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Abstract

Genetic risk scores (GRSs) are weighted sums of risk allele counts of single nucleotide poly-

morphisms (SNPs) associated with a disease or trait. Construction of GRSs is typically based

on published results from Genome-Wide Association Studies (GWASs), the majority of which

have been performed in large populations of European ancestry (EA) individuals. While many

genotype-trait associations have been shown to generalize from EA populations to other popu-

lations, such as Hispanics/Latinos, the optimal choice of SNPs and weights for GRSs may differ

between populations due to different linkage disequilibrium (LD) and allele frequency patterns.

This is further complicated by the fact that different Hispanic/Latino populations may have

different admixture patterns, so that LD and allele frequency patterns may not be the same

among non-EA populations. Here, we compare various approaches for GRS construction, us-

ing GWAS results from both large EA studies and a smaller study in Hispanics/Latinos, the
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Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 12, 803). We consider

multiple ways to select SNPs from association regions and to calculate the SNP weights. We

study the performance of the resulting GRSs in an independent study of Hispanics/Latinos from

the Woman Health Initiative (WHI, n = 3, 582). We support our investigation with simulation

studies of potential genetic architectures in a single locus. We observed that selecting variants

based on EA GWASs generally performs well, as long as SNP weights are calculated using His-

panics/Latinos GWASs, or using the meta-analysis of EA and Hispanics/Latinos GWASs. The

optimal approach depends on the genetic architecture of the trait.

KEY WORDS: genetic diversity, admixed populations, linkage disequilibrium.

Introduction

Genetic Risk Scores (GRSs) summarize the genetic component of a disease or quantitative (con-

tinuous) trait and are typically constructed as the weighted sum of risk alleles of single nucleotide

polymorphisms (SNPs) associated with the trait of interest. GRSs are routinely used in pub-

lic health genetics research for a wide range of applications, such as improving disease and trait

prediction;1 studying the shared genetic basis between traits;2 increasing power by integrating over

multiple variants rather than one variant at a time; and Mendelian Randomization studies,3, 4 in

which a GRS associated with one trait is used as an instrumental variable in a causal analysis

of the association of the trait with another outcome. SNPs and weights used to construct GRSs

are usually selected based on findings from published studies, such as Genome-Wide Association

Studies (GWASs).5 However, most GWASs to date have been performed in studies of individuals

of exclusively or predominantly European genetic ancestry (EA). This poses a difficulty for GRS

construction in non-EA populations.

Using EA GWAS to select SNPs and choose weights for GRSs in non-EA populations seems

like a reasonable approach, in particular, Hispanics/Latinos are admixed with European ancestry,

and previous studies have shown that many EA GWAS results generalize to Hispanics/Latinos.7, 9.

Furthernore, the EA GWASs are very large (with tens or hundreds of thousands of individuals),

therefore having large statistical power to detect the most strongly associated variants from ge-

nomic association regions and obtain precise estimates of effects sizes. In fact, Dudbridge (2013)6

studied power and prediction accuracy of GRSs and suggested that, for prediction (rather than
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association testing), hundreds of thousands of subjects may be needed to estimate SNP effects.

While such numbers are available in EA GWASs, they are not currently available in GWASs of

diverse populations such as Hispanics/Latinos. For example, in the Hispanic Community Health

Study/Study of Latinos (HCHS/SOL), a large cohort study of Hispanics/Latinos, there are fewer

than 13,000 individuals who consented for genetic studies. Of these, about 7,000 individuals partic-

ipated in a GWAS of diabetes,7 which is the largest published GWAS to date in Hispanics/Latinos.

In contrast, the largest published GWAS of diabetes8 meta-analyzed multiple studies of European

ancestry (N =∼70,000 cases and controls), and a smaller number of population studies of other

ancestries (including about 2,500 Mexicans).

