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 59 

Abstract  60 

The semi-aquatic bugs conquered water surfaces worldwide and occupy ponds, streams, lakes, mangroves, 61 

and even open oceans. As such, they inspired a range of scientific studies from ecology and evolution to 62 

developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative 63 

water strider genome hinders thorough investigations of the mechanisms underlying the processes of 64 

adaptation and diversification in this group. Here we report the sequencing and manual annotation of the 65 

Gerris buenoi (G. buenoi) genome, the first water strider genome to be sequenced so far. G. buenoi genome 66 

is about 1 000Mb and the sequencing effort recovered 20 949 predicted protein-coding genes. Manual 67 

annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene 68 

families known for their importance in a variety of processes associated with morphological and 69 

physiological adaptations to water surface lifestyle. These expansions affect key processes such as growth, 70 

vision, desiccation resistance, detoxification, olfaction and epigenetic components. Strikingly, the G. buenoi 71 

genome contains three Insulin Receptors, a unique case among metazoans, suggesting key changes in the 72 

rewiring and function of the insulin pathway. Other genomic changes include wavelength sensitivity shifts 73 

in opsin proteins likely in association with the requirements of vision in water habitats. Our findings suggest 74 

that local gene duplications might have had an important role during the evolution of water striders. These 75 

findings along with the G. buenoi genome open exciting research opportunities to understand adaptation 76 

and genome evolution of this unique hemimetabolous insect. 77 

 78 

 79 

 80 

  81 
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Background 82 

The semi-aquatic bugs (Gerromorpha) are a monophyletic group of predatory heteropteran insects 83 

characterized by their ability to live at the water-air interface [1-4]. The Gerromorpha ancestor transitioned 84 

from terrestrial habitats to the water surface over 200 million years ago, and subsequently radiated into 85 

over 2 000 known species classified in eight families [1]. The ancestral habitat of the Gerromorpha, as 86 

inferred from phylogenetic reconstruction, is humid terrestrial or marginal aquatic [1, 5, 6]. Many lineages, 87 

such as water striders, became true water surface dwellers and colonized a diverse array of niches including 88 

streams, lakes, ponds, marshes, and even the open ocean [1, 7, 8]. The invasion of this new habitat 89 

provided access to resources previously underutilized by insects and made the Gerromorpha the dominant 90 

group of insects at water surfaces. This novel specialized life style makes the Gerromorpha an exquisite 91 

model system to study how new ecological opportunities can drive adaptation and species diversification 92 

[2, 9-11].  93 

The shift in habitat exposed these insects to new selective pressures that are divergent from their 94 

terrestrial ancestors. The Gerromorpha face two primary challenges unique among insects: how to remain 95 

afloat and how to generate efficient thrust on the fluid substrate [2, 3, 12]. The bristles covering the legs of 96 

water striders, owing to their specific arrangement and density, act as a non-wetting structures capable of 97 

exploiting water surface tension by trapping air between the leg and water surface and keeping them afloat 98 

(Figure 1A) [2, 3, 12, 13]. Locomotion, on the other hand, is made possible through changes in the 99 

morphology and the patterns of leg movement (Figure 1B) [2, 3, 12, 13]. Two modes of locomotion are 100 

employed: an ancestral mode using the tripod gait through alternating leg movements, and a derived mode 101 

using the rowing gait through simultaneous sculling motion of the pair of middle legs (Figure 1B) [2, 12]. 102 

The derived mode through rowing is characteristic of water striders and is associated with a derived body 103 

plan where the middle legs are the longest (Figure 1A-B) [2, 12]. The specialization in water surface life is 104 

thought to be associated with new predator (Figure 1C) and prey (Figure 1D) interactions that shaped the 105 

evolutionary trajectory of the group. Other adaptations following invasion of water surfaces include their 106 

visual system to adapt to surface-underwater environment, wing polymorphism in relation with habitat 107 

quality and dispersal (Figure 1E) [14], and cuticle composition and its role in water exchange to counter 108 

water gain associated with living on water.  109 

While we are starting to understand some developmental genetic and evolutionary processes underlying 110 

the adaptation of water striders to the requirements of water surface locomotion, prey-predator, and 111 

sexual interactions [2, 15-19], studies of these mechanisms at the genomic level are hampered by the lack 112 

