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Abstract Motivation: Supervised machine learning techniques have tradi-
tionally been very successful at reconstructing biological networks, such as
protein-ligand interaction, protein-protein interaction and gene regulatory net-
works. Recently, much emphasis has been placed on the correct evaluation of
such supervised models. It is vital to distinguish between using the model to
either predict new interactions in a given network or to predict interactions
for a new vertex not present in the original network. Specific cross-validation
schemes need to be used to assess the performance in such different prediction
settings.
Results: We present a series of leave-one-out cross-validation shortcuts to
rapidly estimate the performance of state-of-the-art kernel-based network in-
ference techniques.
Availability: The machine learning techniques with the algebraic shortcuts
are implemented in the RLScore software package.

Keywords Network inference · Biological networks · Cross-validation ·
Kernel methods

1 Introduction

Biological systems can be understood as large collections of interacting parts,
such as genes, proteins, nucleic acids and small organic molecules. Compu-
tational techniques are required to model such biological networks, since the
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2 Michiel Stock et al.

Fig. 1 Overview of the network inference problems discussed in this work. (top) Bipartite
network prediction, where the vertices are of a different type, e.g. predicting interactions
between proteins and ligands. A toy network between five proteins and four ligands with the
interaction network is shown. Here, we distinguish four prediction settings: I (interactions),
R (rows), C (columns) and B (both). (bottom) Network prediction, where the vertices are
of the same type, e.g. protein-protein interaction prediction. A toy network of interactions
between five proteins is shown. Here, two prediction settings are distinguished: E (edges)
and V (vertices). We also present variants of both Settings I and E: Settings I0 and E0.
Here, the value of an interaction is set to zero, rather than being discarded. See main text
for details.

number of possible interactions is simply too large to explore experimentally.
Furthermore, high-throughput screenings are often noisy and not always repro-
ducible [Bonetta, 2010, Prinz et al., 2011]. Supervised machine learning tech-
niques have been successfully used for biological network inference for over a
decade [Ben-Hur and Noble, 2005, Vert, 2008, Ding et al., 2013, Schrynemack-
ers et al., 2013]. Such methods depart from an experimentally determined net-
work, a set of observed interactions, from which a statistical model is learned.
This model can subsequently be used to suggest missing interactions in the
given network or to predict interactions with new vertices. Despite the fact
that supervised network inference is arguably only a specific application of
standard regression or classification algorithms, there are some specific chal-
lenges in correctly estimating the performance of a learned model [Park and
Marcotte, 2012, Schrynemackers et al., 2013, Pahikkala et al., 2015].

The network used to build the model can be represented as an adjacency
matrix, with the rows and columns representing the vertices and the matrix
elements the values of the edges between the vertices. If the network is only
characterized by the presence or absence of an interaction, these values are bi-
nary and the matrix is often sparse; if the interaction strength is measured, for
example in the form of a binding affinity, the elements of the adjacency matrix
are real-valued. In supervised network inference, one also uses a description
of the vertices, typically in the form of numerical features (e.g. a molecular
fingerprint) or a similarity matrix (e.g. obtained by sequence alignment). Us-
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ing the example network and these vertex descriptors, a function is learned to
predict the interaction value for two given vertices.

A major problem in assessing the performance of models for supervised
network inference is that it is not unambiguously clear how to choose an inde-
pendent test set. Following the work of [Park and Marcotte, 2012], we distin-
guish different prediction settings, dependent on whether one is interested in
detecting new interactions between the vertices of the training network or pre-
dicting for one or two new vertices. The performance for each of those settings
should be assessed accordingly. For each of the settings, we present compu-
tational shortcuts to perform suitable leave-one-out (LOO) cross-validation,
allowing for extremely rapidly tuning and validating models for such settings.
These shortcuts relate to a kernel-based method for network inference, namely
two-step kernel ridge regression [Pahikkala et al., 2014, Romera-Paredes and
Torr, 2015], a state-of-the-art method for network inference.

