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Abstract 28 
Gene-based tests to study the combined effect of rare variants towards a particular phenotype have been widely 29 
developed for case-control studies, but their evolution and adaptation for family-based studies, especially for 30 
complex incomplete families, has been slower. In this study, we have performed a practical examination of all 31 
the latest gene-based methods available for family-based study designs using both simulated and real datasets. 32 
We have examined the performance of several collapsing, variance-component and transmission disequilibrium 33 
tests across eight different software and twenty-two models utilizing a cohort of 285 families (N=1,235) with 34 
late-onset Alzheimer disease (LOAD). After a thorough examination of each of these tests, we propose a 35 
methodological approach to identify, with high confidence, genes associated with the studied phenotype with 36 
high confidence and we provide recommendations to select the best software and model for family-based gene-37 
based analyses. Additionally, in our dataset, we identified PTK2B, a GWAS candidate gene for sporadic AD, 38 
along with six novel genes (CHRD, CLCN2, HDLBP, CPAMD8, NLRP9, MAS1L) as candidates genes for 39 
familial LOAD. 40 
 41 
Running title: gene-based family-based methods in Alzheimer disease 42 
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1 Introduction 45 

Alzheimer disease (AD) is a complex condition for which almost 50% of its phenotypic variability is due to 46 
genetic causes; yet, only 30% of the genetic variability is explained by known markers (Ridge et al. 2016). 47 
GWAS studies have identified more than 20 risk loci (Lambert et al. 2013); and sequencing studies have 48 
identified additional genes harboring low frequency variants with large effect size (TREM2, PDL3, UNC5C, 49 
SORL1, ABCA7, (Sims et al. 2017)). Recent studies also indicate that Late-Onset AD (LOAD) families are 50 
enriched for genetic risk factors (Cruchaga et al. 2017). Therefore studying those families may lead to the 51 
identification of novel variants and genes (Cruchaga et al. 2014; Guerreiro et al. 2013). 52 
 53 
Current consensus is that the missing heritability for complex traits and AD may be hidden under the effect of 54 
rare variants with low to moderate effect on disease risk (Frazer et al. 2009; Manolio et al. 2009; Cirulli and 55 
Goldstein 2010). The rarity of these markers requires specific study designs and statistical analysis for their 56 
detection. The simplest approach to detect rare variants for association is to test each variant individually using 57 
standard contingency table and regression methods. But due to the few observations of the rare minor allele at a 58 
specific variant, the statistical power to detect association with any rare variant is limited; hence, extremely 59 
large samples are required and a more stringent multiple-test correction applies as compared to common 60 
variants (Bansal et al. 2010; B. Li and Leal 2008). It has been acknowledged that the best alternative is to 61 
collapse sets of pre-defined candidate rare variants within significant units, usually genes (gene-based sets) (Lee 62 
et al. 2014; Neale and Sham 2004). Collapsing tests work under the framework of giving each variant a certain 63 
weight and perform summation of weights through all variants within the region; depending on the weights and 64 
how summation is performed there are four major types of gene-based methods: collapsing tests, variance-65 
component tests, and combined tests (Lee et al. 2014). Collapsing tests, analyze whether the overall burden of 66 
rare variants is significantly different in cases compared to controls by regressing disease status on minor allele 67 
counts (MAC). The Cohort Allelic Sum Test (CAST) is a dominant genetic model that assumes that the 68 
presence of any rare variant increases disease risk (Morgenthaler and Thilly 2007); whereas the Combined 69 
Multivariate and Collapsing (CMC) method, collapses rare variants in different MAF categories and evaluates 70 
the joint effect of common and rare variants through Hoteling’s test (Li and Leal 2008). However, neither 71 
CAST nor CMC tests allow correcting for directional effect. The Variable Threshold (VT) test instead allows 72 
for both trait-increasing and trait-decreasing variants; it selects optimal frequency thresholds for burden tests of 73 
rare variants and estimates p-values analytically or by permutation (Price et al. 2010). Variance-componence 74 
methods test for association by evaluating the distribution of genetic effects for a group of variants while 75 
appropriately weighting the contribution of each variant. The sequence kernel association test (SKAT) casts the 76 
problem in mixed models (Lee et al. 2014), and in the absence of covariates, SKAT reduces to C-alpha test. 77 
(Neale et al. 2011). Finally, collapsing and variance component tests can be combined into one statistical 78 
method, the SKAT-O approach (Lee et al. 2012), which is statistically efficient regardless of the direction and 79 
effect of the variants studied. 80 
 81 
All these methods were initially designed for unrelated case-control study designs; but given the rarity of these 82 
variants, large datasets are required to achieve statistical power. (Laird and Lange 2006). Alternatively, family-83 
based studies in which several family members share the same phenotype may provide more statistical power 84 
than regular case-controls studies (Li et al. 2006; Cirulli and Goldstein 2010; Ott et al. 2011; Kazma and Bailey 85 
2011). Pioneering methods were designed for testing nuclear families, trios or sibships (Ionita-Laza et al. 2013; 86 
Horvath et al. 2001; Laird et al. 2000; De et al. 2013; Ott et al. 2011). However, considering the late-onset 87 
nature of Alzheimer disease it is often difficult to obtain genetic information from parents (to conform trios), or 88 
nuclear family units. The usual pedigree in familial LOAD corresponds to incomplete, large familial units 89 
(Figure 1). Most of the initial software for gene-based family-based studies were not suitable for complex 90 
pedigrees like those observed in Alzheimer studies, but in recent years a plethora of methods have been 91 
developed that take into account complex family structure in gene-based calculations. Among the software that 92 
take into account large pedigrees we find SKAT (Wu et al. 2011), FSKAT (Yan et al. 2015) , GSKAT (Wang et 93 
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al. 2013), RV-GDT (Chen et al. 2009), EPACTS (http://genome.sph.umich.edu/wiki/EPACTS), FarVAT (Choi 94 
et al. 2014), PedGene (Schaid et al. 2013) and RareIBD (Sul et al. 2016). 95 
 96 
In this study, we wanted to evaluate the performance of the eight most common gene-based family-based 97 
methods available using a real dataset, over 250 multiplex families affected with Alzheimer disease, under 98 
different conditions and models. We simulated multiple scenarios in which a candidate variant perfectly 99 
segregates with disease status to rank the different programs and models. We also tested the performance of 100 
these tests at evaluating known causal genes for AD in our cohort. Finally, we performed genome-wide analysis 101 
to evaluate the power of each of these tests. Altogether, we discuss the pros and cons of each method that can be 102 
very informative for other investigators performing similar analyses: complex diseases in complex, incomplete, 103 
large families. We want to emphasize that although this work is centered on AD, the information extracted from 104 
this work can be equally applied to other complex traits. Finally, based on the results from the methods 105 
analyzed, we present some candidate genes for AD. 106 

