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Abstract 
Compiling the catalogue of genes actively involved in tumorigenesis (known as cancer drivers) is an 
ongoing endeavor, with profound implications to the understanding of tumorigenesis and treatment of 
the disease. An abundance of computational methods have been developed to screening the genome for 
candidate driver genes based on genomic data of somatic mutations in tumors. Most methods rely on 
detecting genes displaying excessive mutation rates compared to some background model. This approach 
is susceptible to false discoveries, due to its sensitivity to the assumptions of the background model, such 
as the need to account for hyper-mutated samples, cancer types and genomic loci. We present a 
fundamentally different approach. Instead of focusing on the number of mutations, we examine their 
content, and their expected effects on the functions of genes. We use a machine-learning model to predict 
functional effect scores of somatic mutations. For each gene, we compare the distribution of observed 
effect scores with the distribution expected at random, and report genes showing significant bias. By 
applying our framework on the ~20k protein-coding human genes, we detected 593 genes showing 
significant bias towards harmful mutations in the context of cancer. In contrast, we found only 6 significant 
genes biased in the opposite direction. The list of 593 genes, constructed without any prior knowledge of 
their role in cancer, shows an overwhelming overlap with known cancer driver genes, but also highlights 
many overlooked genes. These overlooked genes are promising candidates for novel cancer drivers. Our 
model is generic and is not restricted to the context of cancer. Applying the same framework to data of 
human-population genetic variation reveals the opposite trend. Unlike cancer, which is dominated by a 
bias towards harmful mutations, long-term evolution in healthy individuals results a bias towards less 
harmful mutations. The underlying assumptions of our framework are minimal, making it ideal for 
analyzing genetic data in search of genes subjected to positive or negative selection. It is fully open 
sourced and available for installation and use. Our framework presents a substantial development 
towards the application of state-of-the-art machine-learning algorithms in genetic studies.   
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1. Introduction 

Cancer is a genetic disease, dominated by somatic genetic 

mutations altering key cellular processes such as DNA 

repair and cell cycle, which lead to genomic instability and 

high mutation rate of cancerous cells1,2. Most arising 

somatic mutations are considered passenger mutations, 

whereas only a small fraction of them have a direct role in 

oncogenesis, and are therefore referred to as cancer driver 

mutations3-6. The study of cancer drivers can be conducted 

in various resolutions: i) single genetic variants (i.e. driver 

mutations)7, ii) clusters of variants in specific regions of 

genes8, iii) whole genes/proteins (i.e. driver genes)9, and iv) 

pathway networks and cellular processes10-12. Most 

experimental and computational efforts have focused on 

whole genes and proteins involved in induction and 

progression of tumors. 

Most driver genes are protein-coding13,14. Therefore, most 

studies focus on somatic mutations in coding regions15. 

Most somatic mutations in coding regions are non-

synonymous (i.e. missense or nonsense), whereas germline 

mutations that have fixed during human evolution tend to 

be synonymous16,17.  

Compiling a comprehensive catalogue of cancer driver 

genes is of utmost importance for the study and treatment 

of cancer. This effort led to the Cancer Gene Census 

project14,17, a comprehensive catalogue of the currently 

known genes causally implicated in cancer. Other 

catalogues combining experimental validation and 

literature support for driver candidates include projects 

like Candidate Cancer Gene Database (CCGD)18. In recent 

years, cancer genomic research has benefited from ever 

increasing quantities (and quality) of human molecular 

data. The Cancer Genome Atlas (TCGA) is a flagship project 

that provides the most comprehensive resource of cancer 

genetic data, currently covering >10,000 tumor samples in 

over 30 cancer types19. In the presence of such rich data, 

the expansion of these catalogues in an ongoing 

process20,21. 

Numerous computational frameworks have been designed 

for the purpose of identifying genes suspected as 

drivers9,22,23. Most of these frameworks are based on the 

premise that driver genes are recurrent across samples, 

and are therefore recognized by excessive numbers of 

somatic mutations. In contrast, passenger mutations are 

expected to appear at random. This computational 

approach has identified many key drivers, but it neglects 

the specific properties of somatic mutations, most notably 

their functional impact. It is to be expected that driver 

genes will not only show higher number of mutations, but 

also mutations that are, on average, more harmful to 

protein function24. Furthermore, assessing whether a gene 

shows an excessive number of mutations must be 

considered in view of a null background model. Since 

cancer is characterized by order-of-magnitudes variability 

in mutation rate among cancer types22, samples and 

genomic loci, the resulted candidate drivers are highly 

sensitive to modeling choices, leading to inconclusiveness 

and controversy9.   

We propose an alternative conceptual approach that takes 

into account the exact properties of each coding mutation. 

Instead of counting mutations, we suggest to evaluate their 

functional impact, seeking genes with significant bias 

towards damaging mutations. We define genes with excess 

of damaging mutations to be “alteration promoting”, 

which are, in the context of cancer genomics, promising 

driver candidates. In contrast, long-term human evolution 

should mostly foster “alteration rejecting” genes. A gene 

will be said to be showing “alteration bias” if it is either 

alteration promoting or alteration rejecting.  

In this study, we introduce a novel statistical framework for 

identifying genes with alteration bias. Our framework 

relies on a machine-learning prediction model that assigns 

effect scores to mutations in coding regions. We 

formulated a per-gene background model for the 

distribution of effect scores expected at random. By 

comparing this null background distribution with the effect 

scores of the observed mutations, we can detect genes 

demonstrating significant functional alteration bias, i.e. 

alteration promoting or alteration rejecting genes. We 

named our novel framework FABRIC, standing for 

Functional Alteration Bias Recovery In Coding-regions. 

We applied our framework on two datasets. First, we 

extracted from TCGA’s public dataset a list of almost 3M 

somatic mutations across the coding regions of many 

samples and cancer types. Applying our framework on this 

dataset revealed genes showing alteration bias in the 

context of cancer. These are strong candidates for driver 

genes. We also applied the same pipeline on a second 

dataset of almost 5M germline variants in the human 

population, extracted from The Exome Aggregation 

Consortium (ExAC)25. We used this dataset in order to 

validate our framework, and for revealing genes under 

evolutionary selection in the human population.  

 

2. Results 

2.1 statistical framework for detecting alteration 

promoting and alteration rejecting genes 
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We designed a computational framework to systematically 

scan for genes showing alteration bias in the context of 

cancer and in general (Fig. 1). We analyze each protein-

coding gene independently, extracting all the SNPs within 

the coding regions of that gene (Fig. 1a). We then use a pre-

trained machine-learning model to assign functional effect 

scores to each SNP (Fig. 1b), which measure the predicted 

effects of those variants on the protein function. 

Synonymous mutations are assigned the score of 1 (gene 

retains full function), nonsense mutations are assigned 

with 0 score (gene retains no function), and missense 

mutations are fed through the machine-learning model to 

obtain a score between 0 to 1 (intuitively, this number can 

be thought of as the probability of the protein to retain its 

function given the mutation). Importantly, this machine-

learning model was trained in advance on an independent 

dataset (extracted from ClinVar26; see Online Methods), 

prior to its application in this framework. 

Independently to the calculation of scores for the observed 

mutations, we construct a background distribution for the 

expected scores, given that mutations occur at random by 

a uniform distribution across the gene (Fig. 1c). This 

background model is precise, and calculated individually 

for each gene. We then detect significant deviations 

between the null background distributions to the observed 

effect scores (Fig. 1d). We calculate z-values to measure 

the strength of deviation between the observed and 

expected scores, and, using routine statistical tools (Online 

Methods), we derive exact p-values. If the average z-value 

of a gene is significantly negative, it means the observed 

scores are significantly lower than expected. This indicates 

they are more harmful to the gene function than expected 

by the same number of mutations randomly distributed 

along the gene’s coding sequence. In such case, the gene is 

deemed to be alteration promoting. Symmetrically, 

significant positive z-values indicate alteration rejecting 

genes. 

It should be noted that our use of the terms “harmful” and 

“harmless” in this work refer solely to gene and protein 

functions at the molecular level, and not to clinical 

outcomes. If a gene’s function is damaged by some 

mutation, we will regard this mutation as harmful (at the 

molecular level), whether or not the function of the gene 

has clinical significance (at the organism’s level). 

The main analysis in this work was conducted on a dataset 

of somatic mutations in cancer obtained from TCGA19, 

comprised of 3,175,929 somatic mutations across 10,182 

samples in 33 cancer types (see Online Methods). From the 

entire dataset we extracted 2,956,550 SNPs; 2,235,884 of 

them were in coding regions, and resulted 2,238,945 gene 

effects. The number of gene effects is slightly higher than 

the number of coding-region SNPs as, in rare cases, the 

same mutation may affect overlapping genes. 

 

2.2 Precise per-gene background model 

Primary concern in the development of this framework was 

designing a background model that is simple and 

straightforward, and also strict and robust enough to avoid 

false discoveries. In particular, a robust statistical 

background model needs to absorb noise and possible 

errors of the effect score predictor, which is machine-

learning based. The key idea is to use the exact same pre-

trained predictor for the extraction of effect scores both in 

the observed mutations and in the background model. 

Additionally, it is important to account for the exact 

number of observed mutations, and their tendency 

towards specific nucleotide substitutions. Accounting for 

these factors is critical, as it is well established that 

mutation rate and nucleotide substitution profiles vary 

substantially among cancer types, samples and genes27,28. 

We achieve this by considering the effects of all possible 

mutations within each gene. Notably, our approach 

ensures that our analysis is insensitive to gene lengths. 

For illustration purposes, let us focus on a particular gene: 

TP53, one of the most studied cancer driver genes29. Let us 

examine the analysis details of this particular gene, as a 

way to demonstrate the detection of genes showing 

alteration bias by our framework in general. Of the ~3M 

somatic mutations extracted from TCGA, 3,167 SNPs were 

in coding regions of the TP53 gene. These SNPs are 

categorized as follows: 92 synonymous mutations, 2,563 

missense mutations, and 512 nonsense mutations. 

Synonymous and nonsense mutations are always assigned 

an effect score of 1 and 0, respectively. The average score 

of the 2,563 missense mutations in TP53 was 0.02. 

Altogether, the average score of the 3,167 mutations 

observed in TP53 was 0.05. 

In order to tell whether an average score of 0.05 is 

significantly low (indicating an alteration promoting gene), 

it has to be compared against some background model. 

The designed background model is straightforward (Fig. 2). 

First, the empirical single-nucleotide substitution 

frequencies of the observed SNPs are calculated (Fig. 2a). 

