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1	

Abstract 1	

 Plants obtain elements from the soil through genetic and biochemical pathways responsive 2	

to physiological state and environment. Most perturbations affect multiple elements which leads 3	

the ionome, the full complement of mineral nutrients in an organism, to vary as an integrated 4	

network rather than a set of distinct single elements. To examine the genetic basis of covariation 5	

in the accumulation of multiple elements, we analyzed maize kernel ionomes from Intermated 6	

B73 x Mo17 (IBM) recombinant inbred populations grown in 10 environments. We compared 7	

quantitative trait loci (QTL) determining single-element variation to QTL that predict variation 8	

in principal components (PCs) of multiple-element covariance. Single-element and multivariate 9	

approaches detected partially overlapping sets of loci. In addition to loci co-localizing with 10	

single-element QTL, multivariate traits within environments were controlled by loci with 11	

significant multi-element effects not detectable using single-element traits. Gene-by-environment 12	

interactions underlying multiple-element covariance were identified through QTL analyses of 13	

principal component models of ionome variation. In addition to interactive effects, growth 14	

environment had a profound effect on the elemental profiles and multi-element phenotypes were 15	

significantly correlated with specific environmental variables.  16	

Author Summary 17	

A multivariate approach to the analysis of element accumulation in the maize kernel 18	

shows that elements are not regulated independently. By describing relationships between 19	

element accumulation we identified new genetic loci invisible to single-element approaches. The 20	

mathematical combinations of elements distinguish groups of plants based on environment, 21	

demonstrating that observed variation derives from interactions between genetically controlled 22	

factors and environmental variables. These results suggest that successful application of 23	
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ionomics to improve human nutrition and plant productivity requires simultaneous consideration 24	

of multiple-element effects and variation of such effects in response to environment. 25	

Introduction 26	

 Elements are distinct chemical species, and studies of element accumulation frequently 27	

investigate each element separately. There is overwhelming evidence, however, that element 28	

accumulations covary due to physical, physiological, genetic, and environmental factors. In a 29	

dramatic example in Arabidopsis thaliana, a suite of elements responds to Fe deficiency in such 30	

a concerted manner that they can be used to predict the deficiency or sufficiency of Fe for the 31	

plant more accurately than the measured level of Fe in plant tissues [1]. The basis of this 32	

covariation can be as simple as co-transport of multiple elements. IRT1 is a metal transporter 33	

capable of transporting Fe, Zn, and Mn. IRT1 is upregulated in low Fe conditions resulting in an 34	

environmentally-dependent link between Fe and other ions [2]. Other pairs of co-regulated 35	

elements, such as Ca and Mg, which have been shown to exhibit shared genetic regulatory 36	

networks in Brassica oleracea [3], should be affected identically, or predictably, by genetic 37	

variation. When A. thaliana recombinant inbred line populations were grown in multiple 38	

environments, genetic correlations among Li-Na, Mg-Ca, and Cu-Zn were observed across all 39	

environments while Ca-Fe and Mg-Fe were only correlated in a subset of environments [4]. 40	

Shared genetic control of ion transport without substantial environmental responsiveness should 41	

result in the former pattern, along with significantly less capacity for homeostasis across 42	

environmental concentrations and availabilities of elements. Environmentally-responsive 43	

molecular mechanisms, reminiscent of IRT1 upregulation, could result in environmentally-44	

variable patterns of correlations. Baxter et al. previously tested element seed concentrations for 45	

correlations in the maize Intermated B73 x Mo17 (IBM) recombinant inbred population, finding 46	
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several correlated element pairs, the strongest of which was between Fe and Zn [5]. Yet, few 47	

QTL impacting more than one element were found, likely due to effects on multiple elements 48	

being below the threshold of observation when mapping on single element traits with limited 49	

numbers of lines. These observations indicate that, while understanding the factors driving 50	

individual element accumulation is important, we must consider the ionome as a network of co-51	

regulated and interacting traits [6]. We propose that formally considering this coordination 52	

between elements can provide deeper insight than focusing on each element in isolation. 53	

 Multivariate analysis techniques, such as principal components analysis (PCA), can reduce 54	

data dimension and summarize covariance of multiple traits as vectors of values by minimizing 55	

the variances of input factors to new components. When multiple phenotypes covary, as occurs 56	

for the elements in the ionome, this approach may complement single element approaches by 57	

describing trait relationships. In studies on crops such as maize, PCA has been used as a strategy 58	

to consolidate variables that may be redundant or reflective of a common state [7–9]. PCA has 59	

proved useful in previous QTL mapping efforts, facilitating detection of new PC QTL not found 60	

using univariate traits in analyses of root system architecture in rice [10] and kernel attributes, 61	

ear architecture, and enzyme activities in maize [11–13]. In the current study, we expect that 62	

elemental variables are functionally related and therefore need new traits to describe elemental 63	

covariation. Since we do not know the exact nature of these relationships, and the ionome varies 64	

depending on environment, PCA is useful in that it does not require a priori definition of 65	

relationships between variables. If the PCA approach leads to novel loci and insights into how 66	

the ionome is functioning, it will be a valuable addition to the study of mineral nutrient 67	

regulation. 68	
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  Here we show that developing multivariate traits reveals environmental and genetic 69	

effects that are not detected using single elements as traits. We performed PCA on element 70	

profiles from the maize IBM population [14] grown in 10 different environments. Different 71	

relationships between elements were identified that depended on environment. QTL mapping 72	

using multi-element PCs as traits was carried out within each environment separately. 73	