2 Materials and Methods 107 

2.1 Cohort 108 

The LOAD families included in this study originated from two cohorts: Washington University School of 109 
Medicine (WUSM) cohort and ADSP cohort. 110 
 111 
2.1.1 WUSM cohort 112 

Samples from the Washington University School of Medicine (WUSM) cohort were recruited by either the 113 
Charles F. and Joanne Knight Alzheimer's Disease Research Center (Knight ADRC) at the WUSM in Saint 114 
Louis or the National Institute on Aging Genetics Initiative for Late-Onset Alzheimer’s Disease (NIA-LOAD). 115 
This study was approved by each recruiting center Institutional Review Board. Research was carried out in 116 
accordance with the approved protocol. Written informed consent was obtained from participants and their 117 
family members by the Clinical and Genetics Core of the Knight ADRC. The approval number for the Knight 118 
ADRC Genetics Core family studies is 201104178. The NIA-LOAD Family Study has recruited multiplex 119 
families with two or more siblings affected with LOAD across the United States. A description of these samples 120 
has been reported previously (Wijsman et al. 2011) (Fernández et al. 2017; Cruchaga et al. 2012). We selected 121 
individuals for sequencing from families in which APOEε4 did not segregate with disease status, and in which 122 
the proband of the family did not carry any known mutation in APP, PSEN1, PSEN2, MAPT, GRN or C9orf72 123 
(described previously (Cruchaga et al. 2012)). 124 
 125 
2.1.2 ADSP cohort 126 

The Alzheimer's Disease Sequencing Project (ADSP) is a collaborative work of five independent groups across 127 
the USA that aims to identify new genomic variants contributing to increased risk for LOAD. 128 
(https://www.niagads.org/adsp/content/home). During the discovery phase, they generated whole genome  129 
sequence (WGS) data from members of multiplex LOAD families, and whole exome sequence (WES) data 130 
from a large case-control cohort. These data are available to qualified researchers through the database of 131 
Genotypes and Phenotypes (https://www.ncbi.nlm.nih.gov/gap Study Accession: phs000572.v7.p4). 132 

 133 

The familial cohort of the ADSP consists of 582 individuals from 111 multiplex AD families from European-134 
American, Caribbean Hispanic, and Dutch ancestry (details about the samples are available at NIAGADS). We 135 
downloaded raw data (.sra format) from dbGAP for 143 IDs (113 cases and 23 controls) from 37 multiplex 136 
families of European-American ancestry that were incorporated with the WUSM cohort. 137 
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 138 

2.2 Sequencing 139 

Samples were sequenced using either whole-genome sequencing (WGS, 12%) or whole-exome sequencing 140 
(WES, 88%). Exome libraries were prepared using Agilent’s SureSelect Human All Exon kits V3 and V5 or 141 
Roche VCRome (Table 2). Both, WES and WGS samples were sequenced on a HiSeq2000 with paired ends 142 
reads, with a mean depth of coverage of 50× to 150× for WES and 30× for WGS. Alignment was conducted 143 
against GRCh37.p13 genome reference. Variant calling was performed separately for WES and WGS following 144 
GATK’s 3.6 Best Practices (https://software.broadinstitute.org/gatk/best-practices/) and restricted to Agilent’s 145 
V5 kit plus a 100bp of padding added to each capture target end. We used BCFTOOLS 146 
(https://samtools.github.io/bcftools/bcftools.html) to decompose multiallelic variants into biallelic prior variant 147 
quality control. Variant Quality Score Recalibration (VQSR) was performed separately for WES and WGS, and 148 
for SNPs and INDELs. Only those SNPs and indels that fell within the above 99.9 confidence threshold, as 149 
indicated by WQSR, were considered for analysis; variants within low complexity regions were removed from 150 
both WES and WGS and variants with a depth (DP) larger than the average DP + 5 SD in the WGS dataset were 151 
removed. At this point SNPs and indels from WES and WGS datasets were merged into one file. Non-152 
polymorphic variants and those outside the expected ratio of allele balance for heterozygosity calls 153 
(ABHet=0.3-0.7) were removed. Additional hard filters implemented included quality depth (QD ≥7 for indels 154 
and QD≥2 for SNPs), mapping quality (MQ≥40), fisher strand balance (FS≥200 for indels and FS≥60 for 155 
SNPs), Strand Odds Ratio (SOR≥10 for Indels and SOR≥3 for SNPs), Inbreeding Coefficient (IC ≥-0.8 for 156 
indels) and Rank Sum Test for relative positioning of reference versus alternative alleles within reads (RPRS≥-157 
20 for Indels and RPRS≥-8 for SNPs) (Figure S1). We used PLINK1.9 (https://www.cog-158 
genomics.org/plink2/ibd) to remove variants out of Hardy Weinberg equilibrium (p-value <1×10-6), with a 159 
genotype calling rate below 95%, with differential missingness between cases vs controls, WES vs WGS, or 160 
among different sequencing platforms (p-value<1×10-6). 161 
 162 
Samples with more than 10% of missing variants (four samples) and whose genotype data indicated a sex 163 
discordant from the clinical database (three samples) were removed from dataset. Individual and familial 164 
relatedness was confirmed using identity-by-descent (IBD) calculations, an existing GWAS dataset for these 165 
individuals, and the pedigree information. Because many of the ADSP families were also recruited from the 166 
NIA-LOAD repository there is a certain overlap (48 individuals) between the WUSM and the ADSP familial 167 
cohorts; we kept the duplicated pair that had better genotyping rate after QC. Principal Component Analysis 168 
(PCA) was calculated to corroborate ancestry and restrict our analysis to only samples from European American 169 
origin. Functional impact and population frequencies of variants were annotated with SnpEff (Cingolani et al. 170 
2012). For this analysis, only SNVs with a minor allele frequency (MAF) below 1%, as registered in ExAC 171 
(Lek et al. 2016),were taken into account. 172 
 173 
We excluded families carrying a known pathogenic mutation in any of the Mendelian genes for Alzheimer 174 
disease, Frontotemporal Dementia, or Parkinson disease (Fernández et al. 2017). We restricted the selection of 175 
families to those families with at least one case and one control in the family, and we excluded any participants 176 
initially diagnosed as AD but that turned into other after pathological examination. Finally, our dataset 177 
consisted of 1235 non-hispanic whites (NHW), 824 cases and 411 controls, from 285 different families (Table 178 
1, Table S1). 179 
 180 