Each of the 4 DNA nucleotides can be substituted to each 

of the other 3, resulting a matrix with 12 entries summing 

up to 100%. 
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Fig. 1 Framework overview. (a) All somatic mutations within a particular gene are collected from a variety of different samples 

and, potentially, different cancer types. SNPs within protein-coding regions are analyzed to study their effects on the protein 

sequence (synonymous, missense or nonsense), while all other mutations (indels, or mutations outside coding regions) are 

discarded. (b) Using a pre-trained machine-learning model, we assign each mutation a score for its effect on the protein 

function (lower scores indicate mutations that are more likely harmful). (c) In parallel, we consider all possible mutations that 

could have affected the gene, and assign each of them a similar score, using the same model, in order to construct a precise 

null background score distribution. The background model is specific for each gene, and also takes into account the frequency 

of each of the 12 possible nucleotide substitutions in the observed mutations. (d) By comparing the observed scores in (b) to 

their expected distribution calculated in (c), we can calculate z-values for the mutation and a p-value for each gene. Genes with 

scores that are significantly lower than expected indicate the promotion of harmful alterations, and are suspected as cancer 

driver genes. 
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Fig. 2 Background model (TP53 as an example). (a) Our final dataset contains 3,167 observed SNPs in coding regions of the TP53 

gene. A 4x4 matrix of single-nucleotide substitution frequencies was calculated based on these observed mutations. Note that 

this matrix is very non-symmetric (e.g. among the 3,167 observed mutations in TP53, 25.3% of the substitutions are G>A, but 

only 2.9% are A>G). (b) For each of the 12 possible nucleotide substitutions, an independent background effect score distribution 

was calculated, by considering all possible substitutions within the coding region of the gene and processing them with our 

effect score prediction model (the same one used to calculate the scores of the observed mutations). (c) By mixing these 12 

distributions with the weights of the substitution frequencies, we obtained the gene’s final score distribution, used as the null 

background model for that specific gene. (d) According to the null background distribution, we would expect mutations within 

the TP53 gene to have a mean score of 0.49. However, the observed mean score of the 3,167 mutations is 0.05, 1.05 standard 

deviations below the mean (p-value < E-300). 
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Independently to the calculation of this matrix, for each of 

the 12 possible substitutions, a background effect score 

distribution is computed by considering all possible SNPs of 

that substitution (Fig. 2b). For example, the A-to-G 

substitution (denoted A>G) has 233 possible distinct 

occurrences in the sequence of the TP53 gene (because the 

A nucleotide appears exactly 233 times in the coding region 

of that gene). Of these, 92 substitutions to G will result a 

synonymous mutation (assigned with an effect score of 1), 

141 will result a missense mutation, and 0 will result a 

nonsense mutation. The mean score of the 141 missense 

mutations, calculated by the same predictor, is 0.16. 

Overall we get that if an A>G substitution occurred in 

random within the coding region of the TP53 gene, the 

expected value of the effect score would be 0.49. A similar 

calculation reveals that the standard deviation of the 

background distribution of the A>G substitution is 0.44 (the 

full distribution is plotted in Fig. 2b). An identical 

calculation is made for all other 11 possible substitutions 

within the gene. 

The final null background distribution, against which the 

effect scores of the observed mutations is compared, is a 

simple mixture of these 12 substitution-specific 

distributions, weighted by their observed frequencies, as 

calculated in the first step (Fig. 2c; see Online Methods for 

the mathematical formulation). The resulted mixed score 

distribution for the TP53 gene has an expected value of 

0.49 and standard deviation of 0.42. Intuitively, the 

background model described the effect score distribution 

we would expect to see if mutations within the gene arose 

by a uniform random distribution across its coding 

sequence, given the observed tendency of mutations 

towards specific nucleotide substitution frequencies. 

Finally, the scores of the observed mutations within the 

gene are compared against its null distribution (Fig. 2d). It 

appears that a mean score of 0.05 is indeed very low, with 

overwhelming significance (p-value < E-300), indicating 

that the TP53 gene is a major alteration promoting gene in 

cancer, as we would expect from such a dominant 

oncogene. 

 

2.3 A catalogue of alteration promoting genes in cancer 

Our analysis, illustrated above for the TP53 gene, was 

conducted over the entire set of coding human genes, 

independently for each gene. Of the 17,828 analyzed genes 

(which contained at least one mutation), the somatic 

mutations in 593 genes were significantly more harmful 

than expected at random (FDR q-value < 0.05). The full 

results of all analyzed genes is available in Supplementary 

Table S1-TCGA_combined. A short excerpt with the top 20 

results is given in Table 1 (sorted by significance according 

to q-values). It appears that significant alteration 

promoting genes can dramatically vary in their total 

number and density of mutations. For example, TP53, the 

most significant alteration promoting gene in our analysis, 

has 2.69 SNP mutations per coding-region nucleotide in our 

dataset, while KMT2D, which is also highly significant (q-

value = 5.9E-72), has a 38-fold lower mutation density (0.07 

SNP mutations per coding-region nucleotide). Even though 

TP53 is the most significant alteration promoting gene 

(with respect to the calculated q-value), the effect score z-

values of APC (-1.31) and ARID1A (-1.47) are even lower 

than that of TP53 (-1.05), indicating a potentially stronger 

effect size.  

In contrast to the abundance of alteration promoting 

genes, we found only 6 alteration rejecting genes in the 

context of cancer somatic mutations. Those 6 genes 

(MUC5B, COL5A1, CDIP1, TSHZ2, TMEM150B and TSHZ1) 

also show much less impressive statistical significance 

(lowest FDR q-value is 0.0075). 

 

2.4 Dissecting the signal for alteration bias 

Our analysis gathers information from two distinct signals: 

i) the type of mutations (synonymous, missense or 

nonsense) and, ii) the predicted effect scores of missense 

mutations. As synonymous and nonsense mutations are 

assigned constant effect scores (1 and 0, respectively), and 

only the scores of missense mutations vary, these two 

components are fully orthogonal. 

To determine the contribution of each of the two 

complementary components to our overall analysis, we re-

analyzed each gene by these two components separately. 

Analyzing genes only by the types of mutations, ignoring 

the varying impacts of missense mutations, was performed 

by a chi-squared test for the deviation of the observed 

mutation type frequencies from the frequencies expected 

by the background model (see Online Methods). Similarly, 

to analyze genes only by missense effect scores, we simply 

ignored the other two types of mutations (synonymous 

and nonsense). In this setting, the background model was 

adjusted accordingly to disregard synonymous and 

nonsense mutations as well. 

While our main overall analysis found 593 significant 

alteration promoting genes, the mutation-type and 

missense analyses found only 387 and 492 significant 

alteration promoting genes, respectively. The full per-gene 

results of these analyses are also listed in Supplementary 

Table S1-TCGA_combined. 
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As these two complementary analyses are completely 

orthogonal, no overlap between them should be expected 

unless for some biological signal. Indeed, we found a 

significant overlap between them (p-value = 7.96E-30). The 

number of alteration promoting genes overlapping by the 

two methods (62 genes) is 2.5 times greater than the 

number expected at random (24 genes). This non-random 

signature hints towards the involvement of evolutionary 

forces in the makeup of cancer somatic mutations which 

are captured by each of the methods. 

 

2.5 Cancer alteration promoting genes strongly overlap 

with known drivers 

The list of 593 significant alteration promoting genes 

includes strong candidates for cancer driver genes. Indeed, 

a substantial and significant overlap is found between this 

list to external lists of cancer driver genes (Fig. 3). We 

compared our results against three prominent resources of 

cancer driver genes: Census13,14, CCGD18 and the MutSig 

framework22,30,31. In CCGD, we considered genes supported 

by at least 10 published studies. Of the 17,828 genes in our 

analysis, these three resources identify 526, 366 and 106 

genes as cancer drivers, respectively. Our overall analysis 

(the left bar in each of the six panels, Fig. 3) shows an 

outstanding overlap with known cancer drivers 

(enrichment of x6.74, x5.83 and x20.42 with Census, CCGD 

and MutSig, respectively; p-value ≤ 2.2E-34). This indicates 

that alteration promoting genes are indeed very promising 

candidates for cancer drivers.  

Fig. 3 also shows the overlaps of known driver genes with 

each of the two complementary components described 

earlier: mutation types and missense effect scores. While 

the mutation-type and missense analyses are capable of 

recovering much of the signal, the overall integrated 

analysis shows superior results (see bottom orange 

panels). A more exhaustive overlapping analysis is available 

Table 1. Top 20 alteration promoting genes 

Gene 
Symbol 

Gene Name Chr 
# Observed 
mutations 

Mutation 
density per 

nt 

Expected 
mean 
score 

Observed 
mean score 

Score 
z-value 

FDR 
q-value 

Census 
annotationsa 

TP53 tumor protein p53 17 3,167 2.69 0.49 0.05 -1.05 0 
oncogene, TSG, 
fusion 

PIK3CA 
phosphatidylinositol-4,5-
bisphosphate 3-kinase 
catalytic subunit alpha 

3 1,508 0.47 0.39 0.15 -0.68 4E-240 oncogene 

APC 
APC, WNT signaling pathway 
regulator 

5 997 0.12 0.84 0.49 -1.31 7.3E-215 TSG 

KRAS 
KRAS proto-oncogene, 
GTPase 

12 783 1.38 0.24 0.04 -0.61 1.5E-177 oncogene 

ARID1A 
AT-rich interaction domain 
1A 

1 640 0.09 0.82 0.45 -1.47 3.6E-169 TSG, fusion 

BRAF 
B-Raf proto-oncogene, 
serine/threonine kinase 

7 819 0.36 0.41 0.10 -0.77 3.5E-145 
oncogene, 
fusion 

PTEN 
phosphatase and tensin 
homolog 

10 656 0.54 0.33 0.06 -0.70 9.5E-116 TSG 

IDH1 
isocitrate dehydrogenase 
(NADP(+)) 1, cytosolic 

2 536 0.43 0.33 0.05 -0.68 4.8E-94 oncogene 

CDKN2A 
cyclin dependent kinase 
inhibitor 2A 

9 294 0.63 0.55 0.19 -0.99 9.9E-82 TSG 

FBXW7 
F-box and WD repeat domain 
containing 7 

4 442 0.21 0.52 0.20 -0.86 8.8E-81 TSG 

KMT2D lysine methyltransferase 2D 12 1,191 0.07 0.88 0.72 -0.65 5.9E-72 oncogene, TSG 

NF1 neurofibromin 1 17 697 0.08 0.72 0.52 -0.67 6.9E-56 TSG, fusion 

NRAS 
neuroblastoma RAS viral 
oncogene homolog 

1 286 0.50 0.34 0.06 -0.72 3.3E-52 oncogene 

RB1 
RB transcriptional 
corepressor 1 

13 335 0.12 0.54 0.28 -0.82 1.2E-50 TSG 

CTNNB1 catenin beta 1 3 442 0.19 0.53 0.30 -0.68 6.7E-49 
oncogene, 
fusion 

SMAD4 SMAD family member 4 18 249 0.15 0.46 0.17 -0.80 3.9E-41 TSG 

FAT1 FAT atypical cadherin 1 4 1,118 0.08 0.88 0.78 -0.47 7.4E-36 TSG 

KMT2C lysine methyltransferase 2C 7 1,078 0.07 0.86 0.75 -0.46 9.6E-35 TSG 

PBRM1 polybromo 1 3 346 0.07 0.68 0.47 -0.74 1.6E-34 TSG 

EP300 E1A binding protein p300 22 496 0.07 0.75 0.56 -0.61 5.6E-33 TSG, fusion 

a – TSG, Tumor Suppressor Gene 
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in Supplementary Table S2. To summarize, we find that 

both the analysis of mutation types and the analysis of 

missense effect scores are adequate to recovering driver 

genes, yet even better results are obtained when the two 

components are combined together, as in our overall 

analysis. A particularly remarkable enrichment is observed 

between our framework to the MutSig suite31. 72 of the 

106 genes reported by MutSig were independently found 

by our framework (x20.4 enrichment, p-value = 1.15E-81). 