The first set of cross-validation schemes applies to bipartite networks, i.e.
graphs for which the vertices can be subdivided in two disjoint sets and edges
only occur between vertices of different sets. Examples of bipartite network
inference include protein-ligand interaction prediction [Jacob and Vert, 2008,
Bleakley and Yamanishi, 2009, van Laarhoven et al., 2011, Gönen, 2012, Ding
et al., 2013, Li et al., 2016], mRNA-miRNA interaction prediction [Van Peer
et al., 2016] and nucleic acid-protein affinity prediction [Pelossof et al., 2015].
Suppose that one wants to build a model to predict protein-ligand interaction
strength. For a given protein-ligand pair, four predictions settings can be dis-
tinguished: (1) the protein and the ligand both occur in the training network,
(2) only the protein occurs in the training network, (3) only the ligand occurs
in the training network or (4) both vertices are new. For these four settings,
we define four respective leave-one-out cross-validation settings. In Setting I,
one interaction or value of the adjacency matrix is withheld at a time. In
Setting R, every row of the adjacency matrix is withheld once. Similarly, in
Setting C, every column is withheld one-by-one. Finally, in Setting B, every el-
ement of the adjacency matrix is withheld once and the model is trained using
the adjacency matrix with both the row and column containing that element
discarded. These settings are depicted in the top of Figure 1. Note that even
though the toy example illustrates network inference as a binary classification
task (predict presence/absence of an interaction), our settings can also be used
for regression tasks such as predicting binding affinities between molecules.

Some slightly different prediction settings arise for homogeneous networks,
i.e. networks for which the vertices are of the same kind. Inference problems
for these types of networks arise for protein-protein interaction networks [Vert
et al., 2007, Hamp and Rost, 2015, Liu et al., 2015, Schrynemackers et al.,
2015], gene regulatory networks [Huynh-Thu et al., 2010, Marbach et al., 2012,
Maetschke et al., 2014] and metabolic networks [Yamanishi et al., 2005, Geurts
et al., 2007]. Homogeneous networks are represented by square adjacency ma-
trices. In addition, the adjacency matrix is often symmetric (in case of protein-
protein interaction networks) or, more rarely, skew-symmetric (in metabolic
networks, an ingoing flux is always accompanied by a negative outgoing flux
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of equal magnitude). To accommodate for these properties, we suggest two
additional prediction settings for homogeneous networks: predicting for edges
within the network or predicting how new vertices will interact with the ex-
isting network. We refer to the former setting as Setting E. Here, we remove
one edge of the network at a time and predict for this edge. This edge is rep-
resented by two values in the adjacency matrix: one above (i.e. the element at
position (i, j)) and one below the diagonal (i.e. the element at position (j, i)).
To evaluate how new vertices interact with the network, we suggest Setting V.
Here, every vertex is removed once from the network and the interaction val-
ues of the remaining vertices with this left-out vertex are predicted. Leaving
out one vertex corresponds to removing the corresponding row and column of
the adjacency matrix. These two cross-validation settings are depicted in the
bottom part of Figure 1.

Biological networks have one more peculiarity to keep in mind: the oc-
currence of false negatives. When networks are constructed by experimentally
determining all the pairwise interactions, e.g. an assay of kinase inhibition,
all interactions are assumed to be correct within experimental error. Usually,
however, biological networks are obtained by aggregating positive interactions.
This means that there is often no experimental evidence for the absence of
an interaction. Missing links in a network are either true negative interac-
tions or false negative ones, i.e. the interaction between the vertices is simply
not observed. Several researchers [Elkan and Noto, 2008, Cerulo et al., 2010,
Schrynemackers et al., 2013, Liu et al., 2015] discussed how to train supervised
models in the absence of true negative interactions. To assess whether a model
can detect missing interactions within a network, we propose a small modifica-
tion of Settings I and E. Rather than withholding interactions, in Setting I0,
each interaction of the adjacency matrix is in turn set to zero, regardless
whether there was a non-zero interaction value or not. Thus, for every element
in the adjacency matrix, the value is set to zero, and a prediction is made for
that element using a model trained with the modified adjacency matrix. The
same principle is used in Setting E0. Both variants are also depicted in Fig-
ure 1. Here, the values of edges are in turn set to zero. Such cross-validation
schemes have been used, for example, by [van Laarhoven et al., 2011]. De-
pending on whether one can deal with false negatives or not, Setting I, resp.
Setting E, is more relevant than Setting I0, resp. E0.