Comparing these multivariate QTL mapping results to previous QTL analyses of the same data 74	

using each single element as traits for QTL analysis [15] demonstrates that a multivariate 75	

approach uncovers unique loci affecting multi-element covariance. Additionally, an experiment-76	

wide PCA performed on combined data from all environments produced components capable of 77	

separating lines by environment based on their whole-ionome profile. These experiment-wide 78	

factors, while representative of environmental variation, also exhibited a genetic component, as 79	

loci affecting these traits were detected through QTL mapping.  80	

Results 81	

Summary of Data Collection and Previous Analysis of Single Element Traits 82	

We previously acquired data on 20 elements measured in the seeds from Zea mays L. 83	

Intermated B73 x Mo17 recombinant inbred line (IBM) populations [14] grown in 10 different 84	

location/year settings [15]. This work is briefly summarized here as it serves as the basis of our 85	

comparison. The kernels came from RILs of the IBM population cultivated across six locations 86	

and five years. Quantification of the accumulation of 20 elements in kernels was done using 87	

inductively coupled plasma mass spectrometry (ICP-MS). Weight-adjusted element 88	

measurements were used for a QTL analysis to detect loci contributing to variation in seed 89	

element contents [15]. The current study is motivated by previous demonstrations of elemental 90	

correlations and mutant phenotype analyses which indicate extensive relationships between 91	
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elements [1, 4]. To explore this formally, we further analyzed these data from a multiple-element 92	

perspective. 93	

Element to Element Correlations 94	

 Several elements were highly correlated across the dataset, exhibiting pairwise 95	

relationships among lines in a given environment that passed a conservative Bonferroni 96	

correction for multiple tests. We detected 209 pairs of elements that were genetically correlated 97	

out of 1,900 possible correlations across environments (190 pairs per environment). We expect 98	

that evidence of robust genetic control would be provided by repeated observation of trait 99	

correlations in multiple environments. Of the six locations included in this experiment, we 100	

obtained data from three locations (FL, IN, and NY) from plant material grown in two different 101	

years. Seven element-pairs were correlated in five or more of these six environments: Mn and 102	

Mg, Ca and Sr, S and P, K and P, P and Mg, S and Mg, and Fe and Zn (Fig 1). Other element-103	

pair correlations were driven by the genetic variation of the IBM in fewer environments. For 104	

example, Mn and P were correlated in FL05, NY05, and NY12 (rp = 0.50, 0.48, 0.51) but were 105	

not significantly correlated in FL06, IN09, or IN10 (rp = 0.31, 0.20, 0.18). Thus, while some 106	

correlations exist in multiple years and multiple locations, element correlations were affected by 107	

both location and year.  108	

In our previous single-element QTL analysis of these data, loci comprising QTL for two 109	

or more different elements were detected (Table 1). This shared genetic control of multiple 110	

elements was readily apparent in the trait correlations calculated within environments, as five of 111	

the nine shared-element QTL exhibited corresponding element pair correlations within the given 112	

environment. For example, phosphorous, which was in three of the seven most reproducible 113	

element-pair correlations, exhibited the highest incidence of shared QTL with other elements. 114	
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These included shared QTL between P accumulation and all three of the reproducibly P-115	

correlated elements: S and the cations K and Mg. In addition, P was affected by the only QTL 116	

shared between more than two elements, which affected P, S, Fe, Mn, and Zn accumulation in 117	

NY05 (Fig 2). Consistent with the possibility of variation in transport processes affecting 118	

element accumulation correlations, shared QTL were frequently found between elements with 119	

similar structure, charge, and/or type, such as Ca and Sr or Fe and Zn. These element correlations 120	

and post-hoc comparisons of shared QTL localizations suggest a genetic basis for covariance of 121	

the ionome in the RIL population.  122	

Table 1. QTL Affecting Variation for Multiple Elements in the Same Environment. 123	

 124	

†Average position 125	

Principle Components Analysis of Covariance for Elements in the Ionome  126	

To better describe multi-element correlations and thereby detect loci controlling 127	

accumulation of two or more elements, we derived summary values representing the covariation 128	

of several elements. We implemented an undirected multivariate technique, principal 129	

components analysis (PCA), for this purpose. PCA reduced correlated elements into principal 130	

components (PCs), orthogonal variables that account for variation in the original dataset, each 131	

having an associated set of rotations (also known as loadings) from the input variables. After 132	

removing elements prone to analytical artifacts, PCA was conducted using the remaining 16 133	

elements from each of the 10 environments separately. This produced 16 principal components 134	

Environment Chr Pos (cM) 

† 
El 1 El 2 El 3 El 4 El 5 

NY05 1 400 Mn Ni --- --- --- 
NY05 3 323 Sr Ca --- --- --- 
NY05 5 201 Mn Zn P S Fe 
NY06 1 532 Mn Mg --- --- --- 
IN09 4 306 Fe K --- --- --- 
IN10 2 213 Mo Cd --- --- --- 
NY12 5 203 Zn Fe --- --- --- 
FL05 1 230 B Mn --- --- --- 
FL05 4 159 Fe Zn --- --- --- 
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in each environment (S1 Fig) of which we retained for further analysis only PCs representing 135	

more than 2% of the total variation. This resulted in as few as 11 and as many as 15 PCs 136	

depending on environment.  137	

Remarkably, there is substantial overlap in the loadings of many elements in the first and 138	

second PCs across some environments, suggesting a reproducible effect of genetic variation on 139	

the ionome in these environments (Fig 3). Additionally, the loadings of elements are consistent 140	

with the pair-wise relationships observed in the element-by-element correlations. For example, 141	