This strongly supports the validity of both approaches.  

 
 

2.6 Overlooked candidate driver genes 

Of the 593 significant alteration promoting genes, we 

found an outstandingly large subset to overlap with known 

drivers (Fig. 3), yet many of the reported genes are novel 

driver candidates without any signature in the commonly 

used resources. We define a significant alteration 

promoting gene to be novel if it does not appear in Census 

and not supported by any study reported in CCGD. 183 of 

the 593 significant genes meet these criteria, and are listed 

in Supplementary Table S1-TCGA_combined_overlooked. 

The most significant overlooked gene is ranked 54th in the 

overall list of the 593 alteration promoting genes. In other 

words, the 53 most significant alteration promoting genes 

we found had already been reported as drivers according 

to the aforementioned criteria. Of the list of 183 

overlooked alteration promoting genes, 26 were defined as 

very significant (q-value ≤ 0.001), and are listed in Table 2. 

As we have already presented strong evidence that 

 

Fig. 3 Alteration promoting genes substantially overlap with known cancer drivers. We compared the list of significant 

alteration promoting genes obtained by our analysis against three external resources for cancer drivers: Census, CCGD and 

MutSig (see main text). We show three variations of our analysis, each considering different elements of the data: The mutation-

type analysis (abbreviated Mut-Type) considers only deviations in the types of mutations (i.e. synonymous, missense or 

nonsense), treating all missense mutations the same; the missense analysis considers only missense mutations, looking for 

significant differences between their observed to expected effect scores, while disregarding synonymous and nonsense 

mutations altogether; the overall analysis combines both signals, by assigning scores to all mutations. The top panel (blue) shows 

the total number of overlapping genes between each of our three analyses to each of the three compared resources, and the 

number of genes that would be expected to overlap at random (given hyper-geometric distribution). Note that the total number 

of genes passing statistical prerequisite conditions for the Mut-Type analysis is only 7,674 of the overall 17,828 (see Online 

Methods), which is important for the calculation of expected overlaps. The ratio between the observed to the expected number 

of overlapping genes is defined as the enrichment factor for each pair, and is shown on the lower panel (orange). The baseline 

of x1 enrichment expected at random is presented as horizontal dashed red lines. Hyper-geometric p-values for the significance 

levels of the overlaps are also shown. 
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alteration promoting genes are promising candidates for 

cancer drivers, we anticipate that among the most 

significant overlooked ones, many will be established with 

a direct role in cancer.  

 

2.7 Alteration promoting genes across cancer types 

Most of our analysis, which has been presented until that 

point, deals with alteration bias from a pan-cancer 

perspective. In this pan-cancer analysis, all the somatic 

mutations extracted from TCGA were combined into a 

single pool (per gene), disregarding from which samples or 

cancer types they originated. An important benefit of this 

setting was the acquiring of the needed statistical power 

for the analysis, obtained by maximizing the number of 

samples. However, a notable heterogeneity exists among 

cancer types in the dominance of driver genes14,32. In order 

to also highlight important differences that might exist in 

alteration promoting genes among different cancer types, 

we also conducted the same analysis within each cancer 

type separately. Those analyses involved the calculation of 

a specific background model for each combination of gene 

and cancer type, based on the observed mutations in each 

combination. This approach overcomes biases caused by 

inherent differences that exist among cancer types, such as 

cancer-specific nucleotide substitution frequencies3,27. 

The summary statistics of our analysis for each analyzed 

gene in each cancer type is available in Supplementary 

Table S1. Table 3 lists the 33 analyzed cancer types, ranging 

Table 2. Very significant overlooked driver candidates 

Rank 
Gene 

Symbol 
Gene Name Chr 

# Observed 
mutations 

Mutation 
density 
per nt 

Score 
z-value 

FDR q-
value 

54 GRM5 glutamate metabotropic receptor 5 11 441 0.12 -0.31 2.8E-08 

61 USP28 ubiquitin specific peptidase 28 11 240 0.07 -0.43 1.5E-07 

63 MICU3 mitochondrial calcium uptake family member 3 8 88 0.06 -0.64 3.9E-07 

69 ZNF750 zinc finger protein 750 17 174 0.08 -0.51 2.1E-06 

71 PGR progesterone receptor 11 215 0.08 -0.41 2.6E-06 

72 ZNF14 zinc finger protein 14 19 160 0.08 -0.47 2.9E-06 

82 HOXA4 homeobox A4 7 55 0.06 -0.81 8.7E-06 

84 WTIP Wilms tumor 1 interacting protein 19 46 0.04 -0.84 9.6E-06 

93 CDKN1A cyclin dependent kinase inhibitor 1A 6 69 0.14 -0.63 4.1E-05 

94 ELF3 E74 like ETS transcription factor 3 1 108 0.10 -0.49 5.2E-05 

101 40603 membrane associated ring-CH-type finger 11 5 121 0.10 -0.47 1.1E-04 

103 PDYN prodynorphin 20 159 0.21 -0.39 1.3E-04 

105 MYH7 myosin heavy chain 7 14 724 0.12 -0.18 1.4E-04 

111 BHLHE22 basic helix-loop-helix family member e22 8 58 0.05 -0.70 2.4E-04 

112 PIK3R2 phosphoinositide-3-kinase regulatory subunit 2 19 132 0.06 -0.41 2.5E-04 

118 HS3ST4 heparan sulfate-glucosamine 3-sulfotransferase 4 16 159 0.12 -0.39 2.8E-04 

121 FOXA2 forkhead box A2 20 93 0.07 -0.50 2.9E-04 

122 SPTY2D1 SPT2 chromatin protein domain containing 1 11 147 0.07 -0.42 3E-04 

126 HCN4 
hyperpolarization activated cyclic nucleotide gated potassium 
channel 4 

15 273 0.08 -0.30 3.8E-04 

129 SOX17 SRY-box 17 8 97 0.08 -0.50 4.1E-04 

130 MBD1 methyl-CpG binding domain protein 1 18 162 0.09 -0.38 4.3E-04 

134 KCNA5 potassium voltage-gated channel subfamily A member 5 12 317 0.17 -0.27 5.5E-05 

138 UNCX UNC homeobox 7 45 0.03 -0.78 5.9E-04 

145 UBXN2B UBX domain protein 2B 8 62 0.06 -0.56 7.5E-04 

149 CPNE4 copine 4 3 209 0.13 -0.31 8.4E-04 

154 ZNF627 zinc finger protein 627 19 89 0.06 -0.47 9.6E-04 
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from ~40 to ~1,000 samples and ~2,000 to ~900,000 

somatic mutations in each. Note the substantial 

heterogeneity in the rate of mutations per sample among 

and within cancer types.  

It is important to note that like in every statistical analysis, 

the potential to find significant results is strongly 

dependent on the number of available observations, even 

though the density of somatic mutations in not a factor in 

our statistical analysis. Some cancer types have a very 

limited number of available samples in TCGA (Table 3), 

resulting very few, if any, significant alteration promoting 

genes. This merely reflects an inevitable lack of statistical 

power, and it does not mean that those cancer types are 

not dominated by alteration promoting genes. In total, we 

found 380 cancer-type specific alteration promoting genes, 

involving 231 unique genes. 

To further highlight cancer-type patterns, we plot the 

magnitude of alteration bias of selected genes across 

cancer types (Fig. 4). Fig. 4a shows the 40 most significant 

alteration promoting genes we found (the first 20 are listed 

in Table 1). Fig. 4b shows the very significant overlooked 

candidate driver genes (Table 2). We also looked for genes 

with significant differences among cancer types (Fig. 4c), 

aiming to capture specific genes within specific cancer 

types that show a significant alteration bias compared to 

the same genes in the other cancer types. Note that a 

significant difference among cancer types does not 

necessarily imply a significant bias from the background. 

For example, TP53, ranked at the top of the list of 

alteration promoting genes (Fig. 4a), shows only a weak 

difference in alteration bias across cancer types (ranked 65 

of 68 genes; Fig. 4c), confirming its universal role as a driver 

across cancer types. A full analysis of the differences 

among cancer types of all analyzed genes is available in 

Supplementary Table S1-TCGA_diff. 

ARIDIA, a well-studied cancer driver that belongs to the 

growing set of drivers found to play a role in chromatin 

remodeling33,34, is a highly significant alteration promoting 

gene across many cancer types (Fig 4a). However, in Skin 

Cutaneous Melanoma (SKCM) it is significantly less 

damaged (Fig. 4c), suggesting that its role in oncogenesis 

within this cancer type is not as important compared to 

other cancer types. FAT1 (FAT atypical cadherin 1, also 

known as FAT tumor suppressor Drosophila homolog) and 

CIC (capicua transcriptional repressor), both well-known 

drivers, seem to be particularly dominant in the Head and 

Neck Squamous Cell Carcinoma (HSNC) and the Brain 

Lower Grade Glioma (LGG) cancer types, respectively (Fig. 

4a and Fig. 4c). FAT1 encodes a cadherin-like protein that 

binds β-catenin, antagonizing its nuclear localization. 

Damaging mutations to FAT1 that suppress its binding 

function thus lead to activation of the Wnt signaling, which 

is fundamental in tumorigenesis. APC, another tumor 

suppressor that binds β-catenin, seems especially 

dominant in the Colon Adenocarcinoma (COAD) and the 

Rectum Adenocarcinoma (READ) cancer types (Fig. 4a and 

Fig. 4c). Additional genes that are especially dominant in 

specific cancer types are: SETD2 in Kidney Renal Clear Cell 

Carcinoma (KIRC), KMT2C in Breast Invasive Carcinoma 

(BRCA) and Cervical Squamous Cell Carcinoma and 

Endocervical Adenocarcinoma (CESC), and GTF2I in 

Thymoma (THYM); see Fig. 4a and Fig. 4c. 
 

2.8 Alteration bias in the healthy human population  

So far the presented analysis has focused on somatic 

mutations in cancer, based on data extracted from TCGA. 

To further validate our framework, we repeated our 

analysis on a fundamentally different dataset comprised of 

germline variants in the healthy human population. Those 

variants were extracted from ExAC25, the largest and most 

complete contemporary catalogue of genetic variation in 

the healthy human population.   