The remainder of this work is structured as follows. Section 2 outlines the
two-step kernel method for network inference. In Section 3 we give the com-
putational shortcuts for cross-validation in network inference. In Section 3.1
the basic shortcuts for kernel ridge regression are presented. These are com-
bined in Sections 3.2 and 3.3 into the shortcuts for bipartite and homogeneous
networks, respectively. The shortcuts are illustrated on some benchmark bio-
logical networks in Section 4. Finally, in Section 5 we end this work with some
pointers for future research.

We use boldface small cap letters for vectors, e.g. a, and capital letters for
matrices, e.g. A. The i-th element of vector a is denoted by ai. We use Ai.

to denote the i-th row vector of A, A.j to denote the j-th column vector of
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A and Aij for the element at position (i, j) of matrix A. Similarly, for sets of
indices S ⊂ {1, . . . , n} and S ′ ⊂ {1, . . . ,m}, AS., A.S′ and ASS′ denote the
submatrices of A in which the rows, columns or both are indexed by S or S ′.

2 Supervised network inference with two-step kernel ridge
regression

2.1 Predicting bipartite networks

Supervised network inference starts from a set of labeled interactions. For
bipartite networks, one wants to predict an interaction between vertices of
two different kinds, e.g. between proteins and ligands or between miRNAs and
mRNAs. There are thus two object spaces, U and V. Suppose the training
set contains information on the subsets U = {ui | i = 1, . . . , n} ⊂ U and
V = {vj | j = 1, . . . ,m} ⊂ V of both types of objects. There is exactly
one observed label Yij for every pair (ui, vj) ∈ U × V , stored in the n × m
adjacency matrix Y . These labels can either be binary, indicating the presence
or absence of an interaction, or real-valued, indicating for example the strength
of an interaction or a kinetic parameter.

The goal of supervised network inference is to learn a predictive model
f : U × V → R that takes a pair of vertices as input and returns a value that
either estimates the interaction label or that can be interpreted as a score in-
dicating the confidence in the occurrence of an interaction. In kernel methods,
such a function is based on a feature description of both vertices by means
of kernel functions. Kernels are symmetric and positive-definite functions that
quantify the similarity between vertices. They are very popular in bioinfor-
matics because they can be used to implicitly represent structured objects
such as sequences, trees and graphs [Shawe-Taylor and Cristianini, 2004]. Let
k : U × U → R be the kernel function associated with vertices in U and, like-
wise, g : V × V → R be the kernel function associated with vertices in V. The
model to be learned is of the form

f(u, v) =
n∑

i=1

m∑
j=1

Wijk(u, ui)g(v, vj) , (1)

with W = [Wij ] an n×m matrix of weights. Models of this type are commonly
used for biological network inference, e.g. [Ben-Hur and Noble, 2005, Vert
et al., 2007, Jacob and Vert, 2008, van Laarhoven et al., 2011, Pahikkala et al.,
2015, Pelossof et al., 2015]. They arise naturally when using the Kronecker
kernel in a kernel-based learning algorithm such as a support vector machine
or kernel ridge regression. Such pairwise kernel methods achieve state-of-the-
art performance for many network inference tasks.

In this work, we will focus on the two-step kernel ridge regression method
for fitting the model of Eq. (1). This method was independently proposed
by [Pahikkala et al., 2014] and [Romera-Paredes and Torr, 2015], though
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similar methods have been proposed earlier in structural equation model-
ing [Bollen, 1996, Jung, 2013]. We introduce the Gram matrices:

K = [k(ui, uj)] and G = [g(vi, vj)] .