There are a number of drawbacks to using EA GWAS for GRS construction in non-EA pop-

ulations. Specifically, linkage disequilibrium (LD) patterns vary across populations,10 rendering

different best available tag SNPs between populations; allele frequencies often differ across popula-

tions; and, at least for some traits, effect sizes differ between populations and allelic heterogeneity

exists.11 Admixed populations, such as Hispanics/Latinos, may have different genetic architecture

and effect sizes at a genetic association region compared to an ancestral population due to gene-

gene (epistasis) or gene-environment interactions, or because a causal variant monomorphic in one

ancestral population.11, 7 For example, Belsky et al. (2013)12 constructed a GRS for obesity based

on EA GWAS results, and found that its utility for an African American (AA) population was low,

and much lower than that for an EA population. Martin et. al. (2017)13 studied transferability

of GRSs constructed based on single-ancestry GWASs to other ancestries, and demonstrated that

scores inferred from EA GWASs may perform poorly in other ancestries. Collectively, these studies

highlight the need to adapt GRSs construction methods to diverse ancestries.

How to best construct a GRS for a study in a Hispanic/Latino population is still an open

question. Should one use only the information published in a large, primarily EA study? or can

we use results from a smaller, non-EA study? In particular, will incorporating information from

these lower-powered (smaller sample size) non-EA GWAS in fact improve GRS construction, or

will it instead introduce harmful variability? Here, we take a systematic, empirical approach to

constructing GRSs for Hispanics/Latinos, based on GWAS results from large population studies of

European ancestry and medium-sized studies of Hispanics/Latinos. We use published EA GWASs

results and GWAS findings from the HCHS/SOL to construct and evaluate GRSs in an independent
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study of Hispanic/Latina women from the Women Health Initiative (WHI). We support our results

with simulations mimicking potential genetic architecture within a single, trait-associated genomic

region.

Materials and Methods

Let yi be a quantitative trait measured on the ith participant, i = 1, . . . , n, and xi a k × 1 vector

of covariates such as confounders. Let g1i, . . . , gPi be allelic counts or dosages of P independent

variants associated with yi, and α1, . . . , αP their effect sizes, so that the additive linear model holds:

yi = xiβ +

P∑
p=1

gpiαp + εi, i = 1, . . . , n (1)

where εi are residual errors. An optimal GRS for yi is Gopt
i =

∑P
p=1 gpiαp, the weighted sum with

the causal genotypes and their true effects.

Issues in selection of SNPs for GRS

In reality, we do not know which are the true causal genotypes for a trait, so we have to select

a set of SNPs to use in our GRS. Often, the data we have at our disposal for selecting SNPs are

derived from a genotyping platform that did not interrogate all sequence genotypes, but rather a

reduced set of a few million (or fewer) variants. For GRS construction, we often have only a set of

associated genotypes that likely tag a subset of the causal genotypes.

Let gp be a causal genotype in populations of European ancestry, and let g′p be a tag SNP to

gp that was detected in an association study, perhaps because gp was not genotyped at all. It is

well known14 that the size of trait association at g′p is related to the LD of g′p with gp, denoted by

ρp, so that α′p = ρpαp. Given a large enough data set, we expect that the lead variant (the variant

with strongest association in the region) will be the one with |ρp| closest to the maximal value 1,

among all available (genotyped or imputed) variants.

Further complicating this situation is the fact that tag SNPs may differ across populations. As-

sume the simple scenario of a single causal SNP in an association region, two ancestral populations

P1 and P2, the same effect size in all populations. Also, assume that in the admixed population
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Figure 1: Tag SNPs likely have different linkage disequilibrium patterns with the causal SNP g in
populations P1 and P2, so that different observed tag SNPs may have stronger associations with
the trait in the two populations. In the admixed population (ADM), the associations at the the
tag SNPs depend on a, the proportions of chromosomes with this genomic regions inherited from
the two ancestral populations.

(ADM) the proportion of genomic intervals containing the causal variant inherited from popula-

tions P1 and P2 is a and (1− a), respectively. This is demonstrated in Figure 1, which shows that

even if the same tag SNPs were available in the two ancestral populations P1 and P2, and we knew

which tag SNPs were the best in each population, it is not clear which is the best tag SNP in

ADM. This becomes even more complicated when there are multiple ancestral populations, when

SNP availability differs due to different genotyping platforms, and when effect sizes differ between

ancestral populations.