of a representative genome. Here we report the genome of the water strider G. buenoi, the first sequenced 113 

member of the Gerromorpha infra-order. G. buenoi is part of the Gerridae family, and has been previously 114 

used as a model to study sexual selection and developmental genetics [15, 20-22]. Moreover, G. buenoi can 115 

easily breed in laboratory conditions and is closely related to several other G. species used as models for 116 

the study of the hydrodynamics of water walking, salinity tolerance, and sexual conflict. With a particular 117 

focus on manual annotation and analyses of processes involved in phenotypic adaptations to life on water, 118 

our analysis of the G. buenoi genome hints that the genomic basis of water surface invasion might be, at 119 

least in part, linked to local gene duplications.  120 

 121 

Results and discussion 122 

General features of the G. buenoi genome 123 

The draft assembly of G. buenoi genome comprises 1 000 194 699 bp (GC content: 32.46%) in 20 268 124 

scaffolds and 304 909 contigs (N50 length 344 118 bp and 3 812 bp respectively). The assembly recovers 125 

~87 % of the genome size estimated at ~1.15 GB based on kmer analysis. G.buenoi genome is organized in 126 

18 autosomal chromosomes with a XX/X0 sex determination system [23]. MAKER automatic annotation 127 

pipeline predicted 20 949 protein-coding genes; a number that is higher than the 16 398 isogroups 128 

previously annotated in the transcriptome of the closely related species Limnoporus dissortis 129 

(PRJNA289202) [18, 24], the 14 220 genes in Cimex lectularius genome [25] and the 19 616 genes in 130 

Oncopeltus fasciatus genome [26]. The final G. buenoi OGS 1.1 includes 1 286 manually annotated genes 131 
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representing development, growth, immunity, cuticle formation as well as olfaction and detoxification 132 

pathways (see Supplementary Material). Using OrthoDB (http://www.orthodb.org) [27], we found that 133 

77.24% of the G. buenoi genes have at least one orthologue in other arthropod species (Figure 2). We then 134 

used benchmarking sets of universal single-copy orthologs (BUSCOs) [28] to assess the completeness of the 135 

assembly. A third of BUSCOs (31%) were missing and 28.6% were fragmented, which correlates with the 136 

high number of gaps observed in the draft assembly (Supplementary Tables 1 and 2). On the other hand, 137 

2.2 % of BUSCOs showed signs of duplication but functional GO term analysis showed no particular function 138 

enrichment. 139 

In addition to BUSCOs, we used Hox and Iroquois Complex (Iro-C) gene clusters as indicators of draft 140 

genome quality and as an opportunity to assess synteny among species. The Hox cluster is conserved across 141 

the Bilateria [29], and the Iro-C is found throughout the Insecta [25, 30]. In G. buenoi, we were able to find 142 

and annotate gene models for all ten Hox genes (Supplementary Table 3). While linkage of the highly 143 

conserved central class genes Sex combs reduced, fushi tarazu, and Antennapedia occurred in the expected 144 

order and with the expected transcriptional orientation, the linked models of proboscipedia and zerknüllt 145 

(zen) occur in opposite transcriptional orientations (head-to-head, rather than both 3’ to 5’). Inversion of 146 

the divergent zen locus is not new in the Insecta [31], but was not observed in the hemipteran C. 147 

lectularius, in which the complete Hox cluster was fully assembled [25]. Future genomic data will help to 148 

determine whether such microinversion within the Hox cluster is conserved within the hemipteran family 149 

Gerridae. Assembly limitations are also manifest in that the complete gene model for labial is present but 150 

split across scaffolds, while only partial gene models could be created for Ultrabithorax and Abdominal-B. 151 

For the small Iroquois complex, clear single copy orthologues of both iroquois and mirror are complete but 152 

not linked in the current assembly (Supplementary Table 3). However, both genes are located near the 153 

ends of their scaffolds, and direct concatenation of the scaffolds (5’-Scaffold451-3’, 3’-Scaffold2206-5’) 154 

would correctly reconstruct this cluster: (1) with both genes in the 5’-to-3’ transcriptional orientation along 155 

the (+) DNA strand, (2) with no predicted intervening genes within the cluster, and (3) with a total cluster 156 

size of 308 Kb, which is fairly comparable with that of other recently sequenced hemipterans in which the 157 