The parameters for two-step kernel ridge regression are obtained as

W = (K + λuI)−1Y (G+ λvI)−1 , (2)

with I the identity matrix and λu and λv two regularization parameters that
have to be tuned. Equation (2) can be motivated in several ways. Firstly, it
is obtained when, as the name suggests, two successive kernel ridge regression
steps are executed: once to generalise to new objects in U and once to generalise
to new objects in V. Secondly, Eq. (2) can also be seen as solving the inverse
problem of finding the parameters W of model (1) to explain the observed
labels Y . The regularization is then required to make this inverse problem
well-posed, such that tiny fluctuations in the labels do not result in huge
changes in model behavior. Regardless of how two-step kernel ridge regression
is derived, it is shown theoretically to be a well-founded method [Stock et al.,
2017].

The associated matrix of predictions, F = [f(ui, vj)], can easily be com-
puted as

F = K(K + λuI)−1Y (G+ λvI)−1G (3)

= HkY Hg , (4)

where Hk = K(K + λuI)−1 and Hg = G(G + λvI)−1 are further on referred
to as the hat matrices. Note that given the eigenvalue decompositions of the
Gram matrices, i.e.

K = UΛU> and G = V ΣV > ,

the hat matrices can easily be obtained as

Hk = UΛ(Λ+ λuI)−1U> and Hg = V Σ(Σ + λvI)−1V > ,

for any values of the regularization parameters. Note that in the above compu-
tations one only has to invert diagonal matrices, which can be done by simply
inverting the element on the diagonal. The eigenvalue decompositions can be
computed with a time complexity of O(n3 + m3). Given this decomposition,
the model weights and the predictions can be obtained for any value of the
regularization parameters by matrix multiplication.
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2.2 Predicting homogeneous networks

A special, yet important case occurs when interactions between objects of the
same kind are predicted, e.g. protein-protein interaction networks, metabolic
networks or gene regulatory networks. Here, there is only one set of objects
U ⊂ U and the adjacency matrix Y is square. The equations hence simplify to

f(u, u′) =
n∑

i=1

n∑
j=1

Wijk(u, ui)k(u′, uj) (5)

W = (K + λuI)−1Y (K + λuI)−1 (6)

F = HkY Hk . (7)

In some cases, some special structure can be imposed on the adjacency
matrix. When the label of every pair (u, u′) is the same as the label of (u′, u),
this is called a symmetric interaction. Such relations occur for example in
protein-protein interaction networks. For symmetric relations, we expect that
f(u, u′) = f(u′, u) for any u, u′ ∈ U . Likewise, skew-symmetric prediction
functions satisfy that f(u, u′) = −f(u′, u) for any u, u′ ∈ U . Skew-symmetric
functions are of relevance when modelling gene regulatory networks and flows
in a metabolic network.

Whenever Y is symmetric, the learned prediction function will also be
symmetric, i.e. W = W>. This can be seen from Eq. (6). The same holds
for skew-symmetric adjacency matrices, where a skew-symmetric adjacency
training network will lead to parameters that satisfy W = −W>.

3 Shortcuts for leave-one-out cross-validation

Two-step kernel ridge regression is, as implied by its name, merely perform-
ing kernel ridge regression twice. As such, traditional leave-one-out cross-
validation shortcuts can be used as building blocks towards the shortcuts for
the more complex network cross-validation schemes. In Section 3.1, the short-
cuts for kernel ridge regression are presented. Sections 3.2 and 3.3 present
the shortcuts for the network cross-validation settings depicted in Figure 1.
The formal derivations of these shortcuts are presented in the supplementary
materials.

3.1 Basic shortcuts for leave-one-out cross-validation

The traditional leave-one-out shortcuts can be applied for any model that
minimizes a squared loss and where a vector of labels Yi. (here rows from the
adjacency matrix) and the corresponding vector of predictions Fi. are linked
through a hat matrix [Wahba, 1990]:

Fi. = HYi. .
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Fig. 2 Toy regression problem with 10 instances. The i-th instance has label yi and a single
feature xi. The blue line is a ridge regression model fit on the data, the red line is the fit
without the i-th instance and the green line is the fit in which the label of the i-th instance
is set to zero.

Crucially, the hat matrix depends only on the feature descriptions of the in-
stances and not on the labels. Popular methods such as (kernel) ridge regres-
sion, splines, spectral regularization methods and extreme learning machines
fall into this category. Figure 2 shows a toy regression problem to illustrate
the different shortcuts.