In simulations studies, we investigated the impact of genetic architecture by focusing on a single

genomic region at a time, while in data analysis we considered the overall results of systematic

genome-wide approaches for GRS construction.

GRS construction

SNP selection. Consider a GWAS performed in a study of European ancestry. Association results

are available for d variants, with p-values pe1, . . . , p
e
d and effect size estimates be1, . . . , b

e
d. Assume

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242404doi: bioRxiv preprint 

https://doi.org/10.1101/242404
http://creativecommons.org/licenses/by-nc-nd/4.0/


that almost all variants are also available in a GWAS of individuals with admixed ancestry, such as

the HCHS/SOL, with corresponding p-values and effect sizes ph1 , . . . , p
h
d , and bh1 , . . . , b

h
d . Based on

the information from both EA and HCHS/SOL GWASs, we can perform fixed-effects meta-analysis

(META) to produce meta-analytic p-values and effect sizes pm1 , . . . , p
m
d , and bm1 , . . . , b

m
d . We can

also perform generalization analysis10, to test the composite null hypothesis that is rejected if an

association exists in both the EA population and in the HCHS/SOL study, and get r-values for

these variants rm1 , . . . , r
m
d .

We created lists of candidate SNPs for GRSs by filtering variants based on these measures

(pe,ph,pm, rm) and with varying thresholds. We considered the p-value thresholds 5 × 10−8, 1 ×

10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3 and r-value thresholds 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. For

generalization analysis, we initially took all variants with p-value < 10−6 in the EA GWAS, then

performed generalization analysis using these SNPs to compute r-values. Therefore, by construc-

tion, smaller lists of SNPs are considered using this approach.

After subsetting the list of available SNPs by the selection criteria (e.g., all SNPs with p-value

smaller than 10−6 computed in the EA GWAS, all SNPs with p-value smaller than 5× 10−8 in the

meta-analysis GWAS, etc.) to generate a list of candidate SNPs, we further pruned the list to keep

only the lead SNP from every genomic region of 1Mbp. The first lead SNP is defined as the most

significant SNP in the list; then, all SNPs in the 1Mbp region centered at this SNP are removed

from the list of candidate SNPs. We continued this process of identifying the next lead SNP and

removing SNPs in its proximity until no SNP remained. We also considered another method for

selecting SNPs, which we call “matched SOL”. For this approach, we took the list of lead SNPs

from the EA GWAS, and searched for the lead HCHS/SOL SNP among the common (MAF≥ 0.05)

genotyped SNPs within 1Mbp around it.

In simulation studies, where we focus on a single association region, we did not filter variants.

Instead, we selected only a single lead SNP from the region based on the same criteria described

above (lead EA, lead in meta-analysis, etc.).

SNP weights. The optimal GRS weights reflect the true size of association between each SNP in

the GRS and the trait. In practice, the size of this association must be estimated. We considered

the effect size estimates computed in the EA GWAS, which may be very accurate in the EA pop-

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242404doi: bioRxiv preprint 

https://doi.org/10.1101/242404
http://creativecommons.org/licenses/by-nc-nd/4.0/


ulation but potentially less appropriate in the admixed population due to different LD patterns in

the two populations. Therefore, we also considered the effect size estimated in an admixed popula-

tion (HCHS/SOL in the data analysis) and the effect size estimated in fixed effects meta-analysis.

We also compared these to no weights (or αp = 1 ∀p) because unweighted GRS are often used in

practice.7, 2

Evaluating the GRS. To evaluate GRS approaches, we constructed GRSs in an independent

validation data set based on SNP selection and weights computed in the training data set. In

simulations, we used a validation data set with different admixture patterns than the training

data set, to reflect the fact that different admixed populations often differ to some extent in their

admixture patterns. In our data analysis, the training data set was HCHS/SOL and the validation

data set was the WHI SNP Health Association Resource (SHARe) Hispanic/Latina women.