The full dataset of ExAC contained 10,089,609 variants. We 

filtered out 1,054,475 low-quality variants (see Online 

Methods), and among the remaining 9,035,134 variants we 

found 8,538,742 SNPs. Of these, 4,747,096 were found to 

be in coding regions, contributing to a final dataset of 

4,752,768 gene effects. This dataset was then processed 

through the same pipeline used for identifying alteration 

bias in cancer, as described earlier. The effect scores of the 

variants in each gene were compared against the 

background distribution derived from the nucleotide 

substitution frequencies of the observed variants in this 

dataset. 

Unlike in the context of somatic mutations in cancer, where 

almost all significant results (99%) were found to be 

alteration promoting genes, here we found the opposite 

trend. Almost all of the significant results we discovered 

(97.7%) are alteration rejecting genes. Specifically, we 

found 6,141 significant alteration rejecting genes, and only 

147 significant alteration promoting genes. This finding is 

not surprising given that normal human evolution is 

dominated mostly by negative selection, while tumor 

evolution is mostly dominated by positive selection35-37. 

The full results of all 17,946 analyzed genes are provided in 

Supplementary Table S1-ExAC. 
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We tested for enriched GO (Gene Ontology) annotations of 

biological processes among the alteration rejecting genes 

with the strongest effect size (in terms of z-value; see 

Online Methods). The most significant annotations were 

related to RNA processes (e.g. mRNA metabolic process; 

FDR q-value = 2.4E-28), RNA splicing (FDR q-value = 9.1E-

24) and regulation of gene expression (FDR q-value = 1.3E-

23). Additional highly enriched annotations included 

response to stimulus (FDR q-value = 2.8E-13), regulation of 

cell cycle (FDR q-value = 7.3E-13) and regulation of 

translation (FDR q-value = 6.6E-10). We identified many 

basic cellular processes, mostly those occurring in the 

nucleus. However, some key processes such as protein 

trafficking, lipid metabolism and transporting are notable 

in their absence. The full list of enriched annotations is 

listed in Supplementary Table S3. 

As expected, we find that variants with higher allele 

frequencies also have larger effect score biases compared 

to the background distribution (measured by z-values). This 

correlation is weak (Spearman’s ρ = 0.05) but very 

significant (p-value < E-300). The tendency of variants with 

lower allele frequencies to have lower z-values is well 

apparent in Fig. 5a. This confirms that more harmful 

variants (with lower z-values) are less likely to become 

fixed in the population. 

We also found expected correlations between the effect 

score biases of genes (mean z-values) to other popular 

scoring techniques that measure evolutionary selection. 

We report Spearman’s correlation of ρ = -0.4 (p-value < E-

300) between the Residual Variation Intolerance Score 

(RVIS)38 to the mean effect score z-values of genes. 

Similarly, we report Spearman’s correlation of ρ = -0.28 (p-

value < E-300) to the Gene Damage Index (GDI)39. Both 

Table 3: Alteration promoting genes across cancer types 

TCGA 
Project 

Disease # Samples # Mutations 
Avg. (std) 

mutations per 
sample 

# Significant 
Alteration 
Promoting 

Genes 

# Significant 
Diff Genesa 

BRCA Breast Invasive Carcinoma 986 120,988 122.7 (347.8) 12 6 

LUAD Lung Adenocarcinoma 567 208,180 367.2 (386.3) 14 5 

UCEC Uterine Corpus Endometrial Carcinoma 530 886,377 1,672.4 (4,159.7) 146 24 

HNSC Head and Neck Squamous Cell Carcinoma 508 102,309 201.4 (288.1) 15 7 

LGG Brain Lower Grade Glioma 508 35,556 70.0 (635.7) 9 3 

PRAD Prostate Adenocarcinoma 495 29,286 59.2 (408.3) 3 0 

LUSC Lung Squamous Cell Carcinoma 492 181,116 368.1 (317.6) 12 2 

THCA Thyroid Carcinoma 492 10,899 22.2 (52.3) 4 1 

SKCM Skin Cutaneous Melanoma 467 392,571 840.6 (1,423.4) 16 11 

STAD Stomach Adenocarcinoma 437 213,144 487.7 (929.3) 10 1 

OV Ovarian Serous Cystadenocarcinoma 436 75,168 172.4 (178.7) 3 0 

BLCA Bladder Urothelial Carcinoma 412 134,513 326.5 (378.2) 36 15 

COAD Colon Adenocarcinoma 399 264,786 663.6 (1,360.4) 19 5 

GBM Glioblastoma Multiforme 393 82,765 210.6 (964.8) 9 1 

LIHC Liver Hepatocellular Carcinoma 364 54,238 149.0 (161.5) 5 0 

KIRC Kidney Renal Clear Cell Carcinoma 336 26,693 79.4 (123.3) 5 3 

CESC 
Cervical Squamous Cell Carcinoma and Endocervical 
Adenocarcinoma 

289 103,405 357.8 (1,157.9) 12 3 

KIRP Kidney Renal Papillary Cell Carcinoma 281 23,765 84.6 (40.1) 1 0 

SARC Sarcoma 237 28,159 118.8 (281.7) 2 0 

ESCA Esophageal Carcinoma 184 45,313 246.3 (317.1) 4 0 

PCPG Pheochromocytoma and Paraganglioma 179 2,411 13.5 (7.4) 2 0 

PAAD Pancreatic Adenocarcinoma 178 29,959 168.3 (1,534.7) 5 0 

TGCT Testicular Germ Cell Tumors 144 3,198 22.2 (12.1) 2 0 

LAML Acute Myeloid Leukemia 143 9,905 69.3 (271.7) 6 0 

READ Rectum Adenocarcinoma 137 64,804 473.0 (1,783.4) 10 2 

THYM Thymoma 123 4,737 38.5 (120.6) 2 1 

ACC Adrenocortical Carcinoma 92 10,747 116.8 (316.1) 0 0 

MESO Mesothelioma 82 3,827 46.7 (43.8) 3 0 

UVM Uveal Melanoma 80 1,856 23.2 (58.6) 3 2 

KICH Kidney Chromophobe 66 2,896 43.9 (116.5) 1 0 

UCS Uterine Carcinosarcoma 57 10,449 183.3 (681.7) 6 0 

CHOL Cholangiocarcinoma 51 5,503 107.9 (220.0) 2 0 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 37 6,406 173.1 (106.1) 1 0 
aDiff Genes, Genes with significantly different alteration bias compared to other cancer types  
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metrics give higher scores to genes that are damaged more 

than expected, while we give lower scores to such genes; 

hence the expectation for negative correlation. This further 

confirms the evolutionary constraints reflected by the 

effect score biases.  

It is also interesting to note a mild overlap between the 

alteration promoting genes in cancer, found in the analysis 

of somatic mutations in TCGA, to alteration rejecting genes 

in the healthy human population, found in the analysis of 

germline variants in ExAC. Of the 17,313 genes that are 

shared to both analyses, 584 are significant alteration 

promoters in cancer, 5,995 are significant alteration 

rejecters in the human population, and 350 are both. 

According to random hyper-geometric distribution, we 

would expect only 202 overlapping genes (x1.73 

enrichment, p-value = 1.17E-36). This supports the notion 

that cancer driver genes, which undergo positive selection 

during tumor evolution, tend to negative selection during 

normal evolution.  

The notion of opposite trends between cancer to normal 

human evolutions is strikingly evident in Fig. 5b, which 

compares the alteration bias in the two datasets. While 

cancer somatic mutations present a notable bias towards 

alteration promotion (mean z-value of -0.08 across all 

genes), germline variants show a similar bias in the 

opposite direction, towards alteration rejection (mean z-

value of 0.12).  

To summarize, we developed a general statistical 

framework and successfully applied it in two 

fundamentally different domains – cancer genomics and 

human population genetics. In both territories, the 

fingerprint of evolution was implied by the functional 

effect bias of genetic alterations. Our framework is generic 

enough to unify these two highly different phenomena and 

to study them with the same analytical tools. We provide 

the community with catalogues of alteration bias across a 

wide range of settings. By sharing not only the significant 

discoveries, but the results of all analyzed genes in each 

setting, these catalogues can be used as complete 

references and as baselines for further research. 

 

3. Discussion 

This work has examined cancer genomics and tumor 

evolution through the unique perspective of functional 

alteration bias in protein-coding genes. We developed 

FABRIC, a machine-learning based framework for detecting 

alteration bias relying on precise statistical calculations. 

We discovered 593 significant alteration promoting genes 

in cancer samples (Table 1), as well as 6,141 significant 

alteration rejecting genes in the healthy human 

population. In contrast, we found very few genes showing 

biases to the opposite directions. The reported list of 

alteration promoting genes in cancer shows an outstanding 

overlap with known drivers (Fig. 3), but also reveals many 

overlooked genes that are plausible driver candidates 

(Table 2). 

Several unique properties distinguish our framework from 

other methods for detecting cancer driver genes. Most 

importantly, the underlying assumptions of our framework 

are minimal. Indeed, the observed effect scores are always 

compared against a gene-specific background null 

distribution based on the same prediction algorithm and 

the same properties of the data (nucleotide substitution 

frequencies) as the observed mutations. It means that even 

with a poorly trained prediction algorithm, our framework 

remains resistant to false discoveries, albeit at the cost of 

statistical power. If the framework detects that the 

observed effect scores of a certain gene significantly 

deviate from its background model, it meant that the 

somatic mutations within this gene are likely non-randomly 

distributed.  

It is important to remember that the number of observed 

mutations within a gene has no effect on the strength of its 

alteration bias. For example, the TPTE gene has one of the 

highest numbers of observed mutations in TCGA (619 

observed SNPs in the coding-region of that gene) and one 

of the highest mutation densities (0.37 coding-region SNPs 

per nucleotide, across all samples). Despite that, it shows 

only a mild alteration bias (average z-value = -0.16) and 

significance (q-value = 0.005). Unlike conventional 

methods that look for genes with significantly high 

mutation densities, our framework treats the number of 

observations as a baseline for the background model, 

checking only if the involved mutations are significantly 

more or less damaging than expected, regardless of their 

number. This design choice might be strict, but it spares 

disturbing concerns and doubts that arise in other 

methods. For example, it has been asserted that many false 

drivers have been wrongly reported due to the difficulty to 

construct a proper background model that accounts for 

highly mutated samples, cancer types and genomic loci9. In 

fact, in many pipelines it is common practice to filter out 

hyper-mutated samples prior to the searching of driver 

genes40,41, resulting the loss of much of the data. Different 

choices of normalization techniques and thresholds for 

hyper-mutated samples may bring very different results, 

leading to lingering uncertainty. The validity of our 

framework is not compromised by any of these issues, and  
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Fig. 4 Alteration bias differences across cancer types. The heat maps in (a) and (b) show the average z-values of the mutation 

effect scores (compared to the background) across cancer types and genes. More negative values (red) indicate genes that are 

more biased towards harmful mutations (within the relevant cancer types). We filtered out entries representing the average z-

value of less than 15 observed mutations (those are shown as gray 0 values on the map), as averages of too small numbers tend 

to be noisy and potentially misleading. Note that sparse rows and columns do not imply a lack of alteration bias in the relevant 

genes or cancer types; they simply indicate small amounts of available data. Only cancer types with at least one remaining entry 

are shown. (a) Top 40 alteration promoting genes, all had been reported as cancer driver genes (see text). (b) Highly significant 

(q-value < 0.001) overlooked genes (i.e. not appearing in Census or CCGD), after keeping only genes with at least 15 observations 

in at least one cancer type. Genes are sorted by significance. (c) The 68 genes found to have significant differences in alteration 

bias across cancer types. Each value indicates the mean z-value difference between the relevant cancer type to all other cancer 

types. Negative values (orange) indicate genes that are more damaged in the relevant cancer types (after taking into account the 

differences in the background models of different cancer types); positive values (purple) indicate genes that are less damaged. 

