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ABSTRACT 21 

High-throughput sequencing (HTS) has the potential to decipher the diversity of T cell 22 

repertoires and their dynamics during immune responses. Applied to T cell subsets such as T 23 

effector and T regulatory cells, it should help identify novel biomarkers of diseases. 24 

However, given the extreme diversity of TCR repertoires, understanding how the sequencing 25 

conditions, including cell numbers, biological and technical sampling and sequencing depth, 26 

impact the experimental outcome is critical to properly use of these data. Here we assessed 27 

the representativeness and robustness of TCR repertoire diversity assessment according to 28 

experimental conditions. By comparative analyses of experimental datasets and computer 29 

simulations, we found that (i) for small samples, the number of clonotypes recovered is 30 

often higher than the number of cells per sample, even after removing the singletons; (ii) 31 

high sequencing depth for small samples alters the clonotype distributions, which can be 32 

corrected by filtering the datasets using Shannon entropy as a threshold; (iii) a single 33 

sequencing run at high depth does not ensure a good coverage of the clonotype richness in 34 

highly polyclonal populations, which can be better covered using multiple sequencing. 35 

Altogether, our results warrant better understanding and awareness of the limitation of TCR 36 

diversity analyses by HTS and justify the development of novel computational tools for 37 

improved modelling of the highly complex nature of TCR repertoires. 38 

 39 

 40 

  41 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 2, 2018. ; https://doi.org/10.1101/242024doi: bioRxiv preprint 

https://doi.org/10.1101/242024


3 
 

INTRODUCTION 42 

Understanding the specificity of T cells involved in immune responses is of utmost 43 

importance in many fields of immunology. T cells are characterised by the expression a 44 

unique T cell receptor (TR), which is clonally generated by somatic rearrangement of the V, D 45 

and J genes belonging to the TR genomic locus during thymic T cell differentiation (Davis and 46 

Bjorkman, 1988). This process leads to the generation of a huge diversity of TR, defining a 47 

repertoire of antigen recognition, the hallmark of the adaptive immune response. 48 

Immunoscope analysis (also called CDR3 spectratyping) has long been the standard 49 

technique for TR repertoire analyses (Boudinot et al., 2008). Although Immunoscope analysis 50 

has been very useful, it misses the key parameters of TR diversity, which include nucleotide 51 

sequence, codon usage, and amino acid composition. High-throughput sequencing (HTS) of 52 

the adaptive immune receptor rearrangements (RepSeq) expressed in a lymphocyte 53 

population now overcomes previous limitations, providing a thorough and multifaceted 54 

measure of diversity (Six et al., 2013). Several studies have already highlighted the feasibility 55 

of HTS for the analysis of TR repertoire diversity in various immune contexts (Bergot et al., 56 

2015; Dash et al., 2017; Dong et al., 2017; Freeman et al., 2009; Glanville et al., 2017; Kuang 57 

et al., 2017; Langerak et al., 2017; Maceiras et al., 2017; Madi et al., 2017; Marrero et al., 58 

2013; Poschke et al., 2016; Sims et al., 2016; Thapa et al., 2015; Thomas et al., 2014). 59 

However, while the amount of information and the depth of analysis provided by this 60 

technique are unprecedented, the representativeness and robustness of the data obtained 61 

remain to be established. 62 

RepSeq is a numbers game (Benichou et al., 2012), particularly dependent on sequencing 63 

depth and therefore on sampling. When monitoring T cell leukaemia or highly expanded 64 

antigen-specific TCRs following an infection, the sampling and depth of sequencing might 65 

not be critical parameters. But things are different when studying TR repertoire diversity in 66 

physiological conditions, when describing the basics of immune repertoire generation and 67 

selection or in immune contexts where subtle or qualitative modifications may be involved 68 

in the pathophysiological outcome, such as in complex infectious diseases (Emerson et al., 69 

2017; Heather et al., 2016; Mariotti-Ferrandiz et al., 2016), autoimmune disorders (Madi et 70 

al., 2014; Marrero et al., 2013, 2016; Pugliese, 2017; Rossetti et al., 2017; Seay et al., 2016; 71 

Zhao et al., 2016) and transplantation follow-up (van Heijst et al., 2013; Lai et al., 2016; Theil 72 
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et al., 2017). However, RepSeq necessarily implies sampling: i) only a fraction of the cells 73 

from peripheral blood or an organ (or a fragment of that organ in humans) is harvested; ii) 74 

only a fraction of the RNA/DNA extracted from these cells is used for sample preparation; 75 

and finally, iii) only a fraction of the library is used for a sequencing run. These different 76 

levels of experimental sampling are likely to affect the observed diversity. 77 

This is a genuine issue described in ecology studies, as “the absence of observation of a 78 

species can be either real or the effect of a subsampling” (Magurran, 2004). Previous studies 79 

showed that the number of clonotypes observed is positively correlated with sampling size 80 