Iro-C cluster linkage was recovered (391 Kb in the bed bug C. lectularius [25] and 403 Kb in the milkweed 158 

bug O. fasciatus [26]). Lastly, we examined genes associated with autophagy processes, which are highly 159 

conserved among insects, and all required genes are present within the genome (Supplementary Table 3). 160 

Therefore, Hox and Iroquois Complex (Iro-C) gene cluster analyses along with the presence of a complete 161 

set of required autophagy genes suggest a good gene representation and supports further downstream 162 

analysis.  163 

 164 

Adaptation to water surface locomotion  165 

One of the most important morphological adaptations that enabled water striders to conquer water 166 

surfaces is the change in shape, density, and arrangement of the bristles that cover the contact surface 167 

between their legs and the fluid substrate. These bristles, by trapping the air, act as a non-wetting structure 168 

that cushion between the legs and the water surface (Figure 1A)[2, 3, 12, 13]. QTL studies in flies uncovered 169 

dozens of candidate genes and regions linked to variation in bristle density and morphology [32]. In the G. 170 

buenoi genome we were able to annotate 90 out of 120 genes known to be involved in bristle development 171 

[32, 33] (Supplementary Table 4). Among those genes we found a single duplication, the gene Beadex (Bx), 172 

Similar duplication found in C. lectularius and H. halys suggest that Bx duplication occurred at their last 173 

common ancestor prior to Gerromorpha speciation. In Drosophila, Bx is involved in neural development by 174 

controlling the activation of achaete-scute complex genes [34] and mutants of Bx have extra sensory organs 175 

[34]. We think it is reasonable to speculate that Beadex duplication might then have been exploited water 176 

striders and be linked to the changes in bristle pattern and density, thus opening new research avenues to 177 

further understand the adaptation of water striders to water surface life style. 178 

 179 

A unique addition to the Insulin Receptor family in Gerromorpha  180 

The Insulin signalling pathway coordinates hormonal and nutritional signals in animals [35-37]. This 181 

facilitates the complex regulation of several fundamental molecular and cellular processes including 182 
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transcription, translation, cell stress, autophagy, and physiological states, such as aging and starvation [37-183 

40]. The action of Insulin signalling is mediated through the Insulin Receptor (InR), a transmembrane 184 

receptor of the Tyrosine Kinase class [41]. While vertebrates possess one copy of the InR [42], arthropods 185 

generally possess either one or two copies. Interestingly, the G. buenoi genome contains three distinct InR 186 

copies, making it a unique case among metazoans. Further sequence examination using in-house 187 

transcriptome databases of multiple Gerromorpha species confirmed that this additional copy is common 188 

to all of them indicating that it has evolved in the common ancestor of the group (Figure 3). In addition to 189 

their presence in the transcriptomes of multiple species, cloning of the three InR sequences using PCR, 190 

indicates that these sequences originate from three distinct coding genes that are actively transcribed in 191 

this group of insects. Comparative protein sequence analysis revealed that all three InR copies possess all 192 

the characteristic domains found in the InR in both vertebrates and invertebrates (Figure 3A). To determine 193 

which of these three InR copies is the new addition to the G. buenoi genome, we performed a 194 

reconstruction of phylogenetic relationships between these sequences in a sample of eight Gerromorpha 195 

(three InR copies) and fifteen Insecta (one or two InR copies). This analysis clustered two InR copies into 196 

InR1 and InR2 distinct clusters (Figure 3B). Furthermore, Gerromorphan InR1 and InR2 copies clustered 197 

with bed bug and milkweed bug InR1 and InR2 respectively, while the Gerromorpha-restricted copy 198 

clustered alone (Figure 3B, Supplementary Figure 1). These data suggest that the new InR copy, we called 199 

InR1-like, originates from the InR1 gene much probably at time of Gerromorpha speciation. A closer 200 

examination of the organization of the genomic locus of InR1-like gene in G. buenoi genome revealed that 201 

this copy is intronless. This observation, together with the phylogenetic reconstruction, suggests that InR1-202 

like is a retrocopy of InR1 that may have originated through RNA-based duplication [43].  203 

In insects, the Insulin signalling pathway has been implicated in the developmental regulation of complex 204 

nutrient-dependent phenotypes such as beetle horns, and the social castes of termites and bees [44-46]. It 205 

will thus be interesting to test the functional significance of the new InR copy and how it impacts the role of 206 

the Insulin signalling in key aspects of G. buenoi biology, such as leg growth [15, 17-19] and wing 207 

polymorphism [1, 14, 47]. 208 

  209 

A lineage-specific expansion and possible sensitivity shifts in the opsin gene family  210 