Ca and Sr frequently load PCs in a similar direction. The PC loadings derive from inputs of 142	

several elements to a single PC variable. All retained PCs in all 10 environments have a loading 143	

contribution of at least .25 in magnitude from two or more elements. While some patterns existed 144	

across environments, many PC loadings differed in both magnitude and direction according to 145	

environment, suggesting instability of element-pair correlations across the environments. As 146	

these PCs were separately calculated in each environment, we compared PC traits from different 147	

environments. We used correlation tests of element loadings in PCs to identify PCs from 148	

different environments that were constructed from similar relationships. Because loading 149	

direction is arbitrary, both strong positive and strong negative correlations were examined. 52 150	

pairs of PCs exhibited loadings correlations with a Pearson correlation coefficient greater than 151	

0.75 or less than -0.75 (S2 Fig). Thus, the PC analyses produced pairs of correlated PCs in 152	

different locations that, while not necessarily recovered in the same order, derived from similar 153	

patterns of elemental variation.  154	

QTL Mapping of Ionomic Covariance Components  155	

The PCs from each environment were used as traits for QTL detection. Stepwise QTL 156	

mapping using these derived traits yielded 93 QTL that exceeded an estimated statistical 157	
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threshold of a=0.05 from within-environment permutations (Fig 4C). 56 of these QTL affecting 158	

multiple-element covariance components overlapped with previously detected single-element 159	

QTL in the same environment [15] (Fig 4A). In some cases, two or more PC traits within an 160	

environment resolved to one single-element QTL. This was observed particularly for elements 161	

with strong effect QTL, such as Mo, Cd, and Ni. For example, in IN10, PC2 and PC10 both have 162	

QTL that co-localize with the Cd QTL on chromosome 2. Likewise, in NY05, PC3, PC5, PC6, 163	

and PC9 all detect a QTL coinciding with the large-effect Ni QTL on chromosome 9. These PCs 164	

within a single environment all have varying levels of Ni contribution, as well as varying levels 165	

of contribution from other elements. Although the relationship among elements described by 166	

each PC is distinct, the same single-element locus can be detected due to that locus affecting an 167	

element that is present within each set of relationships. This repeated detection of the same 168	

locations contributes to the higher number and proportion of detected PC QTL that were shared 169	

with element QTL (56/93) than element QTL that were shared with PC QTL (18/79), although 170	

the same genomic locations underlie this overlap. 37 PC QTL were detected at loci not seen 171	

using single element traits, demonstrating that PC traits can outperform single element data for 172	

the detection of shared genetic control of correlated characters. For instance, two PC5 QTL from 173	

the NY06 growout were located on chromosome 1 at positions distinct from any elemental QTL 174	

(Fig 4B). QTL mapping on single elements may not have the power to detect loci with small 175	

coordinate effects on several elements. So as to not inflate PC-specific QTL, they are defined 176	

here as QTL greater than 25 cM away from any elemental QTL in the same environment.  177	

PC QTL analysis captured previously observed single-element QTL shared between 178	

elements within a particular environment. Of the nine loci affecting variation for multiple 179	

elements in the same environment (Table 1), four loci also impact variation for a PC trait in that 180	
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environment (Table 2). For example, in NY05, a QTL for PC1 overlaps the QTL that was 181	

detected in the single element analyses of P, S, Fe, Mn, and Zn on chromosome 5 (Fig 2). The 182	

PC QTL in this case was as strong as the association between the locus and Fe accumulation and 183	

more significant than the P, S, Mn, and Zn elemental QTL. Thus, QTL mapping a multi-element 184	

PC was as strong as the best single-element approach for previously detected QTL. For traits that 185	

cause variation in multiple elements, such as root structure, the PC approach may be preferable 186	

to single elements, particularly in cases where single element changes are of small effect or 187	

below detection limits while concerted changes to multiple elements display a larger effect. 188	

Table 2. QTL for Multiple Elements and PC(s) in the Same Environment. 189	

 190	

†Average position of element QTL, PC QTL are within 5 cM 191	

We compared PCs from different environments and looked for overlapping QTL among 192	

PCs in different environments with correlated loadings. Of the 52 PC pairs with correlated 193	

loadings, 37 had no QTL for one or both of the PCs, consistent with a shared environmental 194	

factor variable in those fields as the basis of that variation. Of the remaining 15 pairs with at least 195	

one QTL detected for each member of the pair, PCs in five pairs had shared QTL. In all five 196	

cases, the QTL shared between these pairs of PCs correspond to a large-effect single-element 197	

QTL. Six PC traits belonging to three correlated pairs, PC4 in NY05 and PC6 in IN09 (rp = 198	

0.81), PC4 in FL05 and PC3 in NY05 (rp = –0.84), and PC3 in IN10 and PC2 in NC06 (rp = 199	

0.89), detected a QTL coinciding with a Mo QTL, a locus on chromosome 1 encoding the 200	

Environment Chr Pos (cM) 

† 
Elements PC(s) 

NY05 1 400 Mn, Ni PC11 
NY05 3 323 Sr, Ca -- 
NY05 5 201 Mn, Zn, P, S, Fe PC1 
NY06 1 532 Mn, Mg -- 
IN09 4 306 Fe, K -- 
IN10 2 213 Mo, Cd PC2, PC4 
NY12 5 203 Zn, Fe PC7 
FL05 1 230 B, Mn -- 
FL05 4 159 Fe, Zn -- 
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ortholog of the A. thaliana MOT1 molybdenum transporter. The same scenario exists for PC2 in 201	

IN09 and PC2 in NY05 (rp = –0.78), both affected by the QTL on chromosome 2 that had a 202	

strong effect on Cd in our single-element QTL mapping experiments. Finally, PC8 in NC06 and 203	