(Madi et al., 2014; Robins et al., 2010; Shugay et al., 2013). This is important, as studies 81 

performed in humans are mostly based on peripheral blood, a compartment that represents 82 

only around 2% of the total T lymphocyte population. Warren et al. (Warren et al., 2009) 83 

compared TR repertoires from two blood samples from the same individual and found a 84 

limited number of shared clonotypes (~ 10%). They concluded that a considerable 85 

proportion of the peripheral blood TR repertoire is unseen when observed randomly (Fisher 86 

et al., 1943; Warren et al., 2009). 87 

The depth of the sequencing is another confounding factor for TR repertoire diversity 88 

studies, since an insufficient number of sequences produced would not adequately assess 89 

the molecular diversity of the sample analysed. To ensure the statistical representativeness 90 

of the data produced with regards to the population of interest, two rules should be 91 

considered (Greiff et al., 2015a): i) the number of sequences produced must be at least 92 

equivalent to the clonal richness of the population of interest; ii) the rarer a clone, the 93 

greater the sequencing depth needed to detect it. Therefore, the RepSeq strategy must be 94 

adapted to the nature of the samples and the biological questions investigated (Bashford-95 

Rogers et al., 2014). 96 

While most studies seek to assess the similarity between the TR repertoires of several 97 

samples, without any knowledge of what level of similarity can be observed at best, it seems 98 

crucial to determine the limits of this approach in order to be able to interpret the data 99 

properly. In this study, we first investigated the impact of the depth of sequencing, in 100 

relation to the size of the population analysed, on the observed TR repertoire diversity. We 101 

found that a small sample size is negatively affected by a too high, yet average in common 102 

practice, sequencing depth, and proposed an analytical approach to recover the “true” 103 
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repertoire diversity. We then questioned the representativeness of a single RepSeq 104 

experiment by multiple sequencing of the same sample and demonstrated that performing a 105 

single sequencing run, even at high depth of sequencing, does not allow exhaustive 106 

observation of the existing clones in a polyclonal population. Finally, we addressed these 107 

experimental biases by computational simulation on RepSeq data reflecting several levels of 108 

clonality and sequencing depth, to have a better assessment of the robustness of the 109 

experimental observations.  110 
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MATERIALS & METHODS 111 

Mice 112 

Eight- to 12-week-old female Balb/C Foxp3-gfp (C.129X1-Foxp3tm3Tch/J) and 24-to 26-113 

week-old male C57Bl/6 Foxp3-GFP mice, both expressing the green fluorescent protein (GFP) 114 

under the promoter of Foxp3 gene, were, respectively, provided by V. Kuchroo, Brigham and 115 

Women’s Hospital, Boston, MA and B. Malissen of the Centre d’Immunologie de Marseille 116 

Luminy (France). All animals were maintained in University Pierre and Marie Curie Centre 117 

d’Expérimentation Fonctionnelle animal facility under specific pathogen-free conditions in 118 

agreement with current European legislation on animal care, housing and scientific 119 

experimentation (agreement number A751315). All procedures were approved by the local 120 

animal ethics committee. 121 

Cell preparation  122 

Fresh total cells from spleen were isolated in PBS1X 3% foetal calf serum (FCS) and stained 123 

for 20 min at 4°C with anti-Ter-119-biotin, anti-CD11c-biotin and anti-B220-biotin antibodies 124 

followed by anti-biotin magnetic beads (Miltenyi Biotec) labelling for 15 min at 4°C. B cells 125 

and erythrocytes were depleted on an AutoMACS separator (Miltenyi Biotec) following the 126 

manufacturer's procedure. Enriched T cells were stained with anti-CD3 APC, anti-CD4 127 

Horizon V500, anti-CD8 Alexa 700, anti-CD44 PE and anti-CD62L efluor 450. 6.105 128 

CD3+CD4+GFP- Teff cells were sorted on a BD FACSAria II (BD Biosciences, San Jose, CA) with 129 

a purity > 99%. Sorted cells were stored in Trizol (Invitrogen) or RNAAquous (Ambion, 130 

Inc/Life Technologies, Grand Island, NY, USA) lysis buffer.  131 

TR library preparation 132 

RNA was extracted following the manufacturer's recommendations and cDNA synthesis was 133 

performed with the Qiagen OneStep RT-PCR kit (Qiagen Inc., Valencia, CA, USA) and mouse T 134 

cell beta receptor (MTBR) primers provided with the mouse iR-Profile kit (iRepertoire Inc., 135 

Huntsville, AL, USA). cDNA was amplified by two rounds of PCR according to the 136 

manufacturer's recommendations. The TR beta library was sequenced using Illumina on a 137 

MiSeqv2 kit. 138 

RepSeq data processing 139 
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Data annotation 140 

The RepSeq fastq files were demultiplexed by iRepertoire Inc. and then annotated using 141 

clonotypeR (Plessy et al., 2015) to identify productive TRB sequences. Clonotypes were 142 

defined as unique combinations of TRBV-CDR3-TRBJ segments.   143 

Sequencing error correction 144 

Annotated sequences were clustered per TRBV-TRBJ combination and similar clonotypes 145 

collapsed as follows: Within each TRBV-TRBJ cluster, the clonotypes observed once 146 