The visual ecology and exceptionally specialized visual system of water striders has drawn considerable 211 

interest [48, 49]. Consisting of over 900 ommatidia, the prominent compound eyes of water striders are 212 

involved in prey localization, mating partner pursuit, predator evasion and, very likely, dispersal by flight 213 

[50-52]. Realization of the first three tasks in the water surface to air interphase are associated with 214 

differences in the photoreceptor organization of the dorsal vs ventral eye [48], a lateral acute zone coupled 215 

to neural superposition [53, 54] and polarized light-sensitive [55] (Supplementary Data). Each ommatidium 216 

contains 6 outer and 2 inner photoreceptors and recent work has produced evidence of at least 2 types of 217 

ommatidia with either green (~530nm) sensitive inner photoreceptors or blue (~470-490nm) sensitive 218 

outer photoreceptors [56]. At the molecular level, the wavelength-specificity of photoreceptor subtypes is 219 

in most cases primarily determined by the expression of paralogous light sensitive G-protein coupled 220 

receptor proteins, opsins, that differ in their wavelength absorption maxima. Interestingly, our genomic 221 

analysis of opsin diversity in G. buenoi uncovered 8 opsin homologs. This included one member each of the 222 

3 deeply conserved arthropod non-retinal opsin subfamilies (c-opsin, Arthropsin, and Rh7 opsin 223 

(Supplementary Data)) and 5 retinal opsins (Figure 4A and Supplementary Figure 2). The latter sorted into 224 

one member of the UV-sensitive opsin subfamily and 4 tightly tandem clustered members of the long 225 

wavelength sensitive (LWS) opsin subfamily (Figure 4A). Surprisingly, both genomic and transcriptome 226 

search in G. buenoi and other water strider species failed to detect sequence evidence of homologs of the 227 

otherwise deeply conserved blue-sensitive opsin subfamily (Figure 4B; Supplementary Table 5) [57]. While 228 

the apparent lack of blue opsin in G. buenoi was unexpected given the presence of blue sensitive 229 

photoreceptors, it was consistent with the lack of blue opsin sequence evidence in available genomes and 230 

transcriptomes of other heteropteran species including Halyomorpha halys, Oncopeltus fasciatus, Cimex 231 

lectularius, Rhodnius prolixus. Blue opsin, however, is present in other hemipteran clades, including 232 

Cicadomorpha (Nephotettix cincticeps) and Sternorrhyncha (Pachypsylla venusta) (Figure 4B). Taken 233 
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together, these data lead to the conclusion that the blue-sensitive opsin subfamily was lost early in the last 234 

common ancestor of the Heteroptera (Figure 4B and Supplementary Table 5), raising the question, which 235 

compensatory events explain the presence of blue sensitive photoreceptors in water striders.  236 

Interestingly, previous studies in butterflies and beetles produced evidence of blue sensitivity shifts in both 237 

UV- and LWS-opsin homologs following gene duplication [58-60]. Given that the UV-opsin family is 238 

generally conserved throughout insects even in crepuscular species like kissing bugs and bed bugs 239 

(Supplementary Figure 2), and that evidence of UV-sensitive photoreceptors has been reported for 240 

backswimmers [61], it seems most likely that one or more of the newly expanded G. buenoi LWS opsin 241 

genes represent blue-shifted paralogs. In further support of this hypothesis, the 4 G. buenoi LWS opsin 242 

paralogs have compelling similarities at the four amino acid sites that have been implicated in the green to 243 

blue sensitivity shifts of butterfly LWS opsins: Ile17Met, Ala64Ser, Asn70Ser, and Ser137Ala [58, 59] (Figure 244 