Let the GRS for participant i in the validation data set be

GRSi =
∑
j∈Ŝ

gijα̂j

where Ŝ is the selected set of SNPs (which is likely different than the true causal set S, and in

the simulation has a single SNP only), and α̂j is the estimated effect of the jth SNP is the set.

We considered two measures for evaluation. For simulation studies we used the Mean Squared

Prediction Error (MSPE), computed by

MSPE =
1

nv

nv∑
i=1

(yi −GRSi)2 , (2)

across the nv individuals in the validation data set, where we report the squared root of the MSPE

(RMSPE). In data analysis, we computed the variance explained by each GRS in a regression model

adjusted for sex, age, and the first five principal components (PCs) of genetic ancestry. This was

calculated by first fitting a model with these covariates, but without the GRS, and obtaining the

residual variance denoted by σ̂20, then fitting a model that also included the GRS and obtaining

the residual variance σ̂2g . The estimated percent variance explained is 100× (σ̂20 − σ̂2g)/σ̂20.
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Simulation study

Our simulation studies focused on the impact of LD and variability in the estimation of effect sizes

(due to sample size and admixture) on GRSs. We simulated genotypes in a 1Mbp genomic region for

a large European sample (nEA = 50, 000), a moderately sized admixed sample (nADM12 = 12, 000),

and a small admixed sample (nADM5 = 5, 000). ADM12 and ADM5 are admixed populations

(details below) with the same two ancestral populations—CEU (European ancestry) and YRI

(African ancestry)—but different admixture proportions—20% or 40%. We simulated quantitative

traits under a few potential genetic architectures, assuming one or two causal SNPs, that are either

shared or different between the two ancestral populations, in the region. Each simulation setting

was repeated 500 times. Details about simulating admixed populations genomic association regions

and architectures, are provided in the Supplemental Information.

Evaluating similarity between LD patters

We evaluated the similarity between LD patterns of the simulated populations CEU, ADM0.2, and

ADM0.4. For each SNP j = 1, . . . , 617 in the simulated genomic region, we identified its best tag

SNP in CEU, ADM0.2, and ADM0.4 by finding the SNP j′ 6= j which had the highest LD (r2)

with SNP j in that sample. Given a population of interest ADM0.2 (ADM0.4), we calculated the

proportion of SNPs in the region had a tag SNP with higher LD in CEU compared to ADM0.4

(ADM0.2), and the other way around.

Using the HCHS/SOL to develop Hispanic/Latino specific GRSs

Previously published EA GWASs and traits

We considered three groups of traits with previously published GWAS results: anthropometric,

comprising of height, body mass index (BMI), hip circumference (HIP), waste circumference (WC),

and waste-to-hip ratio (WHR) from the GIANT consortium GWAS;18–20 blood pressure traits,

comprising of systolic and diastolic blood pressure (SBP, DBP), pulse pressure (PP = SBP-DBP),

and mean arterial pressure (MAP=DBP+1/3PP), with GWASs performed by the International

Consortium of Blood Pressure (ICBP)21, 22; and finally, blood count traits, including white blood

cell count (WBC), platelet count (PLT), and hemoglobin count (HGB).23–25 Note that for these
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blood count GWASs, we used just the EA GWAS results and not the trans-ancestry results that

were also available.

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL)

The HCHS/SOL is a community-based cohort study following 16,415 self-identified Hispanic/Latino

participants with initial visits between 2008 and 201126. Participants were recruited into the study

in four field centers (Chicago, IL, San Diego, CA, Bronx, NY, and Miami, FL) via a two-stage

sampling scheme, by which community block units were first sampled, followed by households

within the block units. Some or all household members were recruited. The sampling probabilities

were set preferentially towards sampling Hispanics/Latinos.27 In total, 12,803 study participants

consented to genetic studies. Henceforth, we focus on this subset when describing the HCHS/SOL

population. The HCHS/SOL participants are very diverse, and usually self identify as belonging