(singletons) were separated from the others to constitute two groups. A Levenshtein 147 

distance was then calculated between the CDR3 peptide sequences of each clonotype of the 148 

two groups. The Levenshtein distance (lev) is a string metric measuring the minimum 149 

number of single-character edits (insertions, deletions or substitutions) required to change 150 

one sequence into another (Levenshtein, 1966). 151 

When comparing the CDR3 peptide sequences of singleton with that of a “non-singleton” 152 

sequences, if levseq1,seq2=1, their respective nucleotide sequences are then compared. If the 153 

two corresponding nucleotide sequences are also distant by 1, the singleton is considered as 154 

erroneous and considered as the "non-singleton" clonotype. 155 

Dataset normalisation 156 

Using the function rrarefy from the Vegan R package (Oksanen et al., 2013), randomly 157 

rarefied datasets were generated to given sample size. The random rarefaction was made 158 

without replacement.  159 

Diversity profiles 160 

Rényi entropy is a generalisation of Shannon entropy, initially developed for information 161 

theory. We applied this mathematical function to clonotype frequencies to assess their 162 

diversity within each dataset. Rényi entropy is function of a parameter α, a strictly positive 163 

real number that differs from 1 and allows the definition of a family of diversity metrics 164 

spanning from (i) the species richness (α=0), which corresponds to the number of clonotypes 165 

regardless of their abundance to (ii) the clonal dominance (α → +∞), corresponding to the 166 

frequency of the most predominant clonotype. For α =1, the Shannon diversity index is 167 

computed. The exponential of the Rényi entropy defines a generalised class of diversity 168 
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indices called Hill diversities, which can be interpreted as the effective number of clonotypes 169 

in the datasets (Hill, 1973) and thereby is used to build a diversity profile. 170 

RepSeq simulation algorithm 171 

A.  2.106 clonotype library construction with the tcR package 172 

Based on the estimated total number of clonotypes in a mouse, a 2.106 TRB CDR3 library was 173 
generated with the tcR package following the probability rules of V(D)J rearrangement 174 
established in Murugan et al. (Murugan et al., 2012): 175 

Ω = {ω1; ω2;... ωΛ}, with Λ = 2.106 176 

_ i, ωi is a clonotype generated by the tcR package 177 

_ i,j, ωi ≠ ωj 178 

 179 

B. Construction of 6.105 sequence datasets following particular Zipf distributions 180 

Based on the demonstration by Greiff et al. (41)  that clonotype frequencies determined 181 
from RepSeq datasets generally follow a Zipf distribution with a particular α ∈ [0, 1] 182 
parameter, we chose to use the Zipf-Mandelbrot law implemented in the zipfR R package 183 
(Evert and Baroni, 2007) to simulate clonotype distributions. The probability density function 184 
used for simulations is given by 185 

 186 

with two free parameters: α ∈ [0, 1] and B ∈ [0, 1] and a normalising constant C. B 187 
corresponds to the probability π1 of the most frequent species (clonotype). 188 

Seven Zipf distributions were generated with the following Zipf parameters:  189 

A (=1/α) ∈ {2, 3, 4, 5, 10, 20, 100} and B=0.2 190 

For each Zipf parameter combination, a list ZA is randomly generated as follows:  191 

ΖΑ = {zΑ,1; zΑ,2;... zΑ,ΝΑ},  192 

with  _ i, zΑ,i ∈ ℝ
+* 193 

 _ i,j, if i≤j then zΑ,i ≥ zΑ,j 194 

   ΝΑ = 2.106 195 

ΖA elements follow a Zipf distribution of A (=1/α) parameter. 196 

A 2 3 4 5 10 20 100 

���,�
��

���

 1.31.10
8
 2.10.10

7
 1.60.10

7
 1.44.10

7
 1.23.10

7
 1.16.10

7
 1.11.10

7
 

ΝΑ 2.10
6
 2.10

6
 2.10

6
 2.10

6
 2.10

6
 2.10

6
 2.10

6
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C. For each A parameter, the 2.106 ZA values were randomly assigned to the clonotype 197 
collection to obtain seven TRB clonotype repertoires. 198 

D. To obtain the final seven datasets, each of them were rarefied using the function rrarefy 199 
from Vegan R package to a 6.105 size datasets. 200 

Rarefaction at increasing sizes 201 

Each of the seven simulated datasets were rarefied into a series of six datasets of size D ∈ 202 

{500, 100, 5000, 5.104, 5.105, 1.106}. For each value of D, subsamples of TRB sequences were 203 

randomly produced using the vegan::rrarefy function (without replacement). This process 204 

was iteratively repeated 100 times with replacement. For each resulting series of 205 

subsamples, clonotype counts were calculated and used to assess the median and 95% CI 206 

values of Morisita-Horn index (MH; (Horn, 1966)) between them and the original dataset 207 