4C, Supplementary Figure 2 and Supplementary Data). In particular, in G. buenoi LWS opsin 1 and 3 posses 245 

a Methionine at position 17 which seems to be very well correlated with a green- to blue-sensitivity shift 246 

while G. buenoi LWS opsin 1 and 2 share an Alanine to Serine shift at position 64, a change strongly 247 

associated with green to blue sensitivity shift in butterflies [58, 59]. However, this correlation is not 248 

consistently shared in the Drosophila and the honeybee preventing a straightforward interpretation of the 249 

change. Less ambiguity applies at position 70 where green-sensitivity associated Asparagine is highly 250 

conserved and Gbue LWS opsin 3 stands out by sharing a Serine residue with blue-shifted butterfly LWS 251 

opsins [58, 59]. Finally, position 137 is less straightforward to interpret although it seems that Serine 252 

residue is green-sensitive correlated and Guanine states can be valued as tentative evidence for blue-253 

shifted states of Gerris buenoi LWS opsins 2 and 3. 254 

Taken together, our genomic retinal opsin survey suggests that all 4 highly sequence-diverged G. buenoi 255 

LWS opsin paralogs are most likely expressed in photoreceptors of the compound eye (due to lack of ocelli 256 

in water striders) and accounts for the presence of both blue- and green-sensitive photoreceptors in water 257 

striders. In particular, the comparative evidence identifies G. buenoi LWS opsin 3 as the candidate blue-258 

shifted paralog with the highest confidence followed by G. buenoi LWS opsin 1 and 2 while G. buenoi LWS 259 

opsin 4 has all the evidences of being a green-sensitive paralog. Moreover, given that the outer blue 260 

photoreceptors have been specifically implicated in the detection of contrast differences in water striders 261 

[56], it is tempting to speculate that the deployment of blue-shifted LWS opsins represents another parallel 262 

to the fast-tracking visual system of higher Diptera. While these predictions await physiological verification 263 

in water striders, the genomic exploration of G. buenoi vision identifies water striders and Heteroptera as a 264 

whole as an exceptionally relevant group in the molecular study of adaptive visual system evolution for 265 

comparison to Lepidoptera, Hymenoptera, and the higher Diptera (Brachycera). 266 

 267 

Expansion of cuticle gene repertoires  268 

Desiccation resistance is essential to the colonization of terrestrial habitats by arthropods [62]. However, 269 

contrary to most insects, the Gerromorpha spend their entire life cycle in contact with water and exhibit 270 

poor desiccation resistance [1]. Cuticle proteins and aquaporins are essential for desiccation resistance 271 

through regulation of water loss and rehydration [63-66]. In the G. buenoi genome, most members of 272 

cuticular and aquaporin protein families are present in similar numbers compared to other hemipterans 273 

(Supplementary Table 6 and Supplementary Figure 3). We identified 155 putative cuticle proteins belonging 274 

to five cuticular families: CPR (identified by Rebers and Riddiford Consensus region), CPAP1 and CPAP3 275 

(Cuticular Proteins of Low-Complexity with Alanine residues), CPF (identified by a conserved region of 276 

about 44 amino acids), and TWDL (Tweedle) [67, 68] (Supplementary Table 6). Interestingly, almost half of 277 

them are arranged in clusters suggesting local duplication events (Supplementary Table 7). Moreover, while 278 

most insect orders, including other hemipterans, have only three TWDL genes, we found that the TWDL 279 

family in G. buenoi has been expanded to 10 genes (Figure 5). This expansion of the TWDL family is similar 280 

to that observed in some Diptera which contain Drosophila-specific and mosquito-specific TWDL 281 

expansions [68, 69] and which TwdlD mutation alter body shape in Drosophila [69]. Therefore, a functional 282 

analysis of TWDL genes and comparative analysis with other hemipterans will provide important insights 283 

into the evolutionary origins and functional significance of TWDL expansion in G. buenoi. 284 
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 285 

Prey detection in water surface environments 286 

Unlike many closely related species that feed on plants sap or animal blood, G. buenoi feeds on various 287 

arthropods trapped by surface tension (Figure 1D), thus making their diet highly variable. Chemoreceptors 288 

play a crucial role for prey detection and selection in addition to vibrational and visual signals. We 289 

annotated the three families of chemoreceptors that mediate most of the sensitivity and specificity of 290 

chemoperception in insects: Odorant Receptors (ORs; Supplementary Figure 4A), Gustatory Receptors (GRs; 291 

Supplementary Figure 4B) and Ionotropic Receptors (IRs; Supplementary Figure 4C) (e.g. [70, 71]). 292 

Interestingly, we found that the number of chemosensory genes in G. buenoi is relatively elevated 293 