PC5 in NY05 (rp = 0.76) both map to a large-effect Ni QTL. Despite the resolution to QTL 204	

detected in a single-element analysis, in all of these cases correlations between loadings were not 205	

driven by a single element, but rather by similar loadings for most elements (S2 Fig). In addition 206	

to overlaps at these strong-effect single element QTL, 6 other pairs of correlated PCs have QTL 207	

that do not overlap. Correlated PCs with QTL at different chromosomal positions in different 208	

environments could be due to states, such as increased root system volume or iron deficiency, 209	

that may arise from distinct processes in each environment yet can generate a consistent 210	

physiological response. In these cases, the ionome displays similar trait covariance but different 211	

genetic architecture consistent with genotype by environment interactions. 212	

The PC approach also detected a QTL that was found for different single elements 213	

depending on environment. The same locus on chromosome 7 encoded QTL for three different 214	

elements, Cu, K, and Rb, each in a different environment. K and Rb are chemical analogs. 215	

Failure to detect this QTL as affecting both elements in the same environment may simply 216	

indicate the poor power to detect all QTL, resulting in false negative results. It is less likely, but 217	

possible, to result from incorrect assessment of a shared genetic basis due to fortuitous linkage of 218	

multiple loci. Using the PC traits, we detected QTL at this position in these same three 219	

environments and a fourth environment. Thus, PCs can provide an improved estimate for the 220	

genetic effect on phenotypic variance for multi-element traits. In SA10, no QTL were mapped 221	

for Cu, Rb, or K alone. Yet, this locus was detected as significantly affecting variation in PC9 222	

calculated from SA10, the loadings of which show a strong contribution from Cu and Rb.  223	
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The identification of both unique and previously observed QTL through this multivariate 224	

approach demonstrates the complementary nature of working with trait covariance as well as the 225	

component traits and supports previous work showing that elemental traits are mechanistically 226	

interrelated. The repeated finding of results consistent with GxE led us to investigate this 227	

formally. 228	

QTL by Environment Interactions 229	

 Our prior analyses found QTL by environment interactions contributing to accumulation of 230	

single elements [15]. Given element correlations and partially overlapping sets of element and 231	

PC QTL, we expect to detect QTL by environment interactions that impact multi-element traits. 232	

To look at the effects of environment on genetic regulation of multi-element phenotypes, we 233	

conducted another PCA, this time on element concentrations of lines from all environments 234	

combined. If the genetic and environmental variances do not interact, we expect some PCs will 235	

reflect environmental variance and others will reflect genetic variance. However, if the ionome is 236	

reporting on a summation of physiological status that results from genetic and environmental 237	

influences, some PCs calculated from ionomic traits should be both correlated with 238	

environmental factors and result in detectable QTL.  239	

PCA across environments. The covariance between element accumulation data across all 240	

environments was summarized using principal components analysis.  Elements prone to 241	

analytical artifacts (B, Na, Al, As) were removed prior to analysis. 16 across-environment PCs 242	

(aPCs) describing the covariation of the ionome were calculated for every RIL in every 243	

environment.  244	

Out of a concern that the different lines present in each growout unduly influenced the 245	

construction of PCs specific to each environment, we performed the following tests. First, we 246	
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looked at only those locations where two or more growouts were performed, so that location 247	

replication might be considered. Second, to identify a balanced sample set present in all 248	

environments, we identified the lines that were grown in all of these six growouts. PCA of the 16 249	

element measurements was conducted across environments (S3 Fig) and the loadings of each 250	

element into each PC were recorded. Thus, the loadings of the 16 elements in the PCA were 251	

calculated from a set of common genotypic checks distributed within each environment. We used 252	

these loadings to calculate PCA projections (PJs) from all lines in all environments. In this way 253	

we made comparisons of the same calculated values in each environment. We found that the PJs 254	

and aPCs were strongly correlated; PJ1 and aPC1 were nearly identical (rp = .998) and PJs 2–5 255	

correlated with at least one of aPCs 2–5 at rp > .66. The correlations between the loadings from 256	

PJs and aPCs reflected these same patterns. To reduce the incidence of artifacts or overfitting, 257	

aPCs accounting for less than 2% of the total variation were eliminated for further analyses, 258	

leaving seven aPCs.  259	

Growth environment had a significant effect on all aPCs (p < 0.001). The first two aPCs 260	

were highly responsive to the environment (Fig 5). The lines from each environment cluster 261	

together when plotting aPC1 vs aPC2 values, with distinct separation between environments and 262	

years. In order to identify environmental factors responsible for ionome covariance, weather 263	

station and soil data from all environments except SA06 were recovered from databases (see 264	

methods). Correlations were calculated between season-long or quarter-length summaries of 265	

temperature and the aPC values for the nine environments. The weather variables, all 266	

temperature-based, were not correlated with aPCs in many cases, although correlations 267	

exceeding rp = 0.50 were observed for aPCs 2,4, and 5 (Fig 6A). The strongest correlation 268	

observed for aPC1 was with average maximum temperature in the fourth quarter of the growing 269	
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season (rp = 0.35) (Fig 6B) while the highest observed for aPC2 was for average maximum 270	

temperature during the third quarter (rp = 0.58) (Fig 6C). The relatively small number of 271	

environments, substantial non-independence of the weather variables, and likely contribution of 272	

factors other than temperature limit the descriptive power of these correlations.  273	

The lack of particularly strong correlations between the first two aPCs and temperature 274	

variables suggests that other variables, possibly field to field variation in soil composition, 275	

fertilizer application, humidity, or abiotic factors, are likely to have an influence. Correlations 276	

were also calculated between environment averages of the PCs and soil variables (Fig 6D). 277	

While the majority of these features were not found to be highly correlated with aPCs, we did 278	

observe a strong negative correlation between aPC2 and soil pH (rp = –.78) (Fig 6E).  279	