to one of six background groups: Central American, Cuban, Dominican, Mexican, Puerto Rican

and South American. Genotyping, imputation, and quality control in the HCHS/SOL have been

described elsewhere.28

Genome-Wide Association Studies in the HCHS/SOL

All HCHS/SOL analyses adjusted for sex, age, log-transformed sampling weights (to prevent po-

tential selection bias due to the study design), and the first five principal components reflecting

ancestry (to control for population stratification). Analyses used mixed models with variance com-

ponents due to genetic relatedness, household, and block unit sharing. GWASs for blood count

traits in the HCHS/SOL29, 30, 11 used imputation based on the 1000 Genomes Project31 phase

1 reference panel. For blood pressure (BP) traits, stratified analyses were performed,32, 33 with

stratification by Hispanic/Latino background groups (Central American, Cuban, etc.). We used

results from the meta-analysis across all background groups as ph,bh for GRS construction. The

GWASs for these traits used the phase 3 1000 Genomes Project reference panel. Anthropometric

traits GWASs in the HCHS/SOL all used phase 1 imputation of the 1000 Genomes Project, but

the height GWAS was stratified by background group, while the BMI, WHR, WC and HIP GWAS

were not. The height GWAS was further adjusted for the status of being born in the US.
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The Women’s Health Initiative SNP Health Association Resource (WHI SHARe)

The WHI is a long-term health study of postmenopausal women in the U.S. A total of 161,808

postmenopausal women aged 50-79 years old who were recruited from 1993 through 1998 and from

40 clinical centers throughout the United States.34 Ten of the 40 WHI clinical centers with ex-

pertise and access to specific minority groups (American Indian, black, Asian American or Pacific

Islander, and Hispanic) were selected to serve as minority recruitment sites. Clinical information

was collected by self-report and physical examination. A total of 5,469 self-identified Hispanic

Americans (HA) were consented to genetic research and were eligible for WHI-SHARe. Due to

budget constraints, we randomly selected a subsample of 3,642 (66.6%) HA women. DNA was

extracted by the Specimen Processing Laboratory at the Fred Hutchinson Cancer Research Center

from specimens that were collected at the time of enrollment. All participants provided written

informed consent as approved by local human subjects committees. Genotype data are from the

Affymetrix Genome-Wide Human SNP Array 6.0 that contains 906,000 single nucleotide polymor-

phisms (SNPs) and more than 946,000 probes for the detection of copy number variants. The

genotype data were processed for quality control, including call rate, concordance rates for blinded

and unblinded duplicates, and sex discrepancy, leaving 871,309 unflagged SNPs with a genotyping

rate of 99.8% and 3586 HA women used in the current analysis. Genotype Imputation was carried

out with MaCH. For imputation in HA samples, we used reference panel of HapMap III CEU +

MEX (Mexican ancestry in Los Angeles, California) + YRI samples for a total of 1,387,466 SNPs

(MAF > 1%), of which 1,368,178 SNPs met the quality threshold of r2 > 0.3.35

Results

Simulations

Our simulations focused on a single, 1Mbp genomic region, which contains 617 SNPs. We first eval-

uated the similarity of LD patterns between potential reference populations (CEU, ADM training

data set) and the test data set, and then evaluated the combined impact of LD, genetic architecture,

and variability in effect estimates on GRS performance.
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LD patterns in the admixed samples are more similar to each other than to CEU

Table 1 reports the proportion of SNPs in our locus for which the best tag SNP in CEU had

higher LD with the causal SNP in the admixed validation data set, compared to the LD of the

best tag SNP in the training admixed test data set. The tag SNPs in CEU and the training ADM

population were often the same (46-50% of the time). When they differed, the tag SNP identified

in the training admixed population was usually a better tag of the causal SNP in the test admixed

population.

Test population CEU better tag Training ADM better tag Same tag

ADM0.2 4% 46% 50%
ADM0.4 9% 45% 46%

Table 1: The percentage of SNPs in the investigated locus for which the tag SNP in the population
referenced in the table column had higher LD with the causal SNP in the population referenced
in the table row. When the test population is ADM0.2 (ADM0.4), the training ADM population is
ADM0.4 (ADM0.2).