(Supplementary Table 8). First, the OR family is expanded, with a total of 142 OR proteins. This expansion is 294 

the result of lineage-specific “blooms” of particular gene subfamilies, including expansions of 4, 8, 9, 13, 13, 295 

16, 18, and 44 proteins, in addition to a few divergent ORs and the highly conserved OrCo protein 296 

(Supplementary Figure 4A and Supplementary Data). Second, the GR family is also fairly large 297 

(Supplementary Figure 4B), but the expansions here are primarily the result of large alternatively spliced 298 

genes, such that 60 genes encode 135 GR proteins (Supplementary Table 8). These GRs include 6 genes 299 

encoding proteins related to the carbon dioxide receptors of flies, three related to sugar receptors, and one 300 

related to the fructose receptor (Supplementary Figure 4B). The remaining GRs include several highly 301 

divergent proteins, as well as four blooms, the largest of which is 80 proteins (Supplementary Figure 4B and 302 

Supplementary Data). By analogy with D. melanogaster, most of these proteins are likely to be “bitter” 303 

receptors, although some might be involved in perception of cuticular hydrocarbons and other molecules. 304 

Finally, in contrast with the OR/GR families where the only simple orthologs across these four 305 

heteropterans and Drosophila are the single OrCo and fructose receptor, the IR family has single orthologs 306 

in each species not only of the highly conserved co-receptors (IR8a, 25a, and 76b) but also receptors 307 

implicated in sensing amino acids, temperature, and humidity (Ir21a, 40a, 68a, and 93a). As is common in 308 

other insects the amine-sensing IR41a lineage is somewhat expanded, here to four genes, while the acid-309 

sensing IR75 lineage is unusually highly expanded to 24 genes, and like the other heteropterans there are 310 

nine more highly divergent IRs (Supplementary Figure 4C and Supplementary Data).  311 

We hypothesize that the high number of ORs may be linked to prey detection based on odor molecules in 312 

the air-water interface, although functional analysis will be needed to test the validity of this hypothesis. 313 

These receptors might help to complement water surface vibrations as prey detection system by expanding 314 

the spectrum of prey detectability. Similarly, being more scavengers than active hunters, G. buenoi are 315 

frequently faced with dead prey fallen on water for which they have to evaluate the palatability. As toxic 316 

molecules are often perceived as bitter molecules, the GR expansion might provide a complex bitter taste 317 

system to detect and even discriminate between molecules of different toxicities [72]. Finally, expansion of 318 

the IR family could be linked with prey detection as well as pheromone detection of distant partners as IRs 319 

recognize, preferentially water-soluble hydrophilic acids and amines, many of which are common 320 

chemosensory signals for aquatic species [73, 74]. 321 

 322 

Detoxification pathways 323 

Water striders can be exposed to toxic compounds found in water, due to human activities, or in their prey 324 

either naturally or by exposure to pesticides or insecticides. UDP-glycosyltransferases (UGTs) are important 325 

for xenobiotic detoxification and the regulation of endobiotics in insects [75]. UGTs catalyse the 326 

conjugation of a range of small hydrophobic compounds to produce water-soluble glycosides that can be 327 

easily excreted outside the body in a number of insects [76, 77]. The genome of the water strider G. buenoi 328 

contains 28 putative UGT genes including several partial sequences due to genomic gaps (Supplementary 329 

Table 9). This number of UGT genes is higher than that of the bed bug C. lectularius (7) [25]. Interestingly, 330 

G. buenoi UGT repertoire contains a large number of genes that have been multiplied by tandem-gene 331 

duplication. In Scaffold1549, ten UGT genes are arrayed in a row suggesting gene duplication events may 332 

have produced such a large gene cluster (Supplementary Figure 5). In addition, multiple genes lie in 333 

Scaffold1323, Scaffold3228, and Scaffold2126 with 4, 3, and 2 UGT genes, respectively. A consensus 334 
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Maximum-likelihood tree (Supplementary Figure 6) constructed with conserved C-terminal half of the 335 

deduced amino acid sequences from G. buenoi UGTs supports the conclusion that clustered genes placed in 336 

the same genomic location are produced by gene duplication. We hypothesize that UDP-337 

glycosyltransferases (UGTs) duplication has been important for xenobiotic detoxification and the regulation 338 

of endobiotics during the transition to water surface niches. 339 

 340 

Conclusions 341 

The sequencing of G. buenoi genome provides a unique opportunity to understand the molecular 342 

mechanisms underlying adaptations to water surface life and the diversification that followed. In particular, 343 

gene duplication is known to drive the evolution of adaptations and evolutionary innovations in a variety of 344 

lineages including water striders [78-81]. The G. buenoi genome revealed a number of local and cluster 345 

duplications in genes that can be linked to processes associated with the particular life style of water 346 

striders. Some are shared with close related Hemiptera like for example, Beadex, an activator of 347 