2.3 Study design & analysis. 181 

The goal of this study was to test the performance and power of different gene-based family-based methods 182 
available to date, using a real dataset consisting of 1,235 non-hispanic white individuals from 285 families 183 
densely affected with AD. We set up three different scenarios to test (Figure 2). First, using the real phenotype 184 
and pedigree structure of 25 from the 285 families, we generated a synthetic dataset with multiple variants and 185 
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families with perfect segregation. Second, we evaluated different variant-combinations for the APOE gene. 186 
Third, we performed genome-wide gene-based analysis accounting only for non-synonymous SNPs with a 187 
MAF < 1%. For each one of these scenarios we evaluated the performance of the different gene-based methods 188 
(collapsing, variance-component, and transmission disequilibrium) from the following family-based packages: 189 
SKAT (Wu et al. 2011), FSKAT (Yan et al. 2015), GSKAT (Wang et al. 2013), RVGDT (He et al. 2017), 190 
EPACTS (http://genome.sph.umich.edu/wiki/EPACTS), FarVAT (Choi et al. 2014), PedGene (Schaid et al. 191 
2013), RareIBD (Sul et al. 2016). Some of these software offer the option to run different gene-based 192 
algorithms; e.g. GSKAT, EPACTS, FarVAT or PedGene can run collapsing and variance-component tests; 193 
therefore, we ran a total of 25 models (Table 3). The details of each one of these scenarios are described next. 194 
 195 
2.3.1 Simulated data 196 

We selected 25 representative families from our entire dataset for which there was genotypic data for three to 197 
seven members (Table S2). We used the existing family structure and phenotype of these families, and a 198 
simulated gene called “GENE-A” containing five variants. We generated several scenarios in which different 199 
numbers of families presented perfect segregation with disease status for a variant in GENE-A (Table 4 and 200 
Table S2). First, we considered a scenario in which only the first five families of the dataset were included in 201 
the analyses, and each family presented a different perfectly segregating variant of GENE-A (scenario 5 family 202 
carriers (FC) and 0 non-carriers (FNC): 5FC×0FNC). Second, we generated additional scenarios in which we 203 
kept the same five families carrier of segregating variants in GENE-A, and added five (scenario 5FC×5FNC), 204 
ten (scenario 5FC×10FNC), 15 (scenario 5FC×15FNC), and 20 (scenario 5FC×20FNC) families that were not 205 
carriers of any variant in GENE-A. Then, we considered four scenarios of 25 families in which each new 206 
scenario added families who were carriers of a segregating variant in GENE-A. We started with the scenario 207 
5FC×20FNC, then we simulated ten families carriers and 15 families non-carriers (scenario 10FC×15FNC), 15 208 
families carries and 10 families non-carriers (scenario 15FC×10FNC), 20 families carriers and five families 209 
non-carriers (scenario 20FC×5FNC) and concluded with a scenario in which all 25 families were carriers of 210 
one, of the possible five, segregating variant in GENE-A (scenario 25FC×0FNC). We tested each one of these 211 
scenarios with all previously mentioned gene-based methods and software to evaluate their power to associate 212 
perfect segregating variants with disease. 213 
 214 
2.3.2 Candidate genes 215 

APOE is the largest genetic risk factor for Alzheimer’s disease. The allelic combination of two SNPs, rs429358 216 
(APOE 4; 19:45411941:T:C) and rs7412 (APOE 2: 19:45412079:C:T), determines one of the three major 217 
isoforms of APOE protein, ε2, ε3 or ε4. The dosage of these isoforms determines a person’s risk to suffer AD, 218 
from having a protective effect APOE ε2/ε2 (OR 0.6) or ε2/ε3 (OR 0.6) to different degrees of increased risk 219 
according to the number of copies of the ε4 allele (ε2/ε4, OR 2.6; ε3/ε4, OR 3.2; ε4/ε4, OR 14.9) (Farrer et al. 220 
1997). We tested the power of all previously mentioned gene-based methods and software to detect association 221 
of APOE gene with disease in our entire dataset (N=1,235) under different conditions. We first tested all 222 
polymorphic variants (nonsynonymous with MAF <1%) in the APOE gene, second we tested only those 223 
variants considered to have a high or moderate effect on the protein including rs429358 and rs7412, and then 224 
we tested high and moderate variants alone, and finally tested rs429358 and rs7412 alone. 225 
 226 
2.3.3 Genome-wide analyses 227 