(representativeness) and between each other (robustness). 208 

Subsample compositions were also compared to evaluate the level of overlap between 3 209 

subsamples according to the dataset size. 210 

For each D, combinations of 3 ZA dataset subsamples were randomly selected to determine 211 

the proportion of clonotypes observed once, twice or in the 3 subsamples. This process was 212 

performed 100 times to calculate the median and 95% CI of each result.   213 

Since the 95% CI values obtained for MH and overlap proportion were similar to the 214 

medians, they are not indicated in the corresponding figures and tables. 215 

  216 
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RESULTS 217 

Impact of sequencing depth on the representativeness of the repertoire diversity 218 

With advances in HTS technologies, a million sequences per sample has often become the 219 

minimum number of outputs in RepSeq studies. Besides, small samples are often studied. 220 

Thus, to determine the minimum number of sequences required for a representative 221 

repertoire, we first explored how the number of raw reads could affects the repertoire 222 

description according to the sample size. We chose to analyse a mouse sample with high 223 

diversity and used the CD4+Foxp3- cell population (Teffs) previously described as very 224 

diverse (Bergot et al., 2015). 6.105 CD4+GFP- Teff cells from female Balb/C Foxp3<GFP> 225 

splenocytes where sorted. RNA was extracted from these cells and diluted in order to obtain 226 

aliquots containing the RNA amount equivalent to what would be obtained from 50 000, 5 227 

000, 1 000 or 500 cells (Figure 1A). Two replicates per dilution were prepared. For simplicity 228 

in the text, the sample size will be defined according to the theoretical equivalent cell 229 

number for each aliquot. Sequencing was performed on RNA amplified by multiplex PCR. 230 

On average, 1.13 (+/- 0.16) million reads were produced for each aliquot (Supplemental 231 

Table I), which is in the average range of common practice (Greiff et al., 2015a; Mamedov et 232 

al., 2013; Rosati et al., 2017). As summarised in Figure 1B, 0.99.106 (+/- 0.15.106) TRB 233 

sequences were identified per aliquot regardless of the sample size. The point here is to 234 

determine whether the sample size will impact the resulting repertoire distribution.   235 

Thus, we analysed the diversity of the observed repertoires according to sample size. It is 236 

noteworthy that the number of unique clonotypes (i.e. unique combination of TRBV - 237 

CDR3pep - TRBJ) per sample was always higher than the number of cells per sample. This 238 

discrepancy was more marked for small size samples, with approximately 20- to 2-fold more 239 

clonotypes per sample than cells with the “500-” and “50 000-cell” samples, respectively. In 240 

each dataset, about 50% (+/-6%) of the clonotypes were observed once (singletons). After 241 

removing the singletons, as is commonly done (Greiff et al., 2015a), this bias was reduced for 242 

the large samples, while the numbers of clonotypes remained much higher than the actual 243 

number of cells in small samples (Figure 1B). Still, overall richness remained equivalent 244 

between all sample sizes. 245 
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In order to refine the diversity assessment of these TRB repertoires, we computed their 246 

diversity profile (Figure 1C) applying Rényi entropy on the clonotype relative frequencies 247 

within each dataset. This function is used in ecological science to quantify the diversity, 248 

uncertainty and randomness of a given system (Ricotta, 2003; Schroeder, 2015). As the α 249 

order increases, it defines metrics spanning from (i) the species richness to (ii) the clonal 250 

dominance that progressively discard the scarcest species. The exponential of these metrics 251 

provides comparable effective numbers of species, used here to build a diversity profile. 252 

Analysis of the Rényi profiles for the eight aliquots showed that TRB repertoire diversity 253 

strongly decreases when the Rényi order α value increases. While richness was comparable 254 

between all sample sizes, diversity drops in proportion to sample size when progressively 255 

discarding scarce clonotypes to reach a plateau of clonotype counts below the initial number 256 

of cells. 257 

Shannon entropy as a threshold to filter the clonotypes 258 

To avoid bias related to sample size, we normalised each dataset by randomly selecting 259 

700 000 sequences, ranked the unique clonotypes from the most to the least predominant 260 

(clonotype rank) and plotted their abundance (clonotype count) to assess their distribution 261 

(Figure 2A). It is noteworthy that, while all the aliquots come from the same sample, the 262 

clonotype distributions within each dataset are different. The smaller a sample, the higher 263 

the most predominant clonotype counts, making it difficult to apply a filtering rule based on 264 

the count values. The Rényi profiles (Figure 1C) showed that the repertoire diversity 265 

collapses at a Rényi order α of 1, which corresponds to the Shannon diversity index (Rényi, 266 

1961). Since the number of clonotypes assessed by the Shannon index (Table I) correlates 267 

best with sample size (Pearson coeff= 0.966, p-value = 9.62.10-5 and MH = 0.877 on original 268 

clonotype number and Pearson coeff= 0.995, p-value = 2.92.10-7 and MH = 0.996 after 269 

clonotype number determined by Shannon index), we chose to use this metric as a threshold 270 

to discard scarce “uninformative” clonotypes (SUC) that could result from experimental 271 

noise (shown in grey in Figure 2A) and keep only “informative” ones. As shown in Figure 2B, 272 

the clonotype relative distribution within each dataset is not significantly altered by this 273 

filtering. Interestingly, as shown in Figure 2C, this efficiently normalises values of the Piélou 274 

evenness index, a measure of clonotype evenness (Pielou, 1966), (filled squares) that 275 

otherwise strongly decreases when the clonotype number/cell number ratio increases in 276 
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unfiltered datasets, revealing that too high a sequencing depth for small samples alters 277 

clonotype distributions (Figure 2C, empty circles).  278 

To confirm that the filtering does not bias the overall repertoire diversity, we computed the 279 