Performance of GRSs in the simulated test data sets

Our simulation study considered four different scenarios of genetic architecture at the locus, focusing

only on the effect of LD and sample sizes, and assuming that effect sizes are the same for all causal

SNPs in populations. Each simulation included multiple, distinct choices of causal SNP(s). Details

are provided in the Supplemental Information. For each choice of causal SNP(s) we repeated the

simulation 500 times, constructing 12 GRSs each time (all combinations of the four selection and

three weight estimation approaches), and we recorded the median MSPE for each GRS across the

500 repetitions.

Results are visualized in figures depicting the distributions of the medians squared-root MSPEs

(RMSPEs) across the various choises of causal SNPs in each of the simulation scenarios. Figure 2

provides these distributions for two simulation scenarios, when ADM12,0.2 and CEU were used as a

training data sets and ADM5,0.4 was the test data set. Figures corresponding to all other scenarios

and settings are provided in the Supplemental Information.

In almost all simulation scenarios, SNP selection by ADM training data set and weights calcu-

lated by ADM (for all other SNP selections) performed the worst. Only in simulation scenario 2,

in which there are two causal SNPs with one being polyorphic only in YRI, computation of weights
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Figure 2: The smoothed distribution of median RMSPEs, where each median was computed over 500
repetitions of the simulations for a single choice of causal SNP(s), and the distribution is across all possible
choices of causal SNP(s) in the same simulation scenario. The left panel corresponds to scenario 2 (a single
causal SNP, which is monomorphic in YRI), and the right panel corresponds to scenario 3 (two causal SNPs,
one of them is monomorphic in CEU). The training data sets were EA and ADM12,0.2, while the test data
set was ADM5,0.4. Dashed vertical lines correspond to median of the plotted distribution. In the right panel,
the lines corresponding to EA and META weights often overlap.

in the ADM training data is sometimes advantageous over EA weights. However, this was true

only when ADM12,0.2 was the training data set, but not when ADM12,0.4 was the training data set.

Other than that, both EA and META SNP selections and weights constructions usually performed

similarly, with a few more settings in which META weights outperformed EA weights. We do note

that all types of GRS suffered from outlying scenarios: specific combinations of causal SNP(s) in

which one GRS produced extremely large RMSPEs. However, on average we see better perfor-

mance of GRSs based on the META and EA GWAS relative to the other two selection approaches

when the causal SNPs’ effect sizes are the same across populations.

Performance of GRSs in the Women’s Health Initiative data set

We constructed GRSs for 3,642 Hispanic/Latina women from the WHI based on EA GWAS,

HCHS/SOL GWAS, and combinations of the two for each of 12 traits. The results differed consid-

erably across families of traits (anthropometric, blood count, and blood pressure), so we focus on

each separately. Figures comparing the percent of variance explained by each GRS for each trait

are provided in the Supplementary Information. Here, Figure 3 illustrates the patterns observed

in each trait family by comparing the variance explained by GRSs for one trait from each family
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(BMI, HGB, and MAP). Figure 3 compares the performance of GRSs that selected SNPs based on

EA GWAS, but with various choices of p-value thresholds and weights.

In general, our data analysis demonstrates that selecting variants for the GRS based on associ-

ation results in the EA GWAS performs well, in agreement with the simulation results. The best

choice of weights is usually estimated effect sizes from the HCHS/SOL GWAS or from the meta-

analysis of the EA and HCHS/SOL GWASs (META). We now summarize the results by families

of traits.