We performed gene-based burden analysis on a genome-wide level in our entire dataset (families n=285; 228 
samples N=1,235) to evaluate the power of each of the previously mentioned methods to detect novel genes 229 
significantly associated with disease; only single nucleotide variants (SNVs) with a minor allele frequency 230 
equal or below 1%, based on the EXAC dataset (Lek et al. 2016) (MAF ≤ 1%), and with a predicted high or 231 
moderate effect, according to SnpEff (Cingolani et al. 2012) were included in the analysis. Quantile-Quantile 232 
(QQ) plots from gene-based p-values were generated with the R package “ggplot2” (Wickham 2009). We also 233 
evaluated the correlation between these methods using Pearson correlation (Pc) and Spearman correlation (Sc) 234 
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tests on the log of the p-value using R v3.4.0 (R Core Team 2017). Pc evaluates the linear relationship between 235 
two continuous variables whereas Sc evaluates the monotonic relationship between two continuous or ordinal 236 
variables. 237 
 238 

2.4 Software tested 239 

A companying supporting file (Supplementary material) provides a summary of the code employed to run 240 
each of the programs described below. 241 

2.4.1 GSKAT 242 

GSKAT (Wang et al. 2013) is among the first R packages to come out with the goal of extending burden and 243 
kernel-based gene set association tests for population data to related samples with binary phenotypes. To handle 244 
the correlated or clustered structure in the family data, GSKAT fits a marginal model with generalized 245 
estimated equations (GEE). The basic idea of GEE is to replace the covariance matrix in a generalized linear 246 
mix model (GLMM) with a working covariance matrix that reflects the cluster dependencies. Accordingly, 247 
GSKAT blends the strengths of kernel machine methods and generalized estimating equations (GEE), to test for 248 
the association between a phenotype and multiple variants in a SNP set. We ran GSKAT correcting for sex and 249 
first two PCs. 250 
 251 
2.4.2 SKAT 252 

The sequence kernel association test SKAT (Wu et al. 2011) is an R package initially designed for case-control 253 
analysis. Later they incorporated the Efficient Mixed-Model Association eXpedited (EMMAX) algorithm 254 
(Zhou and Stephens 2012; Kang et al. 2010) that allows for performing family-based analysis. EMMAX 255 
simultaneously corrects for both population stratification and relatedness in an association study by using a 256 
linear mixed model with an empirically estimated relatedness matrix to model the correlation between 257 
phenotypes of sample subjects. The efficient application of EMMAX algorithm depends on appropriate estimate 258 
of the variance parameters. Relatedness matrices can be calculated based on pedigree structure or estimated 259 
from genotype data. For the latter, different methods have been proposed. Relatedness can be estimated using 260 
those alleles that have descended from a single ancestral allele, i.e. those that are Identical by Descent (IBD), or 261 
using the Balding-Nichols (BN) method (Balding and Nichols 1995) which explicitly models current day 262 
populations via their divergence from an ancestral population specified by Wright's Fst statistic. We ran SKAT 263 
v1.2.1, on R v3.3.3, using option SKAT_Null_EMMAX correcting for sex and first two PCs and we tested four 264 
different kinship matrices: pedigree, IBS, BN and a BN based kinship matrix (HR) that EPACTS software 265 
constructs (Table S3). 266 
 267 
2.4.3 FSKAT 268 

FSKAT (Yan et al. 2015), also an R package, is based on a kernel machine regression and can be viewed as an 269 
extension of the sequence kernel association test (SKAT and famSKAT) for application to family data with 270 
dichotomous traits. FSKAT is based on a GLMM framework. Moreover, because it uses all family samples, 271 
FSKAT claims to be more powerful than SKAT that uses only unrelated individuals (founders) in the family 272 
data. FSKAT constructs a kinship matrix based on pedigree relationships using the R kinship library. We ran 273 
FSKAT correcting for sex and first two PCs. 274 
 275 
2.4.4 EPACTS 276 

Efficient and Parallelizable Association Container Toolbox (EPACTS) is a stand-alone software that 277 
implements several gene-based statistical tests (CMC, VT and SKAT) and adapts them to complex families by 278 
using EMMAX (https://genome.sph.umich.edu/wiki/EPACTS). EPACTS generates a kinship matrix based on 279 
BN algorithm and also annotates the genotypic input file and offers filtering tools (frequency and predicted 280 
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effect of variants) for easier user-selection of variants that go into gene-based analysis. Nonetheless, we used 281 
the same set of variants as in other tests, and corrected for sex and first two PCs, to run our analysis with 282 
EPACTS. 283 
 284 
2.4.5 FarVAT 285 

The Family-based Rare Variant Association Test (FarVAT) (Choi et al. 2014) provides a burden and a variance 286 
component test (VT) for extended families, and extends these approaches to the SKAT-O statistic. FarVAT 287 
assumes that families are ascertained based on the disease status if family members, and minor allele 288 
frequencies between affected and unaffected individuals are compared. FarVAT is implemented in C++ and is 289 
computationally efficient. Additionally, if genotype frequencies of affected and unaffected samples are 290 
compared to detect the genetic association, it has been shown that the statistical efficiency can be improved by 291 
modifying the phenotype; and so FarVAT uses prevalence (Lange and Laird 2002) or Best Linear Unbalanced 292 
Predictor (BLUP) (Thornton and McPeek 2007) as covariate to modify the genotype. 293 
 294 
2.4.6 PedGene 295 

PedGene (Schaid et al. 2013) is an R package that extends burden and kernel statistics to analyze binary traits in 296 
family data, using large-scale genomic data to calculate pedigree relationships. To derive the kernel association 297 
statistic and the burden statistic for data that includes related subjects, they take a retrospective view of 298 
sampling, with the genotypes considered random. 299 
 300 
2.4.7 RVGDT 301 