Morisita-Horn similarity index between the datasets before and after filtering; the high 280 

similarity values ([0.983; 0.997]) shown on the matrix diagonal in Figure 2D confirm that the 281 

datasets are not altered in the process. The similarity matrix also reveals a low similarity 282 

between replicates, except for the ‘50 000 cell’ samples, which are big enough to share rare 283 

clonotypes. Thus, high sequencing depth does not ensure good coverage of clonotype 284 

richness. This led us to question the robustness of RepSeq experiment results. 285 

Robustness of the TRB repertoire diversity assessment by RepSeq   286 

We sorted 3.106 Teff cells from splenocytes, extracted the RNA and split it into three 287 

equivalent RNA aliquots, and then sequenced them independently at a high depth targeting 288 

the TCRb chain using the iRepertoire® multiplex PCR technology. On average, for each 289 

aliquot, 8.33 (+/- 0.66) million reads were produced and 5.63 (+/- 0.56) million TRB 290 

sequences were identified, among which an average of 130.103 (+/- 5.103) clonotypes 291 

(Supplemental Table II). After applying Shannon filtering, the dataset sizes were reduced to 292 

4.7 (+/- 0.6) million TRB sequences for a total of 44 217 (+/- 304) clonotypes. Datasets were 293 

rarefied at an equivalent size by randomly selecting 4.106 sequences for each sample.  294 

We first analysed the clonotype distributions within each dataset. The three distributions 295 

were similar between replicates (Figure 3A). However, when we compared the composition 296 

of the three TRB repertoires by clonotype overlap, it appeared that about 36% of the 297 

clonotypes observed in each dataset are shared by another replicate, with only 6 599 298 

clonotypes common to the three replicates. Although these shared clonotypes represent 299 

only 6% of the 105 332 clonotypes identified overall, their expression accounted for 300 

approximately 38% of each repertoire (Figure 3B). We then decomposed the clonotype 301 

collection by labelling the clonotypes as private (not shared between replicates) or shared by 302 

2 or 3 replicates. For each dataset, clonotypes were sorted from the most to the least 303 

abundant and enrichment curves were built for each category according to the sharing 304 

status of each clonotype (Figure 3C). The resulting clonotype spectrum revealed that the 305 

most predominant clonotypes are shared by the three replicates, while the private 306 
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clonotypes, which are the more numerous, are enriched for scarce clonotypes, therefore 307 

reducing the similarity between technical replicates. These results demonstrate that 308 

although the sampling of a large and polyclonal cell population has no impact on the 309 

observed clonotype distribution, the repertoire composition is affected: even if the most 310 

predominant clonotypes are always captured, a major proportion of the clonotypes 311 

observed with a single sequencing are private scarce ones. This observation confirms that 312 

the more abundant a clonotype, the more likely it is to be observed by sequencing. 313 

However, most rare clonotypes will remain unseen with a single sequencing run.  314 

Computational assessment of the impact of sequencing depth on observed diversity 315 

In order to assess properly the representativeness of the diversity observed when analysing 316 

a clonotype repertoire by RepSeq, it would be necessary to know a priori its true diversity, 317 

which is not achievable with a classic experimental approach inherently subject to sampling 318 

bias.  319 

Several studies have demonstrated that immune repertoires follow a Zipf-like distribution 320 

(Burgos and Moreno-Tovar, 1996; Greiff et al., 2015b; Mora and Walczak, 2016; Schwab et 321 

al., 2014; Sepúlveda et al., 2005), which translates a relation between rank order and 322 

frequency of occurrence: the frequency f of a particular observation is inversely proportional 323 

to its rank r (Aitchison et al., 2016) with: 324 

���� �  
1

��
 

for Zipf-α parameter ≈ 1 (Piantadosi, 2014). 325 

In addition, the lower the Zipf-α parameter of a distribution, the more evenly represented 326 

the clonotypes involved (Greiff et al., 2015b). We applied this observation to build clonotype 327 

distributions of a fixed size and known diversity to simulate the sampling effect occurring 328 

during a RepSeq experiment. 329 

Seven Zipf distributions of 6.105 sequences each were simulated with a parameter A=1/Zipf-330 

α ranging from 2 to 100. These distributions were then assigned to a list of clonotypes 331 

randomly generated using the TcR package (Nazarov et al., 2015), leading to seven TRB 332 

clonotype repertoires of known diversity.  333 
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As observed in Figure 4A, the distribution slope varies according to the depth of sequencing 334 

of the clonotypes. For example, for the distribution simulated with A = 2 (A2), the resulting 335 

distribution is skewed in a way that clonotype counts range from 1 to 31 109, whereas when 336 