The following theorem gives the shortcut to compute the corresponding
predictions for an adjacency matrix with the rows indexed by S removed.

Theorem 1 For an n×m matrix of labels Y and an n×n hat matrix H, the
elements indexed by the set S ⊂ {1, . . . , n} of the leave-S-out split are given
by the |S| ×m matrix

FHO(Y,H, F,S) = (I−HSS)−1(FS. −HSSYS.) .

The proof of the theorem is given in the supplementary materials. The main
idea behind is that if one replaces the rows indexed by S by the corresponding
rows of FHO(Y,H, F,S) in the label matrix, the corresponding predictions
using a model trained using these labels again yield FHO(Y,H, F,S). This is
illustrated in Figure 2, in which the LOO prediction for instance i coincides
with the corresponding prediction of the model fitted without the i-th instance.

Rather than removing an instance, one can also opt for setting the value
to zero. Such setting is relevant to assess whether the model can detect false
negatives, i.e. whether a zero should be a one in the adjacency matrix. We use
the term zero-one-out (ZOO) for the scheme in which models are fitted using
data where the labels are set to zero one-by-one. The following theorem gives
a computational shortcut to compute the predictions for an adjacency matrix
with an arbitrary number of rows set to zero.
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Theorem 2 For an n×m matrix of labels Y and an n×n hat matrix H, if the
elements indexed by the set S ⊂ {1, . . . , n} are set to zero, the corresponding
predictions are given by the |S| ×m matrix

FZO(Y,H, F,S) = FS. −HSSYS. .

3.2 Leave-one-out in bipartite networks

Table 1 The different shortcuts for bipartite networks. As shown in Figure 1, the settings I
(interactions), R (rows), C (columns) and B (both) are considered. The variation of Setting
I, Setting I0, is when a single element at position (i, j) is set to zero, rather than being
withheld. For bipartite networks F = HkY Hg .

Setting shortcut

I F I
ij =

Fij −Hk
iiH

g
jjYij

1 −Hk
iiH

g
jj

I0 F I0
ij = Fij −Hk

iiH
g
jjYij

R FR
i. =

Fi. −HiiYi.H
g

1 −Hk
ii

C FC
.j =

F.j −Hg
jjH

kYj.

1 −Hg
jj

B
FB
ij = (Fij −Hk

iiYi.H
g
.j −Hg

jjH
k
i.Y.j

+Hk
iiH

g
jjYij)(1 −Hk

ii)
−1(1 −Hg

jj)−1

Table 1 shows the shortcuts for the different cross-validation settings for
bipartite networks. The shortcuts for Settings I and I0 can easily be deduced
by transforming the network prediction problem into a standard prediction
problem using the vec operator, which stacks the columns of a matrix into a
vector. As such, Eq. (3) becomes

vec(F ) = (Hg ⊗Hk)vec(Y ) , (8)

with ⊗ the Kronecker product. We have made use of the identity vec(AXB) =
(B> ⊗ A)vec(X), which holds for any conformable matrices A, B and X.
Theorems 1 and 2 then yield the shortcuts for Settings I and I0. The shortcuts
for the Settings R, C and B can be obtained by considering the two steps of
two-step kernel ridge regression separately and applying Theorem 1 on the
rows, columns or both, respectively.

The shortcuts for bipartite networks have an approximate time complexity
of O(nm), given that the hat matrices and the prediction matrix have been
precomputed. In the case of Settings R, C and B, the matrices HkY and
Y Hg, intermediate results towards computing F , should also be kept in cache
to reach this time complexity.
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Table 2 The different shortcuts for homogeneous networks. As shown in Figure 1, Settings
E (edges) and V (vertices) are considered. The shortcuts for Setting E can be used for
symmetric (S) and skew-symmetric (SS) matrices. The variation of Setting E, Setting E0,
is when the label of the edge from vertex i to vertex j is set to zero, rather than being
withheld. For homogeneous networks F = HkY Hk.