 In order to determine genetic effects on these components, the calculated values for aPC1 280	

through aPC7 were used as traits for QTL analysis in each of the 10 environments. Unlike the 281	

earlier described PCAs done in environments separately, these aPCs are calculated across all 282	

environments and are therefore comparable between environments. QTL mapping detected at 283	

least four loci controlling each aPC and a total of 38 QTL. Nine of these QTL were found in 284	

common across multiple environments and 29 were only detected in a single environment (Fig 285	

7). Of the aPC QTL, the highest LOD score QTL were present in multiple environments and 286	

corresponded to the locations of the two strongest single element QTL previously detected from 287	

the same data (Mo on chromosome 1 and Cd on chromosome 2). The detection of QTL, together 288	

with the strong environmental determination of aPCs 1–7, demonstrates that ionomic covariation 289	

results from coordinate environmental and genetic variation.  290	

 Based on the stochastic detection of QTL in only a subset of growth environments, 291	

substantial interaction between the environment aPC QTL is expected. A QTL of particular 292	
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interest is the aPC2 QTL detected for Mo at the ortholog of the MOT1 locus. Previous studies 293	

have demonstrated a connection between pH and molybdenum, with Mo availability in soil being 294	

increased by high pH. It was found that the MOT1 locus in A. thaliana determines response to 295	

pH changes and resultant changes in Mo availability in an allele-specific manner, suggesting an 296	

adaptive role for variation in MOT1 with respect to soil pH [16]. The correlation between aPC2 297	

and pH was significant and aPC2 identified a QTL coinciding with a Mo QTL suggesting genetic 298	

variation in pH-dependent changes to Mo availability across environments. The loading 299	

magnitude for Mo into aPC2 is 0.21 but Co, Ni, Rb, and Cd contribute even more, with loading 300	

magnitudes of 0.24, 0.46, 0.55, and 0.41, respectively. QTL for aPC2 also overlap with QTL for 301	

Cd and Ni. With aPC2 representing several elements, the correlation with soil pH and overlap 302	

with single element QTL may reflect a multi-element phenotype responding to changes in pH. 303	

Further investigation is needed to molecularly identify the genes underlying aPC QTL, their 304	

biological roles, and their interaction with specific environmental variables.  305	

Discussion 306	

In this study, we demonstrate that multi-trait analysis is a valuable approach for 307	

understanding the ionome. The ionome is a homeostatic system, and effects on one element can 308	

affect other elements [1]. Many biological processes in maize have the potential to impact 309	

several elements. Indirect effects on a suite of elements have been demonstrated for numerous 310	

physiological states. Radial transport of nutrients is controlled in part by endodermal suberin, the 311	

structure and deposition of which can adapt in a highly plastic manner in response to deficiencies 312	

in K, S, Na, Fe, Zn, and Mn, potentially modifying transport of additional elements [17]. Other 313	

examples of indirect effects can be found in Arabidopsis TSC10A mutants with reduced 3-314	

ketodihydrosphinganine (3-KDS) reductase activity. Because 3-KDS reductase is needed for 315	
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synthesis of the sphingolipids that regulate ion transport through root membranes, these mutants 316	

exhibit a completely root-dependent leaf ionome phenotype of increased Na, K, and Rb, and 317	

decreased Mg, Ca, Fe, and Mo [18].  318	

In line with the abundance of concerted element changes seen in ionome mutants, we 319	

detected elemental correlations and QTL that were present for more than one element. 320	

Phosphorous exhibited the greatest number of QTL overlap with other elements, including the 321	

cations K and Mg. Phosphorous is a central nutrient in plant development and regulates other 322	

elements, complexing with cations in the form of phytic acid in maize seeds [19]. Additional 323	

shared QTL included those between Ca and Sr, Mo and Mn, and Zn and Fe. Ca and Sr are 324	

chemical analogs while Zn and Fe regulation have been linked at the physiological and 325	

molecular level [6, 20]. Mo and Mn have roles in protein assimilation and nitrate regulation [21, 326	

22] and exhibit a regulatory relationship [23]. Thus, these shared QTL likely reflect genetic 327	

polymorphisms affecting the activity of multi-element regulatory genes or genetic changes 328	

targeted to a single element with pleiotropic effects on other elements via homeostatic 329	

mechanisms. 330	

The 37 PC-specific loci identify novel loci in maize with the potential to expand our 331	

understanding of the genetic basis of ionome variation. Various biological mechanisms may 332	

drive the detection of these unique PC QTL. For example, the ionome has been shown to exhibit 333	

tissue-dependent, multi-element changes in response to nitrogen availability [24]. A unique PC 334	

QTL could be detected at a nitrogen metabolism gene if variation at that gene confers additive 335	

effects on multiple elements. Variation in genes involved in adaptive responses to drought stress, 336	

soil nutrient deficiencies, or toxic micronutrient levels, can result in covariation among several 337	
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elements without particularly strong effects on a single element [1, 6, 25], making such genes 338	

only identifiable as QTL when working with multivariate traits. 339	

The majority of molecularly identified ionomic mutants have multi-element effects. In 340	

particular, mutants in genes involved in Casparian strip function and associated root-based 341	

element flow, including MYB36 [26], ESB1 [27], and LOTR1 [28], all display pleiotropic effects 342	

on multiple element accumulation in the leaves. In some cases, QTL affecting these traits might 343	

be detected using both single and multi-element approaches, as was the case with the 344	

chromosome 5 QTL we mapped for P, S, Fe, Mn, and Zn, as well as for PC1. However, if the 345	

changes to a suite of elements are small for individual elements or uncontrolled environmental 346	

conditions inflate the magnitude of error in measuring the genetic effects, a multi-ionomic trait 347	

may be a better fit for QTL detection. The fact that we detect both overlapping and unique sets of 348	

element and PC QTL suggests that single and multivariate approaches should be used in concert 349	

to avoid gaps in our understanding of element regulatory networks. The evidence suggests that 350	

some of the most interesting ionome homeostasis genes, including genes that are involved in 351	

environmental adaptation extending beyond the ionome, will be those best detected through 352	

multivariate methods.  353	

In addition to being a tool for understanding the genetics of multi-element regulation, 354	

principal components also reflected environmental variation. An across-environment PCA of all 355	

lines was used to find variables that describe variation between lines among all 10 environments. 356	