Entries (gene and cancer type combinations) that are non-significant (after FDR) are shown as gray 0 values on the map (see 

Online Methods). Genes are sorted by their largest difference.  
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hyper-mutated samples can safely remain in the analysis, 

thanks to our robust background model. 
Our method is not only helpful in minimizing false 

discoveries, but also, we anticipate, in findings new 

overlooked drivers. Methods that examine mutation 

densities are based on the premise that cancer driver genes 

are highly recurrent across patients. However, this 

assumption may not always apply. Some drivers may 

appear only among small fraction of the patients, even 

though they play an important role in tumorigenesis in the 

rare instances when they do occur. It has been established 

that tumors are best described by the pathways and 

protein-protein interaction networks they affect42,43. In 

order for the disease to progress, certain regulatory 

networks must be disrupted. Some genes, such as TP53, 

are positioned in the network as central hubs. Other 

drivers are part of a relatively small network, so their 

disruption is often necessary for cancer development44. 

Other gene networks, on the other hand, can be larger and 

more distributed, meaning that damaging any of a large 

collection of genes would lead to tumorigenesis. In this 

scenario, genes can be far less recurrent across samples, 

 

Fig. 5 Alteration rejection in the healthy human population. (a) Alteration bias (measured by z-value) of germline variants from 

ExAC across ranges of Allele Frequency (AF). The boxes represent the Q1-Q3 ranges, the middle lines the medians (Q2), and the 

white dots the means. Since there are ~60k samples in the dataset, the last range (AF < 0.001%) captures only the 2,454,501 

effect scores of singleton variants. (b) Distribution of alteration bias (measured by mean z-value) of the 17,828 and 17,946 

analyzed genes in TCGA (red) and ExAC (blue), respectively. The density plots show the distribution of all analyzed genes, while 

the shaded histograms only the 599 and 6,288 genes with significant alteration bias in each dataset (comprised of both alteration 

promoting and alteration rejecting genes in both datasets).   
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despite their strong contribution to the disease45,46. For 

example, HOXD11 is a known driver with an important role 

in tumorigenesis47 (which is also captured by our 

framework; see Supplementary Table S1-

TCGA_combined), despite its low recurrence (only 32 

observed SNPs in our dataset, across 10,182 samples). Such 

non-recurrent driver genes may result in mutation 

densities that are not significantly different from the 

random baseline, meaning conventional methods would 

most likely miss them. Our approach is capable of exposing 

such genes, if the observed mutations substantially disrupt 

their function.  

Within the group of cancer alteration promoting genes, we 

have focused our discussion on the most well characterized 

category of tumor functional genes, namely drivers. 

However, there may also be other functional categories 

that do not necessarily have a direct role in tumorigenesis 

per se, but other functions that lead to positive selection in 

cancer evolution. For example, the alteration of a cancer 

gene might be positively selected for promoting 

chemotherapy resistance, after the tumor has already 

initiated48, or for allowing immune system evasion49. 

Since our framework is based on a signal that is orthogonal 

to most other methods, namely the content and functional 

effect of mutations rather than their quantity, the two 

alternative paradigms can complement and augment each 

other. Alternative methods that deal with independent 

elements of the data are ideal for an effective meta-

analysis. If a gene is established as a driver by multiple 

complementary approaches, it provides a very strong 

evidence for a genuine role in cancer15,50.  

Among the 593 alteration promoting genes we found, we 

marked 183 as overlooked driver candidates. We argue 

that alteration promoting genes are probable tumor 

actors, and we hope future research will help establishing 

their role in cancer. In this study we were interested in 

screening the entire human genome evenhandedly for 

pursuing driver candidates; validating each discovery is 

beyond the scope of this work. We provide the full lists of 

all analyzed human genes, among which are the significant 

results, in Supplementary Table S1. 

In addition to the research of cancer somatic mutations, we 

also applied our framework on a dataset of germline 

human variation, comprised of the genetic variants of 

~60,000 healthy individuals from ExAC. In this dataset we 

found a clear bias towards alteration rejection, indicating 

the strong signature of negative selection in the course of 

human evolution. This stands out in contrast to the 

dominancy of positive selection found in cancer. While 

tumors promote alterations, long-term evolution rejects 

them (Fig. 5). Our work provides a new angle on the inverse 

symmetry between tumor evolution to human population 

evolution. The full list of genes analyzed for their alteration 

bias in light of human genetic variation, among which are 

the 6,141 significant alteration rejecting genes and 147 

significant alteration promoting genes, is available in 

Supplementary Table S1-ExAC. 

While this work has focused solely on the attempt to 

uncover genes exhibiting functional alteration bias (mostly 

in the context of cancer), we anticipate that our approach 

can have useful adaptations in a much broader context. For 

example, we propose that a very similar paradigm could 

advance the discovery of genes in genome wide association 

studies (GWAS)51. In contrast to traditional GWAS 

methods52 that treat all variants equally, we suggest to 

weigh each variant within the same gene by its functional 

impact, in the spirit of the approach presented throughout 

this work. In other words, instead of looking for variants or 

genes with significantly different allele frequencies 

between cases and controls (the routine GWAS 

procedure), one can look for genes with significantly 

different effect scores between the two groups. This 

suggested approach can address some major limitations in 

present-day GWAS53. Specifically, it can provide more 

direct evidence for genotype-phenotype associations than 

mere variant correlations, pinpointing specific genes. 

Additionally, a unified gene-centric model can 

accommodate rare and even de-novo variants. Classical 

GWAS methods struggle with rare variants54, even though 

they are believed to be the major contributors to most 

complex phenotypes55. We argue that effective 

aggregation of variants, as demonstrated by our 

framework, is a potential remedy to these problems. 

We advocate for using richer models in genetic studies by 

explicit modeling of biological processes. In our framework, 

we modeled the impact of genetic variants with respect to 

the relevant protein sequences, by extracting features 

capturing their rich multi-dimensional proteomic context, 

in order to obtain functional effect predictions. The 

resulted knowledge-based predictions, and not the raw 

variants, were the basis of our successful statistical 

analysis. 

Our framework brings together two classes of genetic 

analysis strategies that are mostly evolving in parallel. The 

first strategy, exemplified by classical GWAS, aims to find 

significant associations (e.g. between genotype to 

phenotype) without explicit modeling of the underlying 

biological processes. The other strategy attempts to train 

predictive models, for example to assess the pathogenicity 

of de-novo mutations (e.g. Polyphen256). Methods of this 
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kind typically rely on explicit modeling of biological 

principles by relying on prior knowledge. They make 

extensive use of machine-learning algorithms, and are part 

of a rapidly evolving field. Machine learning methods are 

very powerful tools for knowledge-based modeling, as they 

allow the necessary flexibility for handling with the noise 

and complexity of real-world data. A major contribution of 

this work is in providing a schema for using predictive 

models in the context of rigorous statistical inference, in 

order to find significant associations. We exploited the 

knowledge learned by predictive models (assessing the 

effects of protein alterations), and transformed it into 

useful biological discoveries (identifying genes with 

significant alteration bias).  

We provide the research and biomedical comminutes with 

a host of resources and tools. We provide the summary 

statistics of all analyzed genes in Supplementary Table S1, 

both in the context of cancer (a combined pan-cancer 

analysis, and each cancer type separately) and in the 

context of human population variation. Our framework is 

also available as an open-source Python project 

(https://github.com/nadavbra/fabric; see Online Methods) 

with detailed instructions and documentation, so it can be 

easily applied in other datasets and adjusted to broader 

contexts. 

 

4. Methods 

4.1 TCGA data extraction & processing 

The dataset of somatic mutations in cancer, used in most 

of the analyses throughout this work, was extracted from 

TCGA19. Through NIH’s GDC Data Portal57, we selected files 

in the MAF data format that were processed by the 

MuTect258 workflow for variant aggregation and masking. 

We selected only open access files, resulting 33 files in our 

final query (one for each cancer project). The full query URL 

was: 

https://portal.gdc.cancer.gov/repository?filters=~%28op~

%27and~content~%28~%28op~%27in~content~%28field~

%27files.access~value~%28~%27open%29%29%29~%28o

p~%27in~content~%28field~%27files.analysis.workflow_t

ype~value~%28~%27MuTect2%2A20Variant%2A20Aggreg

ation%2A20and%2A20Masking%29%29%29~%28op~%27i

n~content~%28field~%27files.data_format~value~%28~%

27MAF%29%29%29%29%29  

In total, these 33 files contained 3,175,929 somatic 

mutations across 10,182 samples. 2,956,550 of these 

mutations were SNPs, and 2,235,884 of these SNPs were in 

coding regions (i.e. substituting a nucleotide within the 

open reading frame of a protein-coding gene). Each of 

these coding-region SNPs was assigned effect score(s) for 

the gene(s) it affected (occasionally it happens that the 

same mutation affects multiple overlapping genes). 

According to our pipeline, synonymous and nonsense 

mutations were automatically assigned with effect scores 

of 1 and 0 (respectively), while missense mutations were 

given effect scores by our pre-trained predictor (see details 

below). Following this logic, we ended up with 2,238,945 

effect scores of the processed somatic mutations. 

The Python code for parsing and processing the raw data is 

available as part of our open-source project 

(https://github.com/nadavbra/fabric). 

 

4.2 ExAC data extraction & processing 

The dataset of human population variants was extracted 

from ExAC25. We downloaded release1 of the ExAC dataset 

through their FTP site, obtaining the VCF file at the 

following URL:  

ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/E

xAC.r1.sites.vep.vcf.gz  

The VCF file contained 10,089,609 variants of the human 

population. Of these, we filtered out 1,054,475 variants 

with any FILTER flag other than PASS (in the VCF fields). 

Afterwards, we processed the remaining 9,035,134 

variants exactly as we processed the somatic mutations in 

the cancer dataset (see above). We found 8,538,742 SNPs, 

4,747,096 of them in coding regions, contributing to a final 

dataset of 4,752,768 effect scores. 