Anthropometric traits

We considered five anthropometric traits: height, BMI, WC, WHR and HIP. Across all traits in this

family, selecting SNPs using the EA GWAS or META performed similarly well, except in the case

of WHR where selection based on EA has the slight advantage. The best choice of weights was also

the same across all anthropometric traits, with weights from the EA GWAS and the meta-analysis

GWAS performing similarly well. Optimal p-value thresholds for selecting SNPs differed across

traits: for BMI, HIP, WC, and WHR the highest performing GRSs usually started from the list

of SNPs with p-value< 10−3, while for height the optimal threshold was 10−5 − 10−6. The best

performing GRSs explained about 10% of the variance of height in the WHI, 3% of the variance of

BMI and HIP, 2.5% for WC, and less than 2% for WHR.

Blood count traits

For blood count traits (PLT, WBC, HGB), the best performing GRSs were constructed either by

selecting SNPs with EA GWAS, or META, p-values< 10−5 − 10−3 (optimal threshold varied by

trait). For two traits (HGB and PLT), SNP selection using generalization also performed very well.

The best performing weights were either the estimated effect sizes from HCHS/SOL (PLT, WBC)

or META (HGB). Variance explained for the best GRSs ranged from ∼1.3% (HGB) to 4% (PLT).

Blood pressure traits

In contrast to the other trait families, for blood pressur traits (SBP, DBP, PP, MAP) selection of

variants using the EA GWAS results performed poorly—unless weights were the effect size estimates

from the HCHS/SOL GWAS, in which case the GRSs performed very well in comparison to other
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Figure 3: The percent of variance explained by GRSs for body mass index (BMI), hemoglobin count (HGB)
and mean arterial pressure (MAP) in the WHI Hispanic/Latina women. For all GRSs in this figure, SNPs
were selected based on their p-values in the EA GWAS, with various thresholds considered (marked by
color), and pruned so that no two selected SNPs were closer than 500Kbp. SNP weights were computed by
one of four methods (corresponding to columns): EA = estimated effect sizes in the EA GWAS, META =
estimated effect sizes in the meta-analysis of the EA and HCHS/SOL GWASs, NO = unweighted GRS, and
SOL = estimated effect sizes in the HCHS/SOL GWAS. Error bars indicate 95% confidence intervals for the
percent of variance explained, based on 1,000 bootstrap samples from the WHI data set.
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options. On the other hand, when selecting variants according to META, the GRS performance

was robust to the choice of weights. Still, overall the GRSs that explained the highest percentage

of variance used HCHS/SOL-based weights. An exception was the trait PP, for which selecting

lead SNPs based on generalization analysis performed best, and was not sensitive at all to weight

computation. However, the total percent of variance of PP explained by the best GRS was quite

low: 0.4%. In comparison, the BP trait with the highest percent of variance explained by a GRS

was MAP (1% explained by the best GRS). The optimal p-value threshold for SNP selection varied

among traits and selection approaches.

Discussion

We studied several approaches for constructing GRSs in Hispanic/Latino populations, using GWAS

results from independent studies in large populations of European ancestry (EA) and medium-

sized GWASs in Hispanics/Latinos. We studied the performance of GRSs constructed using these

approaches on an independent data set. Results differed by trait. For anthropometric traits, the

best strategies for both selecting variants for the GRS and for computing weights were based on

either the EA GWAS or the meta-analysis of GWAS results from EA and HCHS/SOL, with a

slight, but possibly negligible, advantage to selection based on meta-analysis results. For blood

count traits (hemoglobin, white blood cell, and platelet counts), there was a slight advantage for

selecting SNPs based on meta-analysis results, and it was generally preferable to use weights based

on the HCHS/SOL GWAS. For blood pressure traits (SBP, DBP, MAP and PP), the best strategy

overall was to select SNPs using the EA GWAS results and use weights from the HCHS/SOL GWAS,

although the GRSs were more robust to different calculations of weights when meta-analysis results

were used to select SNPs.