The Rare Variant Generalized Disequilibrium Test (RVGDT) (He et al. 2017), implemented in Python, differs 302 
from the previous methods presented. Instead of using a kernel method to evaluate variants, derives from the 303 
generalized disequilibrium test (GDT) which uses genotype differences in all discordant relative pairs to assess 304 
associations within a family (Chen et al. Rich 2009). The rare-variant extension of GDT (RVGDT) aggregates a 305 
single-variant GDT statistic over a genomic region of interest, which is usually a gene. We ran RVGDT 306 
correcting for sex and first two PCs. 307 
 308 
2.4.8 RareIBD 309 

RareIBD (Sul et al. 2016) claims to be a program without restrictions on family size, type of trait, whether 310 
founders are genotyped, or whether unaffected individuals are genotyped. The method is inspired by non-311 
parametric linkage analysis and looks for a rare variants whose segregation pattern among affected and 312 
unaffected individuals is different from the predicted distributions based on Mendelian inheritance and 313 
computes a statistic measuring the difference. 314 

3 Results 315 

3.1 Simulated dataset 316 

Results from the simulated dataset indicate that RVGDT, rareIBD and collapsing-based methods (Burden, CMC 317 
and CLP), provided more statistical power than the variance-component methods to detect association of 318 
perfectly segregating variants with disease status (Table 4). 319 
 320 
In an hypothetical scenario of five families in which each one of these families presents perfect segregation with 321 
disease status for a different variant within the same gene (5FC×0NFC), transmission-disequilibrium based 322 
methods evaluate this association as significant (even after multiple test correction; e.g. RVGDT p-value=0.004; 323 
p-value after multiple test correction 0.004×9 = 0.036). RVGDT reaches a ceiling p-value of 1×10-4; at 10 324 
families carriers (FC) plus 15 families non-carriers (FNC). RVGDT was unable to produce a p-value smaller 325 
than 9×10-4, therefore it is not possible to rank or determine the significance of genes with this p-value. 326 
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Similarly, RareIBD reports the same p-value for all simulated scenarios, which can be an artifact or a flaw of 327 
the program. Collapsing-based methods (Burden, CMC and CLP) started with significant p-values for the 328 
5FC×0NFC scenario, but as we added FNC in the analysis, the association became less significant. Then, as we 329 
increased the number of FC of segregating variants, the association became more significant. In our analyses, 330 
most variance-component tests could not work with the scenarios with only five families carrying the 331 
segregating variant; most of the tests only provided p-values once 25 families are included in the analysis 332 
(5FC×20FNC). After that, as we increased the number of FC of a segregating variants, the p-value became 333 
smaller. SKAT required 15FC×10FNC to report nominally significant p-values, GSKAT required 20FC×5FNC 334 
to report statistically significant p-values, FarVAT-CALPHA did not generate significant p-values, except if we 335 
used the BLUP correction; FarVAT SKATO reported p-values that were significant at 15FC×10FNC, and at 336 
5FC×20FNC if we used the BLUP correction. P-values from EPACTS-SKAT were not statistically significant 337 
after multiple test correction. FSKAT did not deal well with perfectly segregating scenarios; it did not provide 338 
p-values for a scenario of only five families all carriers of the segregating variant (5FC×0FNC – FSKAT p-339 
value=NA), and after five families carrying the segregating variant, the program saturated giving no p-value. 340 
 341 
Overall, Transmission-disequilibrium tests and collapsing tests were the models that identified these simulated 342 
segregating variants as associated with the phenotype; the CMC model provided by FarVAT-BLUP was the one 343 
providing most genome-wide significant p-values, even in the 5FCx0FNC scenario. 344 
 345 

3.2 Candidate genes - APOE 346 

We examined the performance of four gene-sets generated for the APOE gene with the twenty-two family-347 
based gene-based methods in our entire familial cohort. Neither the entire set of polymorphic variants (set 348 
“gene” in Table 5) nor the set including only rare non-synonymous variants (set “HM” in Table 5) confer risk 349 
for these families. The association seems to be driven by the common APOE ε2 and ε4 variants, since only 350 
when these were considered, either alone (set “ε2ε4” in Table 5) or in conjunction with the rest of rare non-351 
synonymous variants (set “HM- ε2ε4” in Table 5), most of the tests yielded a significant p-value (after multiple 352 
test correction). Only EPACTS-SKAT did not consider the APOE ε2 and ε4 variants as significantly associated, 353 
after multiple test correction, with our dataset (Table 5). The most significant association for APOE ε2 and ε4 354 
variants was reported by FarVAT-CMC test. 355 
 356 

3.3 Genome-wide analyses 357 

Overall, we examined eight software and over 22 algorithms for genome-wide association analysis in our 358 
extended family dataset of 285 families and 1235 non-hispanic white individuals. We only included in the 359 
analysis non-synonymous SNPs with a MAF ≤ 1% and we corrected per sex and first two PCs. All 22 360 
algorithms were run using the same input dataset. The results for these 22 algorithms are described grouped per 361 
category, as detailed in the following sections. First, we compared the correction effect provided by four kinship 362 
matrices (Figure 3A). Second, we compare the performance of nine variance-component software and 363 
algorithms (Figure 3B). Third is the comparison of eight collapsing software and algorithms. Fourth, we 364 
compare two transmission-disequilibrium tests. We conclude the results section by providing a summary of the 365 
pros and cons encountered while running these methods. Overall, most of the gene-based methods tested 366 
seemed quite deflated. Only PedGene, FarVAT and Rare-IBD seem to provide values closer or above the 367 
expected under the null hypothesis. The most efficient in terms of power and p-value inflation appears to be 368 
FarVAT with BLUP correction. 369 
 370 
3.3.1 Kinship matrices 371 