 

4.3 Constructing gene sequences & annotations 

In order to analyze the effects of variants, we needed to 

construct both the DNA and protein sequences of all 

human genes. As our machine-learning predictor also 

required additional features (see details below), we also 

extracted additional proteomic annotations on top of the 

protein sequences (e.g. post-translational modifications 

from UniProt59 and protein domains from Pfam60). As the 

TCGA dataset used the GRCh38 version of the human 

reference genome, while ExAC and ClinVar (see below) 

used the GRCh37 version (also known as hg19), we 

constructed the gene sequences and their annotations for 

both versions.  

The genomic coordinates of the human genes were taken 

from the GENCODE project61 (the file 

gencode.v26.annotation.gtf.gz for GRCh38, and 

gencode.v19.annotation.gtf.gz for hg19). Using the 

chromosomal DNA sequences of the human reference 

genome, downloaded from UCSC62, we recovered the DNA 

sequences of the genes. For GRCh38, we used the 
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reference genome from ftp://hgdownload.cse.ucsc.edu/

goldenPath/hg38/chromosomes/, and for hg19 from 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromo

somes/. Importantly, since there is inconsistency in the 

reference genome of the mitochondria between UCSC and 

RegSeq/GENCODE (only in the hg19 version), the reference 

genome sequence for the M chromosome was taken from 

RefSeq63 (NC_012920.1) instead of UCSC. This issue had 

been resolved in GRCh38. We were interested only in the 

DNA sequences of the protein-coding regions of genes 

(annotated as “CDS” in GENCODE).  

Next, we downloaded the protein sequences (together 

with an abundance of proteomic annotations) of all 20,168 

reviewed human proteins in UniProt (http://www.uniprot.

org/uniprot/?sort=score&desc=&compress=yes&query=or

ganism:%22Homo%20sapiens%20[9606]%22%20AND%20

reviewed:yes&fil=&format=xml&force=yes). In order to 

map between the gene IDs found in GENCODE (Ensembl 

gene IDs64) to the UniProt IDs of the protein sequences, we 

used the repository of gene names downloaded from 

genenames.org65 (ftp://ftp.ebi.ac.uk/pub/databases/

genenames/new/json/non_alt_loci_set.json). 

genenames.org is a curated online repository of HGNC-

approved gene nomenclature. Among other fields, it 

contains Ensembl and UniProt IDs, as well as official gene 

symbols. Some genes (identified by a UniProt ID) had 

multiple matching GENCODE transcripts (possibly due to 

alternative splicing). In these cases we chose the transcript 

whose DNA sequence fully matched the amino-acid 

sequence of the primary UniProt isoform. If no matching 

transcript was found, we discarded the gene from the 

analysis. We ended up with 18,052 successfully mapped 

genes in GRCh38, and 18,053 genes in hg19, each identified 

with a unique UniProt ID.  

Finally, we augmented these ~18k constructed genes with 

protein domain annotations extracted from Pfam60. We 

downloaded version 30.0 of Pfam for the entire human 

proteome (ftp://ftp.ebi.ac.uk/pub/databases/Pfam/

releases/Pfam30.0/proteomes/9606.tsv.gz). We mapped 

these domain records onto our genes using the provided 

UniProt IDs (“seq_id” column in the CSV file).  

For each of the final ~18k mapped protein-coding genes we 

constructed the genomic coordinates of the CDS exons 

(with respect to the relevant reference genome), DNA and 

protein sequences, and further annotations from UniProt 

(e.g. active/binding sites, secondary structure, and post-

translational modifications) and Pfam (protein domains). 

Using the genomic coordinates, we were then able to map 

variants in the human genome on top of these genes, and 

determine their protein-level consequences (synonymous, 

missense or nonsense). For missense variants, we could 

also extract the relevant proteomic features (reference and 

alternative amino-acid, and all other protein annotations). 

This way, we processed all somatic mutations extracted 

from TCGA, and germline variants from ExAC, and we also 

processed all possible variants within each gene for 

constructing the background distributions. 

The developed pipeline for merging genomic and 

proteomic data from various databases into unified gene 

objects, and deriving the genetic and proteomic effects of 

genetic variants described at the DNA level, is available as 

an independent open-source Python library which can be 

used for general purpose (https://github.com/nadavbra/

geneffect).    

 

4.4 Genetic variations under consideration and rationale 

We restricted our framework to the analysis of SNPs, 

overlooking other, more complex, types of genetic 

variations (e.g. indels, copy-number variations and 

chromosomal rearrangements). Although the vast majority 

of genetic variations, even in the context of cancer, are 

SNPs (93% of the somatic mutations in our cancer dataset 

and 94.5% of the variants in our ExAC-derived dataset were 

SNPs), it is still likely that this choice entailed the loss of 

some signal, and with it some significant genes. It is 

conceivable that our approach underestimates the damage 

caused to genes, due to the disregard of complex variations 

such as indels (which may cause major functional 

alterations like frameshifts). 

The main motivation for our choice is its conceptual 

simplicity and minimal set of required assumptions. 

Specifically, it is relatively easy to model a null background 

model of uniformly distributed SNPs in a way that accounts 

for the observed nucleotide substitution frequencies in 

each gene (see next section). In contrast, more complex 

variations such as indels are much harder to model, and it 

is difficult to properly choose the appropriate 

mathematical model describing them. Moreover, 

complicated models require more underlying assumptions, 

thus jeopardizing the certainty of the obtained results. Still, 

it is a promising direction for future work to enhance the 

framework with means to consider more complex 

variations, thereby adding to its detection power. 

Likewise, we restricted the framework to protein-coding 

genes, and considered the functional effects of genetic 

variations only within proteins. Even functional effects on 

splicing that could have been relatively easy to model (e.g. 

alterations of exon-intron junctions) were ignored, and, all 

the more so, regulatory elements such as enhancers and 

promoters. This modeling choice might have caused some 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 6, 2018. ; https://doi.org/10.1101/242354doi: bioRxiv preprint 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
http://www.uniprot.org/uniprot/?sort=score&desc=&compress=yes&query=organism:%22Homo%20sapiens%20%5b9606%5d%22%20AND%20reviewed:yes&fil=&format=xml&force=yes
http://www.uniprot.org/uniprot/?sort=score&desc=&compress=yes&query=organism:%22Homo%20sapiens%20%5b9606%5d%22%20AND%20reviewed:yes&fil=&format=xml&force=yes
http://www.uniprot.org/uniprot/?sort=score&desc=&compress=yes&query=organism:%22Homo%20sapiens%20%5b9606%5d%22%20AND%20reviewed:yes&fil=&format=xml&force=yes
http://www.uniprot.org/uniprot/?sort=score&desc=&compress=yes&query=organism:%22Homo%20sapiens%20%5b9606%5d%22%20AND%20reviewed:yes&fil=&format=xml&force=yes
ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/json/non_alt_loci_set.json
ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/json/non_alt_loci_set.json
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam30.0/proteomes/9606.tsv.gz
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam30.0/proteomes/9606.tsv.gz
https://github.com/nadavbra/geneffect
https://github.com/nadavbra/geneffect
https://doi.org/10.1101/242354
http://creativecommons.org/licenses/by/4.0/


devastating genetic variations to be deemed harmless 

synonymous mutations. Here too, the underlying rationale 

was simplicity, while perusing a proof of concept for our 

approach. Our results confirm that the developed method 

yields powerful results even in its most basic form. 

Extending the framework to broader contexts of functional 

effects will definitely be a desirable future improvement. 

Nevertheless, at least in the context of cancer, protein-

coding genes are assumed to be the main actors3.  

 

4.5 Statistical framework & background model 

Our framework uses a pre-trained prediction model for the 

effect scores of missense variants (see next section for the 

details of its training). For each variant 𝑣 (in the context of 

a protein-coding gene) we assign a deterministic effect 

score 𝐸𝑆(𝑣) ∈ [0,1] by the following rule: 

𝐸𝑆(𝑣) = {

0 𝑣 𝑖𝑠 𝑛𝑜𝑛𝑠𝑒𝑛𝑠𝑒
𝜙(𝑣) 𝑣 𝑖𝑠 𝑚𝑖𝑠𝑠𝑒𝑛𝑠𝑒

1 𝑣 𝑖𝑠 𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠
 

Where 𝜙 denotes the prediction model for missense 

variants. 

In order to construct a background distribution for the 

effect scores expected at random (Fig. 2), we first consider 

each single-nucleotide substitution individually. Let 

𝑛𝑡1, 𝑛𝑡2 ∈ {𝐴, 𝐶, 𝐺, 𝑇}, 𝑛𝑡1 ≠ 𝑛𝑡2  be two different 

nucleotides. The background model for the substitution 

𝑛𝑡1 → 𝑛𝑡2 in gene 𝑖 is determined by calculating 𝐸𝑆(𝑣) for 

all possible substitutions 𝑛𝑡1 → 𝑛𝑡2 within the open-

reading frame sequence of the gene. Specifically, let 

𝑙1, … , 𝑙𝑘  be all the occurrences of 𝑛𝑡1 within the open-

reading frame sequence of the gene. For each 𝑗 ∈ {1, . . , 𝑘}, 

let us denote by �̂�𝑗 the variant that results upon 

substituting the occurrence 𝑙𝑗  of nucleotide 𝑛𝑡1 by 

nucleotide 𝑛𝑡2 within the context of gene 𝑖. The 

background distribution for the substitution 𝑛𝑡1 → 𝑛𝑡2 in 

gene 𝑖, denoted by 𝐷𝑖,𝑛𝑡1,𝑛𝑡2
, is a uniform distribution over 

𝐸𝑆(�̂�1), … , 𝐸𝑆(�̂�𝑘) (each chosen with probability 
1

𝑘
). 

In order to construct the background distribution 𝐷𝑖  for the 

entire gene 𝑖, we first calculate the frequencies of the 

nucleotide substitutions of the observed variants within 

the gene, denoted 𝑓𝑛𝑡1,𝑛𝑡2
 for the observed frequency of 

the 𝑛𝑡1 → 𝑛𝑡2 substitution. These frequencies satisfy: 

∑ 𝑓𝑛𝑡1,𝑛𝑡2
= 1𝑛𝑡1,𝑛𝑡2∈{𝐴,𝐶,𝐺,𝑇},𝑛𝑡1≠𝑛𝑡2

. We then take 𝐷𝑖  to be 

a mixture of the twelve 𝐷𝑖,𝑛𝑡1,𝑛𝑡2
 distributions with 𝑓𝑛𝑡1,𝑛𝑡2

 

as coefficients (i.e. to sample from 𝐷𝑖  one first samples a 

pair of nucleotides 𝑛𝑡1, 𝑛𝑡2 with probabilities 𝑓𝑛𝑡1,𝑛𝑡2
 and 

then samples from 𝐷𝑖,𝑛𝑡1,𝑛𝑡2
).  