Achaete/Scute complex known to play an important role in bristle development, present in two copies in 348 

the G. buenoi genome. Other genes and gene families duplications are unique, like Insulin Receptors 349 

involved in a range of processes including wing development, growth and scaling relationships and a 350 

number of life history traits such as reproduction [44, 47, 82]. Expansions in the cuticle protein families 351 

involved in desiccation resistance or genes repertoires involved in xenobiotic detoxification and endobiotic 352 

regulation pathways may have had an important role during the specialization in water surface habitats 353 

[69, 83]. The expansion of the opsin gene family and possible sensitivity shifts are also likely associated with 354 

particularities of polarized light sensitivity due to the water environment where G. buenoi specializes. The 355 

impact of these duplications on the adaptation of water striders to water surface habitats remains to be 356 

experimentally tested. G. buenoi, as a recently established experimental model, offers a range of 357 

experimental tools to test these hypotheses. The G. buenoi genome, therefore, provides a good 358 

opportunity to begin to understand how lineages can burst into diversification upon the conquest of new 359 

ecological habitats. 360 

 361 

Methods 362 

Animal collection and rearing 363 

Adult G. buenoi individuals were collected from a pond in Toronto, Ontario, Canada. G. buenoi were kept in 364 

aquaria at 25 °C with a 14-h light/10-h dark cycle, and fed on live crickets. Pieces of floating Styrofoam were 365 

regularly supplied to female water striders to lay eggs. The colony was inbred following a sib-sib mating 366 

protocol for six generations prior to DNA/RNA extraction.  367 

DNA and total RNA extraction 368 

Genomic DNA was isolated from adults using Qiagen Genome Tip 20 (Qiagen Inc, Valencia CA). The 180bp 369 

and 500bp paired-end libraries as well as the 3kb mate-pair library were made from 8 adult males. The 8kb 370 

mate-pair library was made from 6 adult females. Total RNA was isolated from 39 embryos, three first 371 

instar nymphs, one second instar nymph, one third instar nymph, one fourth instar nymph, one fifth instar 372 

nymph, one adult male and one adult female. RNA was extracted using a Trizol protocol (Invitrogen). 373 

Genome sequencing and assembly 374 

Genomic DNA was sequenced using HiSeq2500 Illumina technology. 180bp and 500bp paired-end and 3kb 375 

and 10kb mate-pair libraries were constructed and 100bp reads were sequenced. Estimated coverage was 376 

28.6x, 7.3x, 21x, 17x, 72.9x respectively for each library. Sequenced reads were assembled in draft 377 

assembly using ALLPATHS-LG [84] and automatically annotated using custom MAKER2 annotation pipeline 378 

[85]. (More details can be found in Supplementary Data).  Expected genome size was calculated counting 379 

from Kmer based methods and using Jellyfish 2.2.3 and perl scripts from 380 

https://github.com/josephryan/estimate_genome_size.pl. 381 
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Assessing genome assembly and annotation completeness with BUSCOs 382 

Genome assembly completeness was assessed using BUSCO [28]. The Arthropoda gene set of 2 675 single 383 

copy genes was used to test G. buenoi predicted genes.  384 

Orthology analyses 385 

OrthoDB8 (http://orthodb.org/) was used to find orthologues of G. buenoi (OGS 1.1) on 76 arthropod 386 

species. Proteins on each species were categorised using custom Perl scripts according to the number of 387 

hits on other eight arthropod species: Drosophila melanogaster, Danaus plexippus, Tribolium castaneum, 388 

Apis mellifera, Acyrthosiphon pisum, Cimex lectularius, Pediculus humanus and Daphnia pulex. 389 

 390 

Community curation of the G. buenoi genome 391 

International groups within the i5k initiative have collaborated on manual curation of G. buenoi automatic 392 

annotation. These curators selected genes or gene families based on their own research interests and 393 

manually curated MAKER-predicted gene set GBUE_v0.5.3.  394 
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Figure and figure legends 662 