A = 100 (A100), clonotype counts do not exceed 9. These different distributions lead to 337 

datasets of varying richness, as summarised Table II. 338 

For each of our seven “known” repertoire distributions, we generated 100 subsamples at six 339 

sample size (from 500 to 1.106 sequences) reflecting several levels of sequencing depth. The 340 

clonotype richness observed within each subsample increased according to the depth, as 341 

expected (Figure 4B). We used the Morisita-Horn similarity index to assess (i) 342 

representativeness (Figure 4C) by comparing the diversity captured for each subsample with 343 

the original repertoire diversity and (ii) reproducibility (Figure 4D) for the 100 subsamples for 344 

a given depth. When comparing the seven distributions at a given sequencing depth (5.104 345 

sequences, representing 8 % of the original repertoire), the representativeness of the 346 

diversity between distributions is different (Figure 4C), yet with similar relative richness 347 

values. For the ‘A2’ condition, the similarity index between this subsample and the original 348 

repertoire was above 0.8, while it varied from 0.2 to 0.5 for the other conditions (Figure 4C). 349 

A dataset of 5.105 sequences (80% of the original repertoire size) is needed to reach a 0.9 350 

similarity for the latter. However, a suitable representativeness does not ensure good 351 

reproducibility of the observations. With 500 or 1000 sequences, even if the diversity 352 

observed for the ‘A2’ condition is quite representative (MH ~ 0.8), the high variability 353 

between the subsamples implies a low reproducibility and thus an inability to observe 354 

exhaustively all the clonotypes (Figure 4D).  355 

We sought to identify which simulated distribution would be the more representative of our 356 

experimental datasets. To this end, we compared the slope at the steepest descent point of 357 

each simulated distribution with those of all the experimental data analysed in this study. 358 

The experimental distribution slopes are most comparable with the ‘A3’ and ‘A5’ 359 

distributions, with the exception of that of the R500_2 sample (Supplemental Table III). Thus, 360 

we chose the ‘A3’ distribution dataset as the more representative. In order to understand 361 

the low overlap observed between experimental replicates in Figure 3B, for each size we 362 

compared the ‘A3’ simulated subsamples to determine the proportion of clonotypes shared 363 

by three independent subsamples, as performed experimentally in Figure 3. As summarised 364 
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in Table III, the proportion of private and shared clonotypes varies according to the coverage 365 

of the initial repertoire stretch. For subsamples with sizes representing less than 1% of that 366 

of the initial dataset, almost all the clonotypes observed are private (only captured in one 367 

subsample). For the ‘5.104 sequence’ subsamples, the size of which represents 8% of the 368 

original repertoire size, 16% of the clonotypes observed are captured at least twice. These 369 

proportions correspond to the observations we made in Figure 3 between the three 370 

experimental replicates. Finally, using subsamples of size close (80%) to that of the original, 371 

95% of the observed clonotypes are shared by at least two replicates. In addition, as 372 

represented in Figure 5, at this depth, while one sample only captures about 12% of the 373 

overall existing clonotypes, three replicates cover a third of the overall richness. These 374 

observations suggest that multiple sequencing experiments can ensure greater clonotype 375 

exhaustiveness than a unique very deep sequencing. 376 

 377 

  378 
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DISCUSSION 379 

RepSeq offers new opportunities to identify biomarkers of health or disease by monitoring 380 

adaptive immune cell diversity at unprecedented high resolution. Continuing improvements 381 

in molecular biology protocols and sequencing technologies are increasing the accuracy of 382 

clonotype detection (Friedensohn et al., 2017). Still, clear evaluation of the reproducibility 383 

and representability of the observed diversity is missing. This is particularly true when 384 

considering small size samples, such as small cell subsets or cells from biopsies, though of 385 

utmost interest when studying TCR repertoires. Although over-sequencing has been 386 

recommended to ensure the identification of rare clonotypes (Mamedov et al., 2013), it 387 

does increase the risk of generating uninformative, possibly artefactual clonotypes such as 388 

duplicate reads and chimeric reads (Head et al., 2014). Indeed, when sequencing samples of 389 

varying sizes at a commonly used depth, we found that small datasets contained 20 times 390 

more clonotypes than what would be expected regarding to the sample size. This figure 391 

decreases when the starting material is increased, demonstrating that over-sequencing small 392 

samples dramatically generates noise that cannot be corrected by removing only singletons. 393 

Although the relationship between sample size and sequencing depth that we used may 394 

appear extreme, it can commonly occur when studying small cell subsets involved in 395 

immunological processes. Single-cell sequencing technologies can be an alternative, but may 396 

require more cells than actually recovered in particularly low input samples. These 397 

observations demonstrate the drawbacks of discarding clonotypes based only on their 398 

counts and the need for objective approaches in order to assess the actual richness of a 399 

repertoire effectively. 400 

Here we provide a bioinformatics approach to assess accurately the number of unique 401 

clonotypes in a large and complex cell population, even when over-sequenced. When 402 

analysing the diversity profiles of repertoires from subsamples of varying sizes of a unique 403 

starting sample, we identified the Shannon entropy as a reliable threshold to eliminate 404 

clonotypes arising from technical noise (SUC) and to focus on informative TR clonotypes 405 