Let 𝑣1, … , 𝑣𝑛 be the observed variants in gene 𝑖. We 

calculate the mean observed score of the gene 𝜇𝑖 =

𝐸𝑆(𝑣1)+⋯+𝐸𝑆(𝑣𝑛)

𝑛
 and compare the observed mean 𝜇𝑖  to the 

background model of the gene, 𝐷𝑖 . We do this by 

calculating the gene’s mean z-value 𝑧𝑖 =
𝜇𝑖−�̂�𝑖

�̂�𝑖
, where �̂�𝑖  

and �̂�𝑖  are the mean and standard-deviation of 𝐷𝑖 . This is 

equivalent to calculating the z-value for each variant 

individually (given by 
𝐸𝑆(𝑣)−�̂�𝑖

�̂�𝑖
) and then averaging them. 

This value summarizes the overall strength of alteration 

bias in the variants observed for gene 𝑖, but it gives no 

indication of statistical significance. When 𝑧𝑖 < 0, gene 𝑖 is 

potentially alteration promoting, as the observed effect 

scores are lower than those expected at random, indicating 

more harmful variants. Similarly, 𝑧𝑖 > 0 indicates a 

potential alteration rejecting gene.  

When 𝑧𝑖 < 0, we can derive the one-tailed p-value by 

calculating: 

𝑝𝑖 = 𝑃�̂�1,…,�̂�𝑛~𝐷𝑖
(�̂�1 + ⋯ + �̂�𝑛 ≤ 𝐸𝑆(𝑣1) + ⋯ + 𝐸𝑆(𝑣𝑛)) 

In other words, the p-value is the probability of obtaining 

scores at least as low as the observed ones, assuming they 

are independent and identically distributed (i.i.d) according 

to the background distribution 𝐷𝑖 . Similarly, when 𝑧𝑖 > 0 

we calculate the probability of obtaining scores at least as 

high as the observed ones. All the reported p-values 

throughout this work are two-tailed, obtained by 

multiplying the one-tailed p-values by a factor of 2. 

In order to compute the p-values, we need to calculate the 

distribution of the sum of 𝑛 i.i.d random variables, each 

with distribution 𝐷𝑖 . The distribution of the sum is given by 

convolving 𝐷𝑖  with itself 𝑛 times. To facilitate this 

computation, we round all the values (both the observed 

values, and in the background model) to two decimal digits, 

obtaining 101 distinct bins in the range [0,1]: 

0, 0.01, 0.02, … , 0.99, 1. The distribution of the i.i.d sum is 

then given by 100𝑛 + 1 bins in the range [0, 𝑛]. This is 

equivalent to a precise calculation given that the missense 

effect score predictor 𝜙 outputs scores in a resolution of 2 

decimal places. 

As evident from this mathematical formulation, our 

framework makes no assumptions whatsoever about the 

validity of the pre-trained prediction model 𝜙, or the 

effect-score calculation schema 𝐸𝑆 in general. Even if the 

scoring function gives arbitrary scores, the calculated p-

values are still accurate, and significantly low p-values 

provide strong evidence against the null hypothesis, 

namely that the observed variants do not seem to 

distribute independently and uniformly across the gene. A 

bad scoring function would undoubtedly diminish the 

statistical power of the framework, but should not result in 

false discoveries. The abundance of significant results 
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found in our analysis suggests that our scoring schema is 

well-designed, and that the machine-learning predictor is 

well trained. As the background model controls for the 

prediction model, the number of observed variants and 

their nucleotide frequencies, the assumptions of our 

framework are minimal.  

 

4.6 Missense and mutation-type analyses 

The previous section describes the main form of our 

framework (referred to as the overall analysis). We have 

briefly discussed two additional forms, the missense and 

mutation-type analyses (see Fig. 3). The missense analysis 

considers only the effect of missense variants, completely 

ignoring synonymous and nonsense variants. In this form 

of the framework, all the synonymous and nonsense 

variants are discarded from both the observed variants and 

the background variants. Namely, each of 𝐷𝑖,𝑛𝑡1,𝑛𝑡2
 is 

comprised only of the instances of 𝑛𝑡1 in the gene 

sequence whose substitutions to 𝑛𝑡2 would result a 

missense variant. z-values and p-values are calculated for 

the missense analysis accordingly. Notably, this filtration 

may substantially diminish the number of analyzed 

observations, compromising the power of the statistical 

test accordingly.  

The mutation-type analysis, on the other hand is 

fundamentally different, and does not rely at all on our 

scoring schema. In this form, only the types of the variants 

(synonymous, missense or nonsense) are considered, while 

the heterogeneity of functional effects within missense 

variants is completely neglected. Mutation-type p-values 

are calculated by a simple chi-squared test comparing the 

number of observed variants of each type, denoted 

𝑛𝑠𝑦𝑛, 𝑛𝑚𝑖𝑠 , 𝑛𝑛𝑜𝑛, to the numbers that would be expected at 

random, �̂�𝑠𝑦𝑛, �̂�𝑚𝑖𝑠 , �̂�𝑛𝑜𝑛, given 𝑛 = 𝑛𝑠𝑦𝑛 + 𝑛𝑚𝑖𝑠 + 𝑛𝑛𝑜𝑛 

variants that uniformly distribute across the gene with the 

observed tendency towards specific nucleotide 

substitutions (the frequencies 𝑓𝑛𝑡1,𝑛𝑡2
 defined earlier). The 

chi-squared test statistic is then given by 

𝑋2 =
(𝑛𝑠𝑦𝑛 − �̂�𝑠𝑦𝑛)

2

�̂�𝑠𝑦𝑛

+
(𝑛𝑚𝑖𝑠 − �̂�𝑚𝑖𝑠)2

�̂�𝑚𝑖𝑠

+
(𝑛𝑛𝑜𝑛 − �̂�𝑛𝑜𝑛)2

�̂�𝑛𝑜𝑛

 

which asymptotically distributes by a 𝜒2 distribution with 

2 degrees of freedom under the null hypothesis. In order 

to meet the asymptotic approximation, we used the 

accepted rule66 requiring that the expected numbers of 

observations all satisfy �̂�𝑠𝑦𝑛, �̂�𝑚𝑖𝑠 , �̂�𝑛𝑜𝑛 ≥ 5 as a 

prerequisite conditions for the mutation-type analysis. If a 

gene meets these prerequisite conditions, it obtains a 

significant two-tailed chi-squared p-value, and it has either 

more nonsense variants than expected (i.e. 𝑛𝑛𝑜𝑛 > �̂�𝑛𝑜𝑛) 

or less synonymous variants than expected (i.e. 𝑛𝑠𝑦𝑛 <

�̂�𝑠𝑦𝑛) – then it is considered an alteration promoting gene 

according to the mutation-type analysis. In the combined 

pan-cancer TCGA dataset, of the 7,674 genes meeting the 

prerequisite conditions (�̂�𝑠𝑦𝑛, �̂�𝑚𝑖𝑠 , �̂�𝑛𝑜𝑛 ≥ 5), 387 genes 

were found to be alteration promoting only by their 

mutation types.  

 

4.7 Effect score prediction model 

A key component of the framework is a pre-trained 

machine-learning model for predicting the effects of 

missense genetic variants on protein function. Given the 

details of a missense variant, it predicts a numerical effect 

score between 0 (harmful) to 1 (harmless).  

We pre-trained the model on an independent dataset of 

human genetic variations extracted from CinVar67. ClinVar 

provide a comprehensive catalogue of human genetic 

variations together with their clinical significance (e.g. 

pathogenic or benign), as determined by various 

submitting groups (e.g. OMIM68). 

We downloaded the full ClinVar dataset from the FTP site 

at: ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/

variant_summary.txt.gz. This dataset contained 543,841 

variant records, 262,377 of them in version hg19 of the 

human reference genome. Of these, 215,862 were SNPs, 

89,275 of them were missense variants affecting exactly 

one protein-coding gene. According to ClinVar’s stated 

clinical significance, we determined whether each variant 

was pathogenic, benign, or undetermined. Variants that 

contained the keywords “pathogenic” or “likely 

pathogenic” were deemed pathogenic; other variants that 

contained the keywords “benign” or “likely benign” were 

deemed benign; all other variants were deemed 

undetermined. Following this logic, of the 89,275 missense 

records, 22,496 were labeled pathogenic (positives) and 

14,512 were labeled benign (negatives). Altogether, we 

obtained a final dataset of 37,008 records.  

Next, we extracted an immense set of features (1,109 in 

total) for each record, aimed at capturing the rich 

proteomic context of each missense variant. Those 

features are discussed in the next section. Once all the 

features had been extracted, we obtained a dataset of 

37,008 records (22,496 and 14,512 of each of the two 

labels) represented as vectors in a 1,109-dimensional 

space. We then applied off-the-shelf machine-learning 

algorithms to train our prediction model, using 3-fold 

cross-validation to estimate its performance. We chose a 

Random Forest classifier (implemented by the scikit-learn 

Python library69 with the following hyper-parameters: 

n_estimators = 100 and min_samples_split = 50. We report 
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the following performance on ClinVar validation sets 

(average scores of the 3 cross-validation folds): AUC = 90%, 

F1 = 85.8%, Precision = 86%, Recall = 85.5%, Specificity = 

78.4%, Accuracy = 82.7%.  

When a machine-learning predictor is used, usually only 

the predicted label (e.g. pathogenic or benign variant) is of 

interest, while the exact score given by the prediction 

model has no significance. Furthermore, the exact scores 

(usually in the range 0-1) produced by algorithms like 

Random Forests have no simple interpretable meaning. For 

our framework we required refined effect scores spanning 

the entire 0-1 range, preferably with meaningful 

probabilistic interpretation. To this end, we rescaled the 

outputs produced by the trained model such that an effect 

score of 𝑠 ∈ [0,1] would indicate that roughly 𝑠 percentage 

of the validation-set variants with a similar score were 

benign (e.g. ~85% of ClinVar’s variants with an effect score 

of 0.85 were benign). This way, it can be useful to think of 

a variant with an effect score of 0.85 as having 85% chance 

of being harmless, although this is by no means guaranteed 

as we move from ClinVar to other datasets (e.g. TCGA or 

ExAC), especially considering that ClinVar is highly 

imbalanced and biased towards having mostly pathogenic 

variants.  

It should be emphasized that the objective of the 

prediction model is to evaluate the effects of missense 

variants on the function of the involved genes/proteins, 

and not on the entire organism (salient human 

phenotypes). It may seem that our choice of training 

dataset (ClinVar) violated this declared goal, as the labels 

extracted from ClinVar (pathogenic vs. benign) were 

explicitly based on clinical significance, namely at the 

resolution of the whole organism and not at the molecular 

level of genes and proteins. However, as detailed in the 

next chapter, we deliberately included only features that 

captured the biochemical and biophysical characteristics of 

the variants at the molecular level, and avoided any feature 

that would potentially disclose any information of higher-

level phenotypes or carry explicit evolutionary context. For 

example, most functional effect prediction tools (e.g. 