Our simulation studies were performed in simplified scenarios in which the effect sizes were the

same in both ancestries, and in the admixed populations themselves. The LD patterns between two

admixed populations with different admixture proportions were more similar to each other than

the LD patterns between an admixed population and the simulated EA population, and further,

LD estimates were very precise, with the same r2 observed when using 5,000 or more individuals

for estimation. Therefore, given large enough sample size we expect that one admixed population
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will be a better reference for GRS construction in another admixed population compared to an

EA population, and these simulations demonstrate how sample sizes used in the reference GWAS

impact consequent GRS construction under various genetic architecture settings. In simulation

results, usually the GRSs with SNP selection using EA GWAS and weights using META performed

best, and weights using the admixed training data sets usually performed poorly. This results

is supported by other work6 that suggested that many thousands of individuals are required to

effectively calculate effect sizes to be used as SNP weights.

In the data analysis, however, in some cases GRSs weighted by the HCHS/SOL GWAS where

superior to other weights. One possible explanation to the improved performance of the HCHS/SOL

weights in data analysis is a strong signal-to-noise ratio for some traits and SNPs. Another possible

reason is that the simplifying assumptions of the simulations do not hold and for some traits the

SNP effect sizes differ by ancestry, or by population (e.g. due to gene-environment interaction).

Thus, if the EA weights are inadequate despite the large sample size, it suggests that the estimates

themselves are not appropriate for the admixed population. This is in agreement with the work of

Coram et al.,36 who assumed different effect sizes between populations, and found that estimating

effect for risk prediction purposes is useful in ethnically-matched population, while SNP selection

using EA GWAS is generally appropriate.

Our study has a few limitations. First, we looked only at the performance of GRSs in inde-

pendent validation data sets, so our results do not inform the construction of GRSs to be used in

the same study (e.g., a Mendelian Randomization study). Furthermore, the independent validation

study in our data analysis, WHI, only includes female participants, while our training studies, EA

GWAS results and the HCHS/SOL, included both males and females. As gene-sex interactions

likely exist, the GRSs constructed using the general population may not be optimal for women.

However, this is unlikely to introduce any systematic biases to the SNP selection and SNP weights

calculation procedures, so the relative performance of the GRS construction approaches should not

be impacted. We did not investigate the entire literature for each trait and then investigate each

of those loci separately, as is sometimes done in practice, but instead applied the same algorithm

to each trait, based on two reference GWASs. While the first approach is useful for investigators

who work with a single GRS and want to optimize it, it is also more case-dependent, and less

generalizable. Our systematic approach is easier to apply on a number of traits and is appropriate
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for drawing general conclusions. Finally, we did not use multi-ethnic GWASs for GRS construction,

but rather focused on EA and and Hispanic/Latino GWASs. Our goal was to more clearly delin-

eate properties of the genetic architecture similarities or differences between populations. Another

limitation of the current study is the lack of systematic investigation into generalizability of our

results to other types of populations and varying sample sizes. It is a topic of future research as

results from larger diverse studies become available. In the Supplementary Information, we report

the results of a secondary analysis repeating the same data analysis reported in the manuscript,

while evaluating GRSs on WHI African American women. Interestingly, the pattern of results is

generally similar. This suggest that leveraging trans-ethnic information into GRS construction is

beneficial.

Other recent methodological work on GRSs has been performed primarily in the context of

EA populations. Shi et. al. (216)37 suggested to penalize the estimated effect sizes used in a

GRS, by fitting an `1-penalized regression. It is a topic of future work to suggest an approach that

reduces the computational burden of applying shrinkage estimation procedure in mixed models

and test its utility for improving the effect size estimates in an admixed population training data

set. Vilhjálmsson et. al. (2015)38 proposed LDpred for incorporating information from GWAS

summary statistics and a reference panel to use information from multiple SNPs, rather than only

the lead SNP, from an association region. While they demonstrated this method to be useful under

specific priors for genetic architecture, their approach hinges on having a good reference panel.

Different admixed populations differ in their admixture patterns, so the same reference panel may

not be appropriate across the board. It will be interesting to study and potentially extend this38

approach to admixed populations, despite the lack of training and testing samples with the same

LD structure.

Supplemental Data

The Supplemental Data includes detailed information about the simulation studies and figures with

results from simulations, and figures comparing performances of all GRSs of all investigated traits

in the WHI Hispanics, as well in the WHI African American (secondary analysis).
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