(Figure 1C, Figure 2A). This filtering strategy has no impact on the overall clonotype 406 

distribution (Figure 2B). Importantly, this approach was validated on subsamples originating 407 

from a single starting sample. Therefore, the representability of the smallest subsample was 408 

questioned. While the distribution evenness was sample size-dependent when considering 409 
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all the reads, filtering by the Shannon entropy index removed this variability between 410 

replicates (Figure 2C). This proposed strategy therefore offers an accurate assessment of 411 

clonotype identification and representability, even in extreme situations.  412 

Our results strongly suggest that sequencing depth must be adapted to the initial cell 413 

amount. We showed that “50 000 cell” replicates are closer to each other than lower input 414 

pairs of samples (Figure 2D). This observation emphasises the need to adapt the sample size 415 

to the population of interest. All aliquots analysed here were obtained from a rich and 416 

polyclonal cell population. In order to be reliable, a sample needs to be large enough to 417 

ensure that most of the clones are represented. Here, about 20% of the clonotypes observed 418 

in the two replicates (6 766 out of 30 422 and 35 020 clonotypes) are shared. 419 

Altogether these results show how complex defining a RepSeq strategy can be in 420 

guaranteeing the representativeness of the repertoire diversity. If sequencing depth is not 421 

adapted to the population size, it can negatively affect the resulting observed diversity, in 422 

particular if data are not properly analysed. This is particularly crucial since the clonality of a 423 

population is rarely known before its sequencing, leading to misinterpretation of the results. 424 

Since the sequencing depth used was much higher than the size of the samples we analysed, 425 

one would expect good, if not exhaustive, coverage of the overall clonotypes. Conversely, 426 

we show that this is by no means the case, with only part of clonotypes being observed with 427 

confidence. These observations led us to question the robustness of the results of RepSeq 428 

experiments. 429 

Multiple sequencing of the same sample revealed very low overlap between technical 430 

replicates, even after filtering out uninformative TR clonotypes, and merely captures the 431 

most frequent clonotypes. Rare clonotypes were at best shared by two replicates. As already 432 

suggested by Greiff et al. (Greiff et al., 2015a), our results are in favour of multiple 433 

sequencing when considering very diverse samples. This can be explained by the 434 

experimental sampling enforced by the different RepSeq steps (from RNA amplification to 435 

library sequencing). In order to validate these experimental observations and propose 436 

guidelines for RepSeq studies, we simulated different repertoire distributions and found that 437 

the representativeness of a very evenly distributed repertoire, which could be assimilated to 438 

a polyclonal repertoire, is more sensitive to the sequencing depth. The number of sequences 439 

produced (by multiple sequencing) needs to be equivalent to the population size to ensure a 440 
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good assessment of the original diversity (Figure 4C). This is particularly true for small 441 

samples for which a too deep sequencing can favour the erroneous sequences possibly 442 

generated during library preparation (Heather et al., 2017) introducing experimental noise. 443 

Altogether, we provide here a method to accurately discard uninformative clonotypes for 444 

small and large samples based on the application of Shannon diversity index threshold 445 

filtering, as well as guidelines for RepSeq experimental design. In addition, we show how 446 

computational simulation of diversity can improve adaptive repertoire analysis assessment 447 

where controlled reference repertoires with known actual diversity can be modelled and 448 

subject to experimental design and annotation tool flaws. We believe these will be useful in 449 

ensuring better RepSeq analyses when looking at rare or unknown cell populations 450 

participating in pathophysiological processes and will facilitate the discovery of HTS-based 451 

biomarkers. 452 
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FIGURES 628 

 629 

Figure 1: Impact of the sequencing depth on the measured diversity 630 

A: Experimental design: 600 000 CD4+Foxp3- cells were sorted from female Balb/C Foxp3 631 

splenocytes. RNA was extracted (1) and split into aliquots equivalent to the amount of mRNA 632 

of 500, 1 000, 5 000 and 50 000 cells (2). Two aliquots were produced for each amount of 633 

RNA. The eight prepared aliquots were processed for TRB chain deep sequencing. B: Dataset 634 

summaries. Histograms show, for each resulting dataset, the number of reads (black), 635 

productive TRB sequences (grey), observed clonotypes (blue) and clonotypes observed more 636 

than once (NoSingletons; light blue). C: Diversity profiles. For each dataset, a Rényi diversity 637 

profile was computed: diversity metrics using clonotype frequencies were calculated for 638 

increasing values of Rényi order α until stabilisation of the resulting diversity. For α = 1, the 639 

Shannon entropy was computed. 640 
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  642 

Figure 2: Clonotype distributions before and after data filtering.  643 

A: TRB clonotype counts of the eight aliquots according to sampling size. Within each 644 

dataset, clonotypes were ranked according to their counts from the most to the least 645 

predominant (decreasing clonotype rank) and their abundance (clonotype count). Both axes 646 

are log-scaled. Plots were coloured according to the sampling size: “500 cells” in red, “1 000 647 

cells” in green, “5 000 cells” in cyan and “50 000 cells” in purple. Clonotypes filtered out using 648 

the Shannon index (see main text) are coloured in grey (SUC – Scarce Uninformative 649 