Polyphen256 and MutationTaster270) use evolutionary 

conservation of the gene/protein sequence as a primary 

feature, while we avoided it altogether. Including such 

features might have boosted our performance on the 

ClinVar dataset, but, for our goals, it was critical not to give 

the model any information on the effects of genetic 

variants at the whole-organism level. Therefore, even 

though the model was trained to predict clinical outcomes, 

the features included in its training set revealed 

information only about the effect of the variant at the 

molecular level. Therefore, it could only learn to predict 

molecular functional effects (as a proxy to clinical 

outcomes).  

In this study our goal was not to obtain maximal 

performance on the ClinVar dataset, but to train a model 

we could then transfer to a different task – detecting 

alteration bias. We used the model, that had been pre-

trained to predict functional effects at the molecular level, 

in order to find genes showing significant alteration bias 

throughout various evolutionary contexts (cancer or 

human population), even though the prediction model 

itself had no input regarding evolutionary or clinical 

information.  

The trained model, including an API allowing to invoke it on 

missense variants, is available as a separate open-source 

project (https://github.com/nadavbra/firm). All the Python 

source code for extracting features, training the model on 

ClinVar, and invoking it, is available within this project. To 

the best of our knowledge, this is the first tool that aims to 

predict functional effects at the molecular level and not at 

the organism level.  

 

4.8 Proteomic features used by the prediction model 

The developed Random Forest classifier receives missense 

variants as inputs, each represented as a vector in a 1,109-

dimensional space. Those 1,109 numeric values are 

extracted features about the variants, based on their rich 

proteomic context. As stated, we included features 

describing various biochemical and biophysical properties 

of the affected proteins at the molecular level, but avoided 

features disclosing information about broader 

evolutionary or clinical contexts. 

The main features included are: i) the location of the 

variant within the protein sequence, ii) the identities of the 

reference and alternative amino-acids, iii) the score of the 

amino-acid substitution under various BLOSUM matrices, 

iv) an abundance of annotations extracted from UniProt, v) 

amino-acid scales (i.e. various numeric values assigned to 

amino-acids, as described elsewhere71,72), vi) Pfam 

domains and Pfam clans. The full specification of all 

extracted features is available in Supplementary Table S4. 

The Python source code for extracting the features is also 

available within our open-source project (https://github

.com/nadavbra/firm). The rest of this section briefly 

describes the features.  

We used annotations that appeared in UniProt as 

“features” within the protein record. These UniProt 

features include: active site, binding site, (topological) 

domain, disulfide bond, secondary structure (helix, strand 

or turn), and various PTMs (e.g. acetylation, 
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(di)methylation, phosphorylation). In order to keep the 

dimensionality of our feature space manageable, and to 

allow the detection of meaningful patterns by the 

machine-learning model, we collapsed some distinct 

annotations into identical labels. For example, 

phosphohistidine, phosphoserine, phosphothreonine and 

phosphotyrosine, all are distinct features in UniProt, were 

treated simply as “phosphorylation”. Since the amino-acids 

of the protein sequence were already included as features, 

we saw no point in repeating the same information 

multiple times in our feature space. Supplementary Table 

S5 summarizes all the UniProt annotations we extracted 

and the labels we assigned them.  

Both the UniProt annotations and the amino-acid scales 

were aggregated in multiple contexts. First, each “hit” of a 

specific annotation by the residue affected by the missense 

variant was recorded as a distinct feature, as well as the 

distance of that residue to the closest residue with that 

annotation along the protein sequence. In addition, we 

also included the total count of each annotation along the 

entire protein sequence, as well as the count of each of the 

20 amino-acids. We also included these counts in other 

contexts with respect to the modified residue (e.g. all the 

residues within 5 amino-acids of it, or within 10 amino-

acids to its right/left). In each of these contexts, we also 

included summary statistics (average and standard-

deviation) of the various amino-acid scales. We also 

included the scale values of the reference and alternative 

amino-acids, and their absolute and relative differences.  

Using the data extracted from Pfam, we added unique 

features characterizing the domain closest to the affected 

residue along the protein sequence. Specifically, we 

recorded the distance to the closest domain (measured in 

the number of residues between the modified residue to 

the domain) and included a binary feature of whether it 

was a hit or not. If the domain belonged to a common Pfam 

clan (with at least 25 occurrences in the human proteome), 

we also recorded the identity of the clan as a feature. Using 

the HMM models provided by Pfam, we also examined the 

impact of the amino-acid substitution on the Pfam domain 

profile (using the HMMER tool73). Specifically, we recorded 

the scores indicating the matching of the protein sequence 

to the domain profile before and after the substitution. We 

included these two scores, together with their absolute 

and relative difference, as 4 additional features. 

Occasionally it happened that a substitution seemed to 

have so severely disrupted the HMM model that the 

protein sequence no longer matched the domain profile 

after the substitution. This rare occurrence was included as 

yet another binary feature. 

4.9 Comparison to external catalogues of cancer driver 

genes  

The Census catalogue13 was downloaded from their 

website at http://cancer.sanger.ac.uk/census/, in CSV 

format. We used the “Gene Symbol” and “Role in Cancer” 

columns in order to determine the cancer role, according 

to Census, of each of the analyzed genes (identified by its 

official gene symbol). These possible cancer roles are: i) 

TSG (Tumor Suppressor Gene), ii) oncogene and iii) fusion. 

In Fig. 3 we considered a gene to be a “driver” according to 

Census if it was annotated with any of these roles; 

Supplementary Table S2 also includes more refined 

comparisons. 

The CCGD dataset18 was downloaded from their website 

(http://ccgd-starrlab.oit.umn.edu/download.php) in CSV 

format (http://ccgd-starrlab.oit.umn.edu/dump.php). We 

used the “Human Symbol” and “Studies” columns in order 

to determine the number of studies supporting each 

human gene as a driver. In Fig. 3 we compared the list of 

significant alteration promoting genes to genes supported 

by at least 10 studies according to CCGD; in Supplementary 

Table S2 other thresholds are also attempted. 

The list of 106 genes recognized as drivers by the MutSig 

suite was downloaded from Supplementary Table 2 of the 

published paper31. We took the 114 genes that had a 

significant pan-cancer q-value (according to column BE in 

the obtained Excel file). Of these 114 gene symbols, 106 

had a corresponding gene in our analyzed dataset.  

Testing for overlapping between the list of significant 

alteration promoting genes in cancer to each of these three 

external lists was carried out with Fisher’s exact test (given 

the null hypothesis of independence, i.e. hypergeometric 

distribution).  

 

4.10 Highlighting significant differences among cancer 

types  

In order to measure differences in alteration bias among 

cancer types (Fig. 4c), we collected all the observed SNPs 

within the coding region of each gene, and for each of the 

33 cancer types we split these mutations into two disjoint 

groups: those that came from patients with that cancer 

type versus all the others (i.e. from patients with any of the 

other 32 cancer types). Based on the nucleotide 

substitution frequencies of the mutations within each 

group, we calculated a null background model for the 

effect scores within each of the two groups separately (see 

the “Statistical framework & background model” section). 

Based on the effect scores and the background model of 

each of the two groups, we calculated z-values for the 

mutations within each group. As the z-values directly 
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measure alteration bias (after accounting for the different 

background models), they can be compared between the 

two groups. Indeed, we calculated the differences between 

the z-values and obtained confidence intervals for these 

differences (i.e. between the z-values of the particular 

cancer type to the z-values of all other cancer types, within 

the same gene). The calculation of confidence intervals was 

carried out with a pooled two-sided t-test, using the 

implementation of the statsmodels Python library74: 

statsmodels.stats.weightstats.CompareMeans.tconfint_di

ff. A p-value for the difference was calculated using 

SciPy’s75 two-sided t-test: scipy.stats.ttest_ind. 

A combination of gene and cancer-type was considered 

significantly different (compared to all other cancer types, 

with respect to the same gene), if: 1) there were at least 25 

relevant observed mutation of this combination, and 2) it 

had a significant p-value after FDR. The confidence 

intervals (uncorrected for multiple testing) and q-values 

(FDR corrected) of all gene and cancer-type combinations 

are reported in Supplementary Table S1-TCGA_diff. Of 

these, 92 combinations were significant (q-value ≤ 0.05). 

These 92 combinations occurred across 68 genes and 17 

cancer types, and are presented in Fig. 4c. The heat map 

values were taken to be the most moderate values of the 

confidence intervals (i.e. the lower bound for purple-

colored positive values, and the upper bound for orange-

colored negative values).  

 

4.11 Enrichment testing for gene ontology annotations  

In order to test for significant Gene Ontology (GO) 

annotations76 enriched within the genes that most strongly 

reject alteration in the context of human evolution, we 

prepared a list of genes with the strongest effect size (in 

terms of z-value). To avoid statistical noise of small 

numbers, we only considered the 14,343 genes with at 

least 100 observations (i.e. at least 100 relevant unique 

variants in the final dataset extracted from ExAC). Of these, 

we compiled a list of 227 genes with a very strong effect 

size, defined by z-value ≥ 0.5. We checked for enriched 

annotations within this list using the GOrilla tool77, 

available at: http://cbl-gorilla.cs.technion.ac.il/. We used 

“Homo sapiens” as the organism, and selected the “Two 

unranked lists of genes (target and background lists)” 

option. We put the list of 227 strong alteration rejecting 

genes as the “Target set”, and all 14,343 considered genes 

as the “Background set”. Of the 14,343 and 227 entered 

UniProt IDs, GOrilla recognized 13,901 and 225, 

respectively. We selected only “Process” ontologies. The 

resulted list of enriched annotations is available in 

Supplementary Table S3. 

4.12 Source code availability  

We provide all of our source code (written in Python) as 

open source projects in GitHub. For better usability, we 

created three different repositories: 

1. https://github.com/nadavbra/geneffect 

2. https://github.com/nadavbra/firm 

3. https://github.com/nadavbra/fabric 

Our code relies on the following Python packages: 

IPython78, Cython79, NumPy80, SciPy80, Matplotlib81, 

Pandas82, scikit-learn69, StatsModels74, Biopython83 and 

interval_tree (https://github.com/moonso/interval_tree).  

The first repository contains a Python package we wrote 

for combining genetic and proteomic data into unified 

gene objects, and for interpreting the effects of genetic 

variants on proteins (see the “Constructing gene sequences 

& annotations” section). This package is appropriate for 

general use. 

The second repository contains our trained model for 

assigning effect scores to missense mutations (see the 

“Effect score prediction model” section). It contains all the 

necessary code and data files for using the trained model, 

and for training it from scratch (for reproducibility).  

The third repository (which depends on the first two) 

contains the FABRIC framework for detecting genes 

showing alteration bias from input data of observed 

variants. It can be used for detecting alteration bias in 

cancer (using data from TCGA) or in the healthy human 

population (using data from ExAC) as demonstrated in this 

work, and it can also be used on any other dataset from 

which genetic variants can be derived. In addition to 

providing FABRIC as a general-purpose tool, this repository 

also contains all the source code necessary to replicate all 

the analyses, tables and figures in this work.  
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