The first two across-environment PCs capture most of the variation in the ionome across 10 357	

different growouts, much of which is environmental. This can be seen in the ability of aPC1 and 358	

aPC2 to separate growouts by location and, in some cases, different years within a location. 359	
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Thus, components from a PCA done across environments can capture the impact of environment 360	

on the ionome as a whole.  361	

In our across-environment analysis, to account for different sets of IBM lines within 362	

environments, we tested an approach of projecting loadings from a PCA on a smaller set of lines 363	

onto the full data set. The similarity of the PJs and aPCs led us to conclude that the sampling 364	

effects of having different subsets of lines in each environment had little effect on the trait 365	

covariance estimation. This approach to validate aPCs may be useful in other studies that seek to 366	

connect data from disparate experiments and federate data collected by multiple laboratories. 367	

The method of deriving traits across environments using a small set of genotypic checks opens 368	

up the possibility of using multi-trait correlations across environments to permit very large scale 369	

GxE mapping experiments on data sets not initially intended for this purpose. Retrospective 370	

analysis of data, or further data generation from preexisting biological material present in both 371	

public and private spheres, is enabled by this approach. For example, multiple association panels 372	

have been constructed for trait mapping in maize. Typically, comparison of multi-trait 373	

correlations across different populations is inhibited by our inability to ensure the 1:1 374	

correspondence of traits. By using the subset of lines common to all mapping populations to 375	

create a projection, comparable traits could be reflected onto to full datasets for comprehensive 376	

genetic evaluation and the loci detected in each panel could then be compared, as we have done 377	

here. 378	

PCA on all environments is a way to find variation resulting from environmental factors 379	

that impact multiple elements, for example weather or soil variables. The weather data available 380	

to us for this study was limited to maximum and minimum temperature. We observed the 381	

strongest correlations for aPC1 and aPC2 during the third and fourth quarters of the growing 382	
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season. Because seed filling occurs in the latter part of the season, temperature during this time 383	

could have a pronounced effect on seed elemental composition. However, the lack of striking 384	

correlations between environmental components and the projections and aPCs, environmental 385	

factors other than temperature must be the strongest factors. Information on soil properties 386	

provided insight into a potential driver of the environmental variability captured by aPC2, with a 387	

strong negative correlation between aPC2 and soil pH. Soil pH alters element availability in soil, 388	

and pH differences between locations should result in different kernel ionomes.  389	

QTL were mapped to the aPCs that describe whole ionome variation across 390	

environments. These loci may encompass genes that pleiotropically affect the ionome in an 391	

environmentally-responsive manner. The correlation between aPC2 with pH as well as the 392	

finding of an aPC2 QTL for Mo exemplifies the possibility of using across-environment PCA to 393	

detect element homeostasis loci that respond to a particular environmental or soil variable and 394	

produce a multi-element phenotype. To the extent that these differences are adaptive, these 395	

alleles can contribute to local adaptation to soil environment and nutrient availability. The 396	

identification of aPC QTL indicates that the variation captured by aPCs has both environmental 397	

and genetic components. Our previous study using single element traits found extensive GxE in 398	

this dataset through formal tests, so it is not surprising that we see a large environmental 399	

component as well as genetic factors contributing to variation in the across-environment PCs. 400	

Experiments with more extensive weather and soil data, or carefully manipulated environmental 401	

contrasts, are needed to create models with additional covariates and precisely represent 402	

environmental impacts. This multivariate approach could be especially powerful in studies with 403	

extensive and consistent environmental variable recording, such as the “Genomes to Fields” 404	
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Initiative, where specific environmental variables could be included in QTL models of multi-405	

element GxE. 406	

Conclusions 407	

 Here we have shown that treating the ionome as an interrelated set of traits using PCA 408	

within environments can identify novel loci. PCA across environments allowed us to derive traits 409	

that described both environmental and genetic variation in the ionome.  410	

Methods 411	

Field Growth and Data Collection 412	

Field growth and elemental profile analysis. Lines belonging to the Intermated B73 x Mo17 413	

recombinant inbred (IBM) population [14] were grown in 10 different environments: Homestead, 414	

Florida in 2005 (220 lines) and 2006 (118 lines), West Lafayette, Indiana in 2009 (193 lines) and 415	

2010 (168 lines), Clayton, North Carolina in 2006 (197 lines), Poplar Ridge, New York in 2005 416	

(256 lines), 2006 (82 lines), and 2012 (168 lines), Columbia, Missouri in 2006 (97 lines), and 417	

Ukilima, South Africa in 2010 (87 lines). Elemental analysis was carried out in a standardized 418	

inductively coupled plasma mass spectrometry (ICP-MS) pipeline previously described in detail 419	

[15]. Analytical outlier removal and weight normalization was performed following data 420	

collection as described in our previous analysis of these data. 421	

Computational Analysis 422	

Element correlation analysis. Within environments, 190 Pearson correlation coefficients were 423	

calculated, one for each pair of the 20 measured elements. To control for multiple tests, we 424	

applied a Bonferroni correction at an alpha level of 0.05. Given 190 possible combinations, 425	

correlations with a p-value below 0.05/190 = 0.00026 were regarded as significant.  426	