Setting shortcut

E (S) FE
ij =

Fij − Yij(Hk
iiH

k
jj + (Hk

ij)2)

1 − (Hk
iiH

k
jj + (Hk

ij)2)

E (SS) FE
ij =

Fij − Yij(Hk
iiH

k
jj − (Hk

ij)2)

1 − (Hk
iiH

k
jj − (Hk

ij)2)

E0 (S) FE0
ij = Fij − Yij(Hk

iiH
k
jj + (Hk

ij)2)

E0 (SS) FE0
ij = Fij − Yij(Hk

iiH
k
jj − (Hk

ij)2)

V FV
i. = FLOO

i. Hk + Hk
i.

FLOO
i. Hk

.i − FLOO
ii

1 −Hk
ii

- FLOO
i. =

HkY −Hk
iiYi.

1 −Hk
ii

3.3 Leave-one-pair-out in homogeneous networks

Homogeneous networks impose additional dependencies in the adjacency ma-
trices. To derive the shortcuts for leaving out edges, Eq. (7) can also be stated
in vector form as Eq. (8). By leaving out the values at positions (i, j) and (j, i)
and using the properties of symmetry and skew-symmetry, the shortcuts for
Setting E can be derived. The shortcut for Setting V can be obtained by apply-
ing the shortcut of Theorem 1 twice. The shortcuts for homogeneous networks
are summarized in Table 2. Given that F and Hk are precomputed, these
leave-out-out adjacency matrices can be computed with a time complexity of
O(n2), i.e. constant time complexity for each element.

4 Experiments

In the experiments we will illustrate the speed of the leave-one-out shortcuts
provided in this work. To this end, we use four benchmark datasets of bipartite
protein-ligand interaction networks collected by [Yamanishi et al., 2008]1 and
one homogeneous protein-protein interaction dataset from [Vert et al., 2007].
These datasets are described in Table 3. In Section 4.1 we compare the short-
cuts for the bipartite networks with Kronecker kernel ridge regression, whereas
in Section 4.2 we study the scalability of the shortcuts for homogeneous net-
works.

1 Available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget
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4.1 Bipartite networks

In this section we illustrate the leave-one-out shortcuts when choosing the op-
timal regularization parameters for bipartite network prediction. We use the
four protein-ligand datasets of [Yamanishi et al., 2008]. Each dataset concerns
a different class of protein targets: enzymes (e), G protein-coupled receptors
(gpcr), ion channels (ic) and nuclear receptors (nr). The interactions are given
in the form of a binary adjacency matrix. Both the drugs and targets come
along with a respective similarity matrix. For the drugs, common substruc-
tures are calculated using a graph alignment algorithm. The Jaccard similarity
measure is used to obtain a drug similarity based on these substructures. The
similarity matrix of the targets is a normalized version of the scores obtained
by Smith-Waterman alignment [Smith and Waterman, 1981].

We compare two-step kernel ridge regression with Kronecker kernel ridge
regression. Kronecker kernel ridge regression has only one regularization pa-
rameter λ, whereas two-step kernel ridge regression has two regularization pa-
rameters, λu and λv. Hence, if the optimal regularization parameter is sought
using grid search of d values, two-step kernel ridge regression requires d2 com-
putations of the performance rather than d for Kronecker ridge regression. For
this reason, we also consider a version of two-step kernel ridge regression where
λu = λv = λ, such that also a one-dimensional grid of hyperparameters has
to be explored. This trade-off results in a faster tuning at the cost of poten-
tially obtaining a slightly inferior model. In the experiments, the regularization
parameters λ, λu and λv are selected from {10−7, 10−6, . . . , 105, 106}.

For each dataset, we perform the leave-one-out cross-validation for Set-
tings I, R, C and B for the different values of the regularization parameters.
The prediction matrices obtained using cross-validation are evaluated using
micro-wise AUC (i.e. AUC computed over the complete adjacency matrix).
For Setting I, a computational shortcut is available for all models. For the
remaining settings, only two-step kernel ridge regression has the respective
shortcuts. Hence, in the case of Kronecker kernel ridge regression, at least one
eigenvalue decomposition has to be performed when withholding a protein,
ligand or both.