We tested the correction provided by four kinship matrices using the SKAT method with EMMAX correction 372 
implemented in the R package SKATv2. The four kinship matrices tested were pedigree calculation (PED), 373 
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Identity By State (IBS) estimation, Balding-Nichols (BN) estimation, and the kinship generated by EPACTS 374 
(HR) which is also based on BN algorithm (Figure 3A). Table S3 offers a comparison of these kinships for 375 
FAM#1 and FAM#2 of our simulated dataset. For these analyses, we ran the SKAT-EMMAX method in our 376 
entire dataset, gene-wide and calculated a QQ plot and inflation factor (λ) to obtain a general ideal of the 377 
behavior of each matrix. Matrices based on the BN algorithm seemed to have a similar performance (SKAT-BN 378 
λ=0.038, SKAT-HR λ=0.039, Table 6) although their concordance was lower than expected given they are 379 
based on the same algorithm (Pearson correlation (Pc)=0.85; Spearman correlation (Sc)=1). Although the PED 380 
matrix generates a more restrictive correction than the IBS matrix (SKAT-PED λ= 0.36, SKAT-IBS λ=0.67, 381 
Table 6), these two tests have a similar overall performance as the p-values for the different genes are highly 382 
correlated (Pc=0.97; Sc=0.98), making the PED matrix a good surrogate for the IBS matrix. Finally, there were 383 
clear performance differences between the BN-type matrices (BN and HR) and the IBS-type matrices (IBS and 384 
PED), exemplified by the different top candidate genes (NR1D1 for BN-type matrices and CHRD for IBS-type 385 
matrices) and by the correlation algorithms (SAKT-IBS vs SKAT-BN Pc=0.8; Sc=0.89). Overall, we found that 386 
the IBS matrix provided to our dataset the best balance between covariance-correction and overcorrection. 387 
 388 
3.3.2 Collapsing tests 389 

The collapsing methods tested from four different software (PedGene, FarVAT, EPACTS and GSKAT) were 390 
Burden, CMC and VT (Figure 3c). In order to compare the different tests, we followed a similar approach as 391 
above, and we ran the different software with the same imputed file and compared the λ. 392 
In our analyses, the burden test by GSKAT presented the most deflated values; although the lambda does not 393 
illustrate so (GSKAT-Burden λ=1.71, Table 6) because of the initial inflation among the low or non-significant 394 
genes. EPACTS-CMC (λ= 0.85) and EPACTS-VT (λ=0.95) provided values closer to the expected, and despite 395 
their QQ-plots seem to follow a similar trend, their correlation is weak (Pc=0.54; Sc=0.68), pointing to different 396 
top genes. The Burden and CMC methods by FarVAT and FarVAT-BLUP provided p-values closest to the 397 
expected (FarVAT-Burden λ=0.98; FarVAT-CMC λ=0.99, FarVAT-BLUP-Burden λ=1.03; FarVAT-BLUP-398 
CMC λ=1.07). The correlation for the gene p-values was higher between results generated by the same method 399 
(FarVAT-BLUP-CMC vs FarVAT-BLUP-Burden Pc=0.99; Sc=0.96; FarVAT-CMC vs FarVAT-Burden 400 
Pc=0.98; Sc=0.97) than between results generated using the same algorithm (FarVAT-BLUP-CMC vs FarVAT-401 
CMC Pc=0.88; Sc=0.8; FarVAT-BLUP-Burden vs FarVAT-Burden Pc=0.85; Sc=0.77). PedGene in the burden 402 
model is the software that provided most significant p-values; however, these are clearly inflated compared to 403 
the predicted p-values (Pedgene-Burden λ=2.99, Table 6) and its results were not correlated with any other 404 
Collapsing test (Pc and Sc values < 0.1). 405 
 406 
3.3.3 Variance component tests 407 

This subset included all the Variance component-based methods available, CLP, CALPHA and SKAT, from six 408 
different software: PedGene, FarVAT, FSKAT, EPACTS, SKAT and GSKAT (Figure 3c). GSKAT was the 409 
software presenting more deflated values though the lambda does not illustrate this (GSKAT-SKAT λ= 1.681, 410 
Table 6) because of the initial inflation among the low or non-significant genes. GSKAT was followed by 411 
SKAT and EPACTS which showed similar λ and performance-values for each gene (Pc=0.8, Sc=0.8, Figure 4). 412 
The CLP, CALPHA and SKATO methods by FarVAT and FarVAT-BLUP provided p-values closest to the 413 
expected (FarVAT-CLP λ=1.00; FarVAT-CALPHA λ =1.15; FarVAT-SKATO λ=1.02, FarVAT-BLUP-CLP 414 
λ=1.11; FarVAT-BLUP-CALPHA λ=1.26; FarVAT-BLUP-SKATO λ=1.10). FarVAT-CALPHA, FarVAT-415 
SKATO, FarVAT-BLUP-CALPHA and FarVAT-BLUP-SKATO pointed to the same top candidate gene 416 
(CHRD) (Table 6), although the overall p-value correlation is lower than expected considering they are based 417 
on the same algorithm (FarVAT-SKATO vs FarVAT-BLUP-SKATO Pc=0.6, Sc=0.7; FarVAT-CALPHA vs 418 
FarVAT-BLUP-CALPHA Pc=0.82 Sc=0.82, Figure 4). On the other hand, and despite the fact that FarVAT-419 
CLP and FarVAT-BLUP-CLP have higher correlation (Pc=0.85, Sc=0.77), these two tests point to different top 420 
genes (FarVAT-CLP top gene is MAS1L, and FarVAT-BLIP-CLP top gene is NLRP9). PedGene in the SKAT 421 
model is the software that provided the most significant p-values, but we can observe how these are inflated 422 
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(Pedgene-SKAT λ=3.53, Table 6) and that its correlation with other variance component tests is low to null (Pc 423 
and Sc values < 0.2). 424 
 425 
3.3.4 Transmission disequilibrium tests 426 

