting for effects

of both stochasticity and different time horizons. Within this framework, cycling protocols

can be tuned to optimize either short-term or long-term evolutionary outcomes, leading to

dramatically different drug sequences.

Our results complement recent studies on collateral sensitivity and also raise a number

of new questions for future work. First, several previous studies have indicated that cycles

involving mutually collaterally sensitive drugs may be chosen to harness collateral sensitiv-

ity and minimize the evolution of resistance38,39. In the context of our MDP model, these

cycles would correspond to a type of short-time-horizon optimization similar to our “instant

gratification” strategy. Interestingly, however, our results indicate that considering longer

time horizons can lead to cycles involving at least one sub-optimal step, including one to a

collaterally resistant state. In addition, recent work has highlighted that collateral profiles

are heterogeneous42,43, and optimization will therefore require incorporation of stochastic

effects such as likelihood scores44. These likelihood scores could potentially inform tran-

sition probabilities in our MDP approach, leading to specific predictions for optimal drug

sequences.

Overall, the success of the approach will rely on robust inference of clinically-relevant

model parameters–such as transition probabilities–and a careful choice of an appropriate

cost function. While in vitro models of pharmacodynamics are often used to inform clinical

protocols, it is not clear that in vivo evolutionary trajectories will mimic, in any way, the

highly controlled evolution in laboratory environments. Nevertheless, while the current

proof-of-principle model is clearly an oversimplification of the evolutionary process, it can

be readily expanded to account for more realistic scenarios and to incorporate more complex

data sets. Most notably, collateral sensitivity profiles in cancer have been previously shown

to be time-dependent43,51; our future work will focus on characterizing dynamic properties

of collateral effects in E. faecalis and expanding the MDP approach to account for time-

varying sensitivity profiles. It may also be interesting to investigate collateral effects in E.

faecalis biofilms, where some classes of antibiotics can have counterintuitive effects even on
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evolutionarily short timescales55. On longer timescales, elegant experimental approaches

to biofilm evolution have revealed that spatial structure can give rise to rich evolutionary

dynamics56,57, though to date, little is known about collateral drug effects in these systems.

Our results also raise questions about the potential molecular and genetic mechanisms

underlying the observed collateral effects. While the clustering analysis presented here may

point to shared mechanistic explanations for sensitivity profiles selected by similar drugs,

uncovering the detailed genetic underpinnings of collateral sensitivity remains an ongoing

challenge for future work. At the same time, because our results are based on phenotypic

measurements, they may allow for systematic optimization of drug cycling protocols even

when molecular mechanisms are not fully known.

IV. MATERIALS AND METHODS

A. Strains, antibiotics and media

All resistant lineages were derived from E. faecalis V583, a fully sequenced vancomycin-

resistant clinical isolate58. The 15 antibiotics used are listed in Table 1. Each antibiotic was

prepared from powder stock and stored at -20◦C with the exception of ampicillin, which

was stored at -80◦C. Evolution and IC50 measurements were conducted in BHI medium

alone with the exception of daptomycin, which requires an addition of 50 mM calcium for

antimicrobial activity.

B. Laboratory Evolution Experiments

Evolution experiments to each antibiotic were performed in quadruplicate. Evolutions

were performed using 1 mL BHI medium in 96-well plates with maximum volume 2 mL. Each

day, populations were grown in at least three different antibiotic concentrations spanning

both sub- and super-MIC doses. After 16-20 hours of incubation at 37◦C, the well with

the highest drug concentration that contained visual growth was propagated into 2 higher

concentrations (typically a factor 2x and 4x increase in drug concentration) and 1 lower

concentration to maintain a living mutant lineage (always half the concentration that most

recently produced growth). A 1/200 dilution was used to inoculate the next day’s evolution

plate, and the process was repeated for a total of 8 days of selection. On the final day of
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TABLE I. Table of antibiotics used in this study and their targets.

Drug Name (abbreviation) Drug Class Mechanism of Action

Daptomycin (Dap) Lipopeptide Cell membrane insertion

Ampicillin (Amp) B-lactam Inhibits cell wall synthesis

Oxacillin (Ox) B-lactam Inhibits cell wall synthesis

Ceftriaxone (Cef) B-lactam Inhibits cell wall synthesis

Fosfomycin (Fos) Fosfomycin Inhibits cell wall synthesis

Tetracycline (Tet) Tetracycline 30S protein synthesis inhibitor

Docycycline (Dox) Tetracycline 30S protein synthesis inhibitor

Tigecycline (Tig) Tetracycline 30S protein synthesis inhibitor

Spectinomycin (Spc) Aminoglycosides 30S protein synthesis inhibitor

Linezolid (Lin) Oxazolidinone 50S protein synthesis inhibitor

Chloramphenicol (Cam) Amphenicol 50S protein synthesis inhibitor

Ciprofloxacin (Cip) Quinolone DNA gyrase inhibitor

Levofloxacin (Lev) Quinolone DNA gyrase inhibitor

Nitrofurantoin (Nit) Nitrofuran Multiple mechanisms

Rifampicin (Rif) Rifamycin RNA polymerase inhibitor

evolution all strains were stocked in 30 percent glycerol. Strains were then plated on a pure

BHI plate and a single colony was selected for IC50 determination. In the case of linezolid

mutants, days 2, 4, and 6 were also stocked for further testing.

C. Measuring Drug Resistance and Sensitivity

Experiments to estimate IC50 were performed in replicate in 96-well plates by exposing

mutants to a drug gradient consisting of 6-14 points–one per well–typically in a linear dilution

series prepared in BHI medium with a total volume of 205 uL (200 uL of BHI, 5 uL of

1.5OD cells) per well. After 20 hours of growth the optical density at 600 nm (OD600) was

measured using an Enspire Multimodal Plate Reader (Perkin Elmer) with an automated 20-

plate stacker assembly. This process was repeated for all 60 mutants as well as the wild-type,
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which was measured in replicates of 8.

The optical density (OD600) measurements for each drug concentration were normalized

by the OD600 in the absence of drug. To quantify drug resistance, the resulting dose

response curve was fit to a Hill-like function f(x) = (1 + (x/K)h)−1 using nonlinear least

squares fitting, where K is the half-maximal inhibitory concentration (IC50) and h is a Hill

coefficient describing the steepness of the dose-response relationship. A mutant strain was

deemed collaterally sensitive (resistant) to an antibiotic if its IC50 decreased (increased) by

more than 3σWT , where σWT is the uncertainty (standard error across replicates) of the IC50

measured in the wild-type strain.

D. Hierarchical clustering

Hierarchical clustering was performed in Matlab using, as input, the collateral profiles

C̄ for each mutant. The distance between each pair of mutants was calculated using a

correlation metric (Matlab function pdist with parameter ‘correlation’), and the linkage

criteria was chosen to be the mean average linkage clustering.

E. Markov decision process (MDP) model

The MDP problem was solved using standard algorithms for MDP models. Briefly, the

optimization was performed by first computing the optimal value (or cost) function–the

optimal value (cost) corresponding to each state–using the well-established value iteration

algorithm53. Given the optimal value (cost) function, the optimal policy is then given by

the action that minimizes the optimal value (cost) function at the next time step.
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