Table 4 shows the best performances for both methods, as well as the run-
ning times for performing the complete cross-validation and hyperparameter

Table 3 Overview of the different biological networks discussed in this work. We use four
bipartite networks, enzymes (e), G protein-coupled receptors (gpcr), ion channels (ic) and
nuclear receptors (nr), and one homogeneous protein-protein interaction (ppi) network.

dataset e gpcr ic nr ppi
# targets 664 95 204 26 769
# drugs 445 223 210 54 -
fraction of interactions (%) 0.99 3.00 3.45 6.41 1.25
median degree targets 2 3 5 3 7
median degree drugs 2 2 3 1 -
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Table 4 Overview of the performance and running time using Kronecker kernel ridge re-
gression (KK), two-step kernel ridge regression (TS) and the two-step method with a single
regularization parameter (TSS) for the different drug-target datasets and cross-validation
settings. One experiment could not be completed in less than three days of running time. See
main text for details. All experiments were performed using a basic Numpy implementation
of the models and cross-validation shortcuts. All experiments were run on an AMD Opteron
server (2500.159 MHz).

best performance (AUC) running time
data e gpcr ic nr e gpcr ic nr

set. met.
I KK 0.964 0.948 0.972 0.866 7.64s 0.22s 0.54s 0.01s
I TS 0.964 0.942 0.971 0.886 68.68s 3.14s 5.645s 0.215s
I TSS 0.964 0.942 0.961 0.886 5.96s 0.22s 0.44s 0.02s
R KK 0.945 0.892 0.947 0.737 1.57h 12.88s 91.14s 0.24s
R TS 0.948 0.910 0.948 0.783 68.79s 3.17s 5.645s 0.205s
R TSS 0.948 0.900 0.948 0.724 5.93s 0.22s 0.43s 0.01s
C KK 0.843 0.871 0.808 0.840 0.69h 81.56s 97.13s 1.01s
C TS 0.851 0.872 0.808 0.852 68.53s 3.12s 5.745s 0.24s
C TSS 0.846 0.871 0.803 0.848 5.94s 0.22s 0.43s 0.02s
B KK - 0.823 0.769 0.711 ¿3d 2.15h 5.48h 26.5s
B TS 0.828 0.834 0.770 0.727 98.6s 3.855s 7.39s 0.25s
B TSS 0.814 0.827 0.770 0.707 7.95s 0.27s 0.54s 0.01s

grid search. For the different settings and datasets, we can observe that both
methods have a similar performance, with two-step kernel ridge regression of-
ten slightly outperforming Kronecker kernel ridge regression. For all methods,
Setting B is the hardest and Setting I the easiest, as expected.

When comparing the running times for model selection, we can observe the
computational advantage of using the shortcuts. For Setting I, both Kronecker
and two-step kernel ridge regression have a holdout shortcut, hence both are
fast. Kronecker kernel ridge regression has to iterate over a set of fifteen reg-
ularization values, while two-step kernel ridge regression has to search a grid
of 15 × 15 regularization parameters, making the latter slower. Both methods
are very fast in practice, however, since the main bottleneck is computing the
eigenvalue decomposition of the two Gram matrices. For Settings R and C,
there is only an efficient algorithm for two-step kernel ridge regression. For
datasets larger than dataset nr, two-step kernel ridge regression is much faster
than Kronecker kernel ridge regression. For Setting B two-step kernel ridge
regression is several magnitudes faster compared to Kronecker kernel ridge
regression. For the latter method it was not even possible to perform this
cross-validation for the e dataset within three days.

In the supplementary materials, we show how the performance of the dif-
ferent methods changes with the different regularization parameter(s). Two
conclusions can be drawn from these experiments. Firstly, the performance
is quite sensitive to the chosen regularization parameters. Secondly, the opti-
mal regularization parameters are quite different, depending on the prediction
setting that is evaluated. This illustrates the importance of the four cross-
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validation settings discussed in this work. Using the shortcuts, the best model
for the given task can be obtained.