We have tested two transmission disequilibrium tests, RVGDT and Rare-IBD, which are designed to account 427 
for large extended families of arbitrary structure (Figure 3d). Of these two, RVGDT is the test that more 428 
closely approached the expected under the null (λ=0.99), whereas Rare-IBD provided slightly inflated p-values 429 
(λ=1.450, Table 6). The correlation between these two methods was very low (Pearson correlation = 0.23, 430 
Spearman correlation = 0.17). A common issue with both methods is that we could see some stratification 431 
towards more significant p-values which made it difficult to determine a top significant gene. 432 
 433 
3.3.5 PROS and COSN of the different gene-based methods 434 

Among all the methods tested, EPACTS and FarVAT are the most user-friendly, time-efficient and versatile 435 
software. EPACTS is an all-in-one package that annotates the input file, generates the kinship matrix and 436 
performs gene-based analysis under different conditions (minor allele frequency and predicted functionality of 437 
the variant) with only tag specification. In addition, the program can be run on a genome-wide base or at 438 
smaller scale given genes or regions specified by the user. FarVAT can generate the kinship matrix by either 439 
using the pedigree relationships or using the genetic relationship among individuals. It does not annotate the 440 
input file and requires that the user provide their own set of genes and variants per gene to analyze; it allows the 441 
user to choose between BLUP (best linear unbiased prediction) or prevalence to estimate and incorporate 442 
random effects on the phenotype. FarVAT has initial conditioning that only takes founder-based MAF, i.e. 443 
when a genetic variant has its minor alleles only in non-founders (offspring), these numbers will not be counted. 444 
This is a big difference with respect to the other programs that take into account all variants regardless of their 445 
presence in founders or not. Since for many of our families we only had genetic data for siblings, i.e. we did not 446 
have genetic data for founders, we ran FarVAT with the “–freq all” option, so all variants would be included 447 
regardless if they are present in founders or not.  448 
 449 
FSKAT, GSKAT and SKAT require of some R knowledge from the user, and are less flexible. For FSKAT and 450 
GSKAT the user has to provide a genotype, a phenotype, and a gene-set file. For SKAT the user has to 451 
additionally provide the kinship matrix. Because these programs were designed to run on a per gene basis, these 452 
take longer to compute and to be run on a genome-wide level than EPACTS or FarVAT, even if the user 453 
parallelizes computation. PedGene is also an R package that requires a genotype, a phenotype file with 454 
complete pedigree information (to generate the kinship matrix), and a gene-set file. PedGene provides 455 
phenotype adjustment by logistic regression on the trait of interest, but it does not allow for extra covariates, 456 
which prohibits correction by multiple PCs or other variables. RVGDT is a python based program, quite user-457 
friendly since it is operated with simple command-line but is limited in its options. Similar to FSKAT, GSKAT 458 
and SKAT, it is designed to be run on a per-gene basis for which loops and parallelization have to be set up for 459 
genome-wide testing. The same goes for RareIBD which requires a genotype, a phenotype, and a Kinship 460 
coefficient file for each gene that the user wants to test. For each gene the program computes first statistics for 461 
each founder within each family and then calculates the gene-based p-value. The first step of this process can 462 
easily take between three to five minutes for families with less than 100 individuals; hence, the overall time for 463 
one gene is directly dependent on the number of families to test and the time required for a genome-wide 464 
analysis is proportional to the number of genes being tested. Although it is possible to parallelize the jobs using 465 
a high-performance cluster (if available) this program is the slowest of all tested. 466 
 467 
One of the major drawbacks we found is that some of these programs do not accept missing data (FSKAT or 468 
RareIBD) or will not generate a p-value if the gene set contains only one variant (GSKAT, PedGene or 469 
FarVAT). FSKAT does not accept missing data, and although it calculates p-values for genes that only have one 470 
informative SNP (2154 one-SNP-gene), there were at least 75 (3.26%) of these one SNP-genes for which the 471 
returned p-value was “2”. GSKAT did not provide p-values for more than 1,875 one-SNP-genes. Pedgene also 472 
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had trouble generating p-values for 44 one-SNP-genes out of a total of 1,916 singletons. FarVAT did not 473 
generate a p-value for the 1,875 one-SNP-genes using the Burden and SKATO models but it generated p-values 474 
using the CMC and CLP models for the same 1,875 one-SNP-genes. 475 