Clonotypes). B: TRB clonotype distributions of the eight aliquots before and after data 650 

filtering. Before (left) and after (right) filtering each dataset using the Shannon index as 651 

threshold, clonotypes were ranked from the most to the least predominant (decreasing 652 

clonotype rank) according to their relative frequencies (clonotype frequency). The X-axis is 653 

log-scaled. Distributions were coloured according to the sampling size as previously. C: 654 

Impact of clonotype filtering on the clonotype distribution evenness. The ratio between the 655 

number of clonotypes and the number of cells (x-axis) was calculated for each aliquot before 656 
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(circles) and after clonotype filtering either by removing only singletons (triangles) or using 657 

the Shannon index as a threshold (squares). For each dataset, the Piélou evenness index was 658 

calculated (y-axis). Aliquots are identified according the sampling size as previously. D: 659 

Similarity between datasets before and after Shannon filtering. The Morisita-Horn 660 

similarity index between all pairs of datasets is colour-coded according to the indicated scale 661 

before (lower half-triangle) and after (upper half-triangle) Shannon filtering. Aliquots are 662 

identified according to sampling size as previously. 663 

 664 

 665 

 666 
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  668 

Figure 3: Robustness of a RepSeq experiment 669 

A: Clonotype distribution of the three replicates within each dataset. Informative 670 

clonotypes were ranked decreasingly according to their abundance and their frequency 671 

plotted. The x axis is log-scaled. B: Venn diagram between the three replicates. Out of the 672 

105 332 clonotypes observed in total, only 6 599 are shared by the three replicates; their 673 

cumulative frequency covers about 38% of each dataset. C: Spectrum of unshared (yellow) 674 

and shared (by 2 in orange and by 3 in magenta) clonotypes in each replicate. Within each 675 

dataset, clonotypes were ranked according to their counts from the most to the least 676 

predominant (decreasing clonotype rank). Since clonotypes are labelled according to their 677 

sharing status, the clonotype enrichment ((y-axis)) of each sharing group is incremented (+1) 678 

when a corresponding clonotype is found in the ranked list.  679 

 680 
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 682 

Figure 4: Impact of sequencing depth on the observed diversity 683 

A: Clonotype distribution within the seven simulated datasets - Within each A-dataset, 684 

clonotypes were ranked decreasingly according to their abundance and their frequency was 685 

plotted. Both axes are log-scaled. Distributions are coloured according to the A parameter 686 

used to simulate it. B: Impact of sequencing depth on the observed clonotype richness - For 687 

a given A-dataset, clonotype richness was measured within the 100 subsamples produced for 688 

each depth and divided by that of the original dataset. The median value by depth is 689 

represented for each condition. The 95% CI was calculated but cannot be seen since it 690 

merged with the median value. C: Representativeness of the sequencing – The Morisita-691 

Horn similarity index was calculated between each subsample and its original dataset. 692 

Boxplots across the 100 subsamples of a given depth are colour-coded according to the A 693 

condition. D: Reproducibility of the sequencing – For each A-dataset, the Morisita-Horn 694 

similarity index was calculated between paired subsamples of a given depth. Boxplots across 695 

the 100 subsamples of a given depth are colour-coded according to the A condition. 696 
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 697 

Figure 5: Clonotype coverage of A3-dataset richness increases with multiple subsamples. 698 

The A3-datasets were subsampled at increasing depth (from 500 to 1.10
6
 sequences as 699 

indicated in the legend from light to dark blue). For each depth, 100 subsamples were 700 

produced. Within each subsample series, an increasing number of subsamples (x-axis) were 701 

randomly selected and their cumulative clonotype richness was calculated relative to the 702 

original dataset richness (clonotype richness coverage). 703 
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TABLES 705 

Table I: Shannon diversity calculated for each dataset 706 

Shannon diversity R500 R1000 R5000 R50000 

#1 171 1 034 3 124 30 432 

#2 238 735 5 337 35 027 

 707 

Table II: Summary of the simulated Zipf distributions 708 

A 2 3 4 5 10 20 100 

���,�
��

���

 6E+05 6E+05 6E+05 6E+05 6E+05 6E+05 6E+05 

ΝΑ 155 495 394 784 435 528 450 625 469 974 476 829 480 919 

  709 

Table III: Sharing proportion between three replicates 710 

Median proportion  

of clonotypes observed  

Dataset sizes 

5. 10
2
 1. 10

3
 5.10

3
 5.10

4
 5.10

5
 1.10

6
 

Private 99.7 99.4 97.5 83.7 5.2 - 

Shared by 2 0.3 0.6 2.4 14.3 27.2 - 

Shared by 3 - - 0.1 2 67.6 100 

Total number across 3 replicates 1 493 2 973 14 456 117 634 393 434 394 784 
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