4.2 Homogeneous networks

In this section, we explore how the computing time scales for performing cross-
validation in homogeneous networks. We again use the four protein-ligand
networks of the previous settings, though they are turned into eight square
matrices by either multiplying a label matrix with its transpose or multiplying
the transpose of an adjacency matrix with the adjacency matrix itself. These
represent the number of molecules two proteins or ligands have in common as
binding partner. The goal here is to predict for a given molecule how many
indirect interactions there are with another molecule of the same type. Though
this setting is arguably somewhat artificial, it is well suited to demonstrate
our shortcuts. The values of the new label matrices are variance-stabilized by
means of a square root transformation.

In addition to the protein-ligand networks, we also use the protein-protein
interaction (ppi) network of [Vert et al., 2007]. In this work, the proteins are
described using seven different Gram matrices, encoding information on the
location, expression, phylogeny, etc. Following the original paper, we summed
these kernel matrices as this resulted in the best performing model.

For the different datasets, we measured the time to train a model (i.e. com-
pute the hat matrix H), to make a prediction (i.e. compute the prediction
matrix F given H) and to compute the leave-one-out matrices for Settings E
and V using our shortcuts. Every computation was done for values of λ in
{10−5, 10−4, . . . , 104, 105} and we computed the average time over the 11 ex-
periments.

Figure 3 shows how the computing time scales with the number of vertices
in the network. Computing the hat matrix is dominated by the eigenvalue
decomposition of the hat matrix and takes the most time. Computing the pre-
diction matrix given the hat matrix takes the least time as this only involves
multiplying three matrices. The time to compute the cross-validation matri-
ces takes an intermediate amount of time, though for larger networks these
times seem to converge asymptotically to the prediction time. For reference,
we added the times it would take to naively compute the cross-validation ma-

trices. For Setting E, resp. Setting V, we took
(
n
2

)
= n(n−1)

2 , resp. n, times
the training time plus one time the prediction time. Again, our shortcuts are
many orders of magnitude faster than computing the cross-validation naively.
We refer to the supplementary materials for an overview of the performance
of the different models.

5 Discussion and conclusion

In this work we have presented a series of algebraic shortcuts for leave-one-out
cross-validation for the biological network inference problem. These shortcuts
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Fig. 3 Time for training, predicting and leave-one-out computation in several homogeneous
networks. For the training time, the time to construct the hat matrix is taken. Construct-
ing the leave-one-out matrices for Settings E and V using the provided shortcuts takes less
time than training, but more than for computing the prediction matrix. The time for com-
puting leave-one-out matrices naively is estimated from the training and prediction times.
Experiments performed on a MacBook Pro 2.5 GHz Intel Core i5.

are a valuable tool for selecting the best model and for accurately estimating
the model performance on new data. The shortcuts apply to a simple, though
powerful network inference model, two-step kernel kernel ridge regression. Ker-
nel methods are generally liked by the computational biology community, both
because they are strong learners and because prior knowledge can naturally be
assimilated. Given the eigenvalue decomposition of the Gram matrices of the
vertices, leave-one-out cross-validation can be performed for any of the dis-
cussed settings and any values of the regularization parameters in roughly the
time needed to make a prediction of the original adjacency matrix. Leave-one-
out cross-validation provides nearly unbiased, though sometimes high variance
estimates of the generalization error of a model. This is because all the models
are trained using largely the same data. Our shortcuts can easily be extended
to leaving out larger blocks of the adjacency matrix using Theorem 1.

Rather than developing new machine learning techniques to learn from the
given small interaction networks, we believe that the largest progress in biolog-
ical network inference will be made by using larger datasets and constructing
better feature representations for the vertices. Randomized algorithms allow
for approximating the decomposition of huge Gram matrices [Gittens and Ma-
honey, 2013] or constructing a nonlinear feature description directly [Huang
et al., 2015]. Recent advances in convolutional neural networks have resulted
in intriguing ways to generate representations for molecules [Duvenaud et al.,
2015], proteins [Jo et al., 2015] and nucleic acids [Alipanahi et al., 2015]. In
such cases, one would prefer to work in the primal form and the hat matrix is
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hence computed as

H = Ψ(Ψ>Ψ + λI)−1Ψ> ,

with Ψ a feature matrix. We are convinced that the framework discussed in
this work will remain relevant in light of these exciting developments.
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