Principal components analysis of ionome variation within environments. Elements prone to 427	
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analytical error (B, Na, Al, As) were removed before to PC analysis, leaving 16 elements: Mg, P, 428	

S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, Mo, and Cd. In an attempt to summarize the effects 429	

of genotype on covariance of ionomic components, a PCA was done using elemental data for 430	

each of the 10 environments separately. The prcomp function in R with scale = TRUE was used 431	

for PCA on elemental data to perform PCA on the line average element values in an 432	

environment. This function performs singular value decomposition on a scaled and centered 433	

version of the input data matrix, computing variances with the divisor N-1. 16 PCs were returned 434	

from each environment. After removal of PCs accounting for less than 2% of the variance, the 10 435	

sets of PCs were used as traits in QTL analysis. Variance proportions and trait loadings for all 436	

PCs calculated across 10 environments are provided in S1 Table. 437	

QTL Mapping: principal components. QTL mapping was done using stepwise forward-438	

backward regression in R/qtl [29] as described previously for element phenotypes [15]. The 439	

mapping procedure was done for each environment separately, with PC line means for RILs in 440	

the given environment as phenotypes and RIL genotypes as input. The stepwiseqtl function was 441	

used to produce an additive QTL model for each PC, with the max number of QTL allowed for 442	

each trait set at 10. The 95th percentile LOD score from 1000 scanone permutations was used as 443	

the penalty for addition of QTL. The QTL model was optimized using refineqtl for maximum 444	

likelihood estimation of QTL positions. The locations of the PC QTL detected in this study were 445	

compared to the single element QTL from our previous study. Loci were considered distinct if 446	

they were at least 25 cM away from any single element QTL detected in the environment in 447	

which the PC QTL was detected. This serves as a conservative control in order to minimize the 448	

mistaken assessment of novelty for QTL with small changes in peak position. 449	

QTL by environment analysis: PCA across environments. The 16 most precisely measured 450	
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elements were used for an additional principal components analysis. Again, the prcomp function 451	

in R with scale = TRUE was used for PCA on elemental data, however, all 16 element 452	

measurement values in all lines in all of the 10 environments were combined into one PCA. 453	

These PCs are referred to as across-environment PCs (aPCs). The first 7 aPCs explained 93% of 454	

the total covariation of these traits. A linear model was used to test the relationship of 455	

environmental parameters on these aPCs. All seven aPCs were also used for stepwise QTL 456	

mapping by the same method described above. 457	

QTL by environment analysis: Projection-PCA across environments. The sets of lines grown 458	

in each our ten environments were drawn from the same population [14] but different subsets 459	

were grown and harvested in different environments. To achieve common multivariate 460	

summaries for all lines and growouts, we performed an alternative PCA using a smaller set of 461	

common lines. We then projected the loadings from this PCA onto the full dataset, as follows. 462	

First, a PCA was conducted on 16 lines common to six of the 10 environments (FL05, FL06, 463	

IN09, IN10, NY05, NY12). The loadings for each PC from this PCA were then used to calculate 464	

values from full set of lines across 10 environments to generate PCA projections (PJs). These 465	

derived values based on a common-line PCA were compared to previously described aPC values 466	

from the PCA done on all lines at once. Correlations between PJs and aPCs were computed to 467	

compare the outcomes of the two methods. 468	

Weather and soil data collection and analysis. Weather data for FL05, FL06, IN09, IN10, 469	

NC06, NY05, NY06, and NY12 was downloaded from Climate Data Online (CDO), an archive 470	

provided by the National Climatic Data Center (NCDC) through the National Oceanic and 471	

Atmospheric Administration (http://www.ncdc.noaa.gov/cdo-web/). Data were not available for 472	

the South Africa growout. Daily summary data for each day of the growing season were 473	
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tabulated from the weather station nearest to the field location. Weather stations used to obtain 474	

data for each location are indicated in S2 Table. Minimum temperature (in degrees Celsius) and 475	

maximum temperature (in degrees Celsius) were available in each location. With these variables, 476	

average minimum temperature, and maximum temperature were calculated across the 120-day 477	

growing season as well as for 30 day quarters. Growing degree days (GDD) were calculated for 478	

the entire season and quarterly using the formula GDD = ((Tmax + Tmin)/2) – 10.  479	

 Data describing soils from each location were obtained from the Web Soil Survey provided 480	

by the USDA Natural Resources Conservation Service 481	

(http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). A representative area of interest 482	

was selected at the site of plant growth using longitude and latitude coordinates. When an area 483	

contained more than one soil type, a weighted average of measurements from all soil types was 484	

used. The data we downloaded from the Web Soil Survey were: pH, electrical conductivity (EC) 485	

(decisiemens per meter at 25 degrees C), available water capacity (AWC) (centimeters of water 486	

per centimeter of soil), available water supply (AWS) (centimeters), and calcium carbonate 487	

(CaCO3) content (percent of carbonates, by weight). Layer options were set to compute a 488	

weighted average of all soil layers.  489	

 The relationships between the seven experiment wide aPCs and the weather and soil 490	

variables were estimated by calculating Pearson correlation coefficients for the pairwise 491	

relationships. Correlations were also calculated between average element values and soil and 492	

weather variables in each environment. 493	
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Supporting Information 585	

S1 Fig. Variances of Principal Components from PCA within 10 Environments. Eigenvalues 586	
(amount of variation explained) for each PC are shown on the y-axis. Lines are colored by 587	
environment. 588	
 589	
S2 Fig. Loadings of Principal Components from Different Environments. Loadings for each 590	
element are plotted for PCs from different environments. Loadings of PCs plotted on the same 591	
graph are correlated as indicated. PCs shown in (A), (B), and (C) all have a QTL coinciding with 592	
Mo QTL on chromosome 1. PCs shown in (D) have a QTL coinciding with Cd QTL on 593	
chromosome 2. PCs shown in (E) have a QTL coinciding with Ni QTL on chromosome 9. 594	
 595	
S3 Fig. Variances of Principal Components from PCA on Lines from all Environments. 596	
Eigenvalues (amount of variation explained) for each aPC are shown on the y-axis.  597	
 598	
S4 Fig. aPC1 and aPC2 Loadings Biplot. PCA plots showing aPC1 and aPC2 loadings. 599	
Variance explained for each PC is indicated along axes. 600	
 601	
S1 Table. PC Variance Proportions and Loadings Across 10 Environments. 602	
 603	
S2 Table. Weather Station Locations. 604	
 605	
Figure Legends 606	
 607	
Fig 1. Element Correlations Diagrams for Locations with Repeated Measurements. 608	
Pairwise correlations of 20 kernel elements in varying environments, shown for the experiments 609	
within locations having data from multiple years (FL, IN, and NY). Correlations were calculated 610	
as the Pearson correlation coefficient (rp) between concentration values for each element pair. 611	
Significance was evaluated using a Bonferroni correction for multiple tests within each 612	
environment and set at a corrected p value of 0.05. Lines between elements represent significant 613	
pairwise correlations, weighted by strength of correlation. Positive and negative correlations are 614	
represented as solid and dashed lines, respectively. Red lines indicate correlations present in at 615	
least 5 of the 6 environments shown. 616	
 617	
Fig 2. Multiple Element QTL. Stepwise QTL mapping output from the NY05 population for P, 618	
S, Fe, Mn, Zn, and PC1. Position in cM on chromosome 5 is plotted on the x-axis and LOD score 619	
is shown on the y-axis. 95th percentile of highest LOD score from 1000 random permutations is 620	
indicated as horizontal line.  621	
 622	
Fig 3. PCA Plots in Multiple Environments. PCA plots showing PC1 and PC2 loadings in 623	
different years in three locations (FL, IN, and NY). PC1 and PC2 values for each line are plotted 624	
as points and PC1 and PC2 loadings of each element are indicated by blue arrows. The data for 625	
different years for each of three locations, FL, IN, and NY are plotted. The percent of total 626	
variation explained by each PC is labeled on the axes.  627	
 628	
 629	
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Fig 4. Principal Component QTL from 10 environments. PCs were derived from elemental 630	
data separately in each of 10 environments and used as traits for QTL mapping. (A) 172 total 631	
element and PC QTL were mapped. The two boxes represent the 79 and 93 elemental and PC 632	
QTL, respectively. 18 element QTL overlap with PC QTL from the same environment. 56 PC 633	
QTL overlap with element QTL from the same environment. Sets of non-unique QTL are shown 634	
in the center box. QTL unique to elements, 61, and to PCs, 37, are shown outside of the shared 635	
box. (B) QTL mapping output for PC5 from the NY06 population. Position on chromosome 1 is 636	
shown on the x-axis, LOD score is on the y-axis. All significant NY06 element QTL on 637	
chromosome 1 are shown in grey (a = 0.05). Two PC5 QTL, at 169.7 and 271.2 cM, are unique 638	
to PC5 and do not overlap with any elemental QTL. A PC5 QTL at 379.7 cM is shared with a 639	
molybdenum QTL. (C) Significant PC QTL (a = 0.05) for PCs in 10 environments. QTL 640	
location is shown across the 10 chromosomes on the x-axis. Environment in which QTL was 641	
found is designated by color. QTL are represented as dashes of uniform size for visibility. Four 642	
regions highlighted in grey represent the four loci found for multiple PC traits in multiple 643	
environments (> 2). 644	
 645	
Fig 5. PCA Separates Lines by Environment. PC1 and PC2 separate lines by environment. 646	
Points correspond to lines, colored by their environment. (A) Across-environment PC1 vs PC2 647	
values for each line, colored by environment. Percentage of total variance accounted for by each 648	
PC indicated on the axes. (B) Average across-environment PC1 vs PC2 values for all lines in 649	
each environment. 650	
 651	
Fig 6. aPC and Weather Variable Correlations. (A) Heatmap showing Pearson correlation 652	
coefficients (rp) between averaged aPC 1–7 values across environments and averages for 653	
maximum temperature, minimum temperature, and GDD across the growth season and for each 654	
quarter of the season. Red and blue intensities indicate strength of positive and negative 655	
correlations, respectively. (B) Average aPC1 values for 9 environments vs. average maximum 656	
temperature for each environment over the fourth quarter of the growing season. Points colored 657	
by environment. Pearson correlation coefficient is shown within the graph. (C) Average aPC2 658	
values for nine environments vs. average maximum temperature for each environment over the 659	
3rd quarter of the growing season. (D) Heatmap showing correlations between aPCs 1–7 and soil 660	
attributes: pH, electrical conductivity (EC), available water capacity (AWC), available water 661	
storage (AWS), and calcium carbonate (CaCO3). (E) Average aPC2 values vs. pH.  662	
 663	
Fig 7. Across-Environment PCA QTL in 10 Environments. QTL identified for across 664	
environment PCA traits (aPCs 1–7).  (A) Total number of QTL detected for each aPC, colored 665	
by environment. (B) Significant QTL (a = 0.05) for aPCs 1–7. QTL location is shown across 10 666	
chromosomes (in cM) on the x-axis. Dashes indicate QTL, with environment in which QTL was 667	
found designated by color. All dashes are the same length for visibility. 668	
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