3.4 Candidate genes for FASe project 476 

Our results indicate that transmission disequilibrium tests identify genes that have a Mendelian behavior, 477 
whereas collapsing and variance-component tests identify genes that confer risk for disease. Therefore, we 478 
decided to combine and compare results from all approaches to identify the genes with most consistent results 479 
(Table 7). 480 
 481 
PEDGENE provided the most significant p-values for NTN5 (Pedgene-Burden p-value = 5.80×10-8; Pedgene-482 
SKAT p-value = 1.26×10-8) and ANKRD42 (Pedgene-Burden p-value = 3.62×10-7; Pedgene-SKAT p-value = 483 
1.16×10-7). However, the inflated p-values observed and low correlation with any of the other software tested 484 
using the same algorithms makes us suspicious of the validity of these results. 485 
 486 
CHRD was the gene with the third most significant p-value. CHRD had a p-value ≤5×10-7 in three different 487 
models (FarVAT-CALPHA, FarVAT-SKATO, FarVAT-BLUP-CALPHA). In addition, as we lowered the 488 
considered p-value threshold we found that more tests identified CHRD as a potential candidate gene associated 489 
with AD. When we lowered the threshold to suggestive genome-wide p-value (p-value≤5×10-4) we found that 490 
seven different models identified CHRD as a gene significantly associated with AD. Following the same 491 
method we found that CLCN2, MAS1L and PTK2B had p-values ≤ 5×10-05 in at least three tests, and if we 492 
lowered the threshold to ≤5×10-4 p-value, these genes were identified as significant by at least three additional 493 
tests. 494 
 495 
Among genes with a p-value ≤ 5×10-04; CPAMD8 was identified by at least nine gene-based methods (FarVAT, 496 
FarVAT-BLUP and PedGene). The exact p-value for CPAMD8 could not be estimated by RVGDT as it showed 497 
a p-value of 9×10-04, which is the most significant p-value provided by this test. Therefore, we cannot conclude 498 
that CPAMD8 presented a p-value ≤ 5×10-04 by RVGDT. CHRD, CLCN2, MAS1L, PTK2B and CPAMD8, 499 
NLRP9, and HDLBP were also potential novel candidate genes for familial LOAD as they had p-values ≤ 5×10-500 
04 using at least five or more tests (Table 7). 501 
 502 
Since these were identified by multiple gene-based methods, we wanted to determine whether any of these 503 
seven candidate genes are involved in known AD pathways. Common variants in PTK2B have been associated 504 
with AD risk at genome-wide level (J.-C. Lambert et al. 2013). Our results indicate there are additional low-505 
frequency and rare non-synonymous variants in PTK2B that are associated with AD risk in late-onset families. 506 
We used the GeneMANIA (http://pages.genemania.org/) algorithm on the seven candidate genes (CHRD, 507 
MAS1L, PTK2B, CPAMD8, NLRP9, CLCN2 and HDLBP) along with known AD-related genes (APP, PSEN1, 508 
PSEN2, APOE, TREM2, PLD3, ADAM10) which represent some of the AD genes and pathways (APP-509 
metabolism and immune response). GeneMANIA is a software that looks for relationships among a list of given 510 
genes by searching within multiple publicly available biological datasets. These datasets include protein-511 
protein, protein-DNA and genetic interactions, pathways, reactions, gene and protein expression data, protein 512 
domains and phenotypic screening profiles. We found that our candidate genes have genetic interactions and co-513 
localization with known AD genes. CHRD and PTK2B are involved in “regulation of cell adhesion” like 514 
ADAM10; PTK2B is involved in “regulation of neurogenesis” like APOE and “perinuclear region of cytoplasm” 515 
like APP, PSEN1 and PSEN2. Finally, CLCN2 and PTK2B are connected through “regulation of ion transport” 516 
(Figure 5). 517 
  518 

4 Discussion 519 
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The remaining missing heritability in AD, and in many complex diseases, may be found in very rare-variants 520 
for which discovery will require either large datasets (eg. the ADSP Discovery Phase which has over 10,000 521 
sequenced individuals) or datasets enriched for rare variants (such as families with history of AD). In this study, 522 
we present the most comprehensive performance analyses for multiple gene-based methods in 285 families with 523 
AD. Some of the current methods available are underpowered or too restrictive to detect genes significantly 524 
associated with this disease (Figure 4). Results from our simulated data (Table 4) show that only certain highly 525 
restricted scenarios provide gene-wide significant p-values in a family-based analysis; whereas, similar 526 
scenarios in a case-control study would result in gene-wide p-values. To circumvent this power issue, we relied 527 
on the combination of multiple evidence towards the same gene. 528 
 529 
One key aspect to adapt gene-based analyses to a family-based context is to account for the population 530 
stratification and hidden relatedness that may appear due to the inherent nature of the dataset. To take into 531 
account this issue, gene-based algorithms must incorporate kinship matrices to model the relationships among 532 
samples. Therefore, an appropriate estimate of the kinship matrix is of utmost importance. In this work we show 533 
how different relationship matrices influence results. We tested the three most common types of kinship matrix, 534 
pedigree reconstruction (PED), identity by state (IBS), and Balding-Nichols (BN). We show that for a situation 535 
of complex incomplete families, correction using PED or BN matrices will lead to an overcorrection of the 536 
relationships decreasing the power of these tests (Table 6, Figure 4A). 537 
 538 
In order to choose the best gene-based algorithm for analysis, it is important to take into account the nature 539 
(impact and directionality) of the variants that are being included in the test. Collapsing tests are powerful when 540 
a large proportion of variants are causal and effects are in the same direction. Variance-component tests are 541 
supposed to be more powerful than collapsing tests because these allow for admixture of risk and protective 542 
variants within the region being tested (Ionita-Laza et al. 2013). It is not practical to account for the nature of 543 
the variants included in each gene-set, and the true disease model is unknown and variable; hence, omnibus or 544 
combined tests such as SKAT-O would be desirable for genome-wide studies (Lee et al. 2012); however, most 545 
family-based methods do not incorporate the SKAT-O algorithm, except for FarVAT. Therefore, the best 546 
approach to perform genome-wide rare variant discovery is to combine different algorithms and look for 547 
common signatures across the tests performed. Nonetheless, we are aware that running all available tests is a 548 
time-consuming task that requires additional expertise and resources. In our analyses FarVAT, with the BLUP 549 
adjustment, provide the best results in terms of significant p-values and inflation, for genome-wide gene-based 550 
analysis; it is a fast software that provides results from multiple tests at the same time. The R version of SKAT 551 
or EPACTS, would be alternative valid choices, taking into account that these overcorrect and the p-value 552 
threshold should be lowered. 553 
 554 
In this study, we identified CHRD as a candidate gene with a genome-wide significant p-value (5×10-07) 555 
reported by three tests, and another six genes that had a suggestive genome-wide p-value < 5×10-04 in at least 556 
five and up to nine of the different test performed: CLCN2, CPAMD8, HDLBP, MAS1L, NLRP9 and PTK2B. In 557 
addition, these genes seem to have direct and indirect interactions (genetic interaction, co-localization or shared 558 
function) with known AD genes (APP, PSEN1, PSEN2, APOE, TREM2, PLD3 and ADAM10).  559 
 560 
CHRD, chordin, is a developmental protein, highly conserved, inhibiting the ventralizing activity of bone 561 
morphogenetic proteins, active during gastrulation, expressed in fetal and adult liver and cerebellum, associated 562 
with Cornelia de Lange syndrome (Smith et al. 1999). CLCN2, chloride voltage-gated channel 2, has several 563 
functions including the regulation of cell volume; membrane potential stabilization, signal transduction and 564 
transepithelial transport. It has been associated with different epilepsy modes (Saint-Martin et