 663 

 664 

Figure 1: Aspects of the biology of water striders. (A) Adult Gerris on water and zoom in on the bristles 
allowing this adaptation using Scanning Electron Microscopy (insets). (B) Gerris rowing on the water 
surface, illustrating the adaptive locomotion mode. (C) Water strider jumping using its long legs to escape 
the strike of a surface hunting fish. (D) Hoarding behavior in water striders consisting of multiples 
individuals feeding on a cricket trapped by surface tension. (E) Wing polymorphism in Gerris, here 
illustrated by three distinct morphs with regard to wing size. 
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 666 

 667 

 668 

Figure 2: Orthology comparison between Gerris buenoi and other arthropod species.  Genome proteins were 

clustered with proteins of other 12 arthropod species based on OrthoDB orthology.   
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 676 

 677 

Figure 3: Characterization of the three copies of the Insulin Receptor in Gerris buenoi. (A) Protein domain 
comparison between the three InRs of G. buenoi and the Human InR. (B) InR phylogenetic relationship 
amongst Insecta. Sequences were retrieved from ‘nr’ database by sequence similarity using BLASTp with 
search restricted to Insecta (taxid:50557). Each G. buenoi InR sequence was individually blasted and best 
250 hits were recovered. A total of 304 unique id sequences were retrieved and aligned with Clustal Omega 
[86-88] and a preliminary phylogeny was built using MrBayes [89] (one chain, 100 000 generations). Based 
on that preliminary phylogeny combined with Order and Family information, all isoforms could be 
confirmed and a representative(s) of each Order was selected (Supplementary Data). Final InR phylogeny 
tree was estimated using MrBayes: four chains, for 500 000 generations and include InR sequences from 
Acyrthosipon pisum (2), Aedes aegypti (1), Apis mellifera (2), Athalia rosae (2), Atta colombica (2), Bemisia 
tabici (1), Blatella germanica (1), Danaus plexippus (1), Diaphorina citri (1), Fopius arisanus (2), 
Halyomorpha halys (2), Nilaparvata lugens (2), Pediculus humanus (1), Tribolium castaneum (2) and 
Zootermopsis nevadensis (2). Color code: Blattodea (dark brown), Coleoptera (light brown), Diptera (red), 
Gerromorpha (blue), Hemiptera (except Gerromorpha)(purple), Hymenoptera (orange) and Phthiraptera 
(green). Branch support numbers at branches.   
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 678 

 679 
 680 

Figure 4: Genomic locus and global analysis of the Gerris buenoi opsin gene repertoire. (A) Structure of 681 

the scaffold containing the four G.buenoi long wavelength (LWS) opsins. (B) Retinal opsin repertoires of key 682 

hemipteran species and reconstructed opsin subfamily loss and expansion events along the hemipteran 683 

phylogeny. (C) Comparison of amino acid residues at the four tuning sites identified in the LWS opsins of 684 

Lepidoptera [58, 59]. Site numbers based on [58].  Numbers in parentheses are experimentally determined 685 

sensitivity maxima. Species abbreviations: Amel = Apis mellifera, Clec = Cimex lectularius, Dmel = Drosophila 686 

melanogaster, Gbue = Gerris buenoi, Hhal = Halyomorpha halys, Larc = Limenitis archippus,  Lart = Limenitis 687 

arthemis astyanax, Ncin = Nephotettix cincticeps, Ofas = Oncopeltus fasciatus. 688 

 689 

 690 

  691 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted January 3, 2018. ; https://doi.org/10.1101/242230doi: bioRxiv preprint 

https://doi.org/10.1101/242230


 18 

 

Figure 5: Phylogenetic tree demonstrating relationships of TWDL genes from Gerris buenoi, Drosophila 
melanogaster, Tribolium castaneum, Apis mellifera, Pediculus humanus corporis, Acyrthosiphon pisum, 
Bombyx mori, Cimex lectularius, and Oncopeltus fasciatus. G. buenoi showed a greater number of TWDL 
genes than other insects, with the notable exception of dipterans such as D. melanogaster. The tree was 
constructed using the neighbor-joining method in MEGA6 with Poisson correction and bootstrap replicates 
(10 000 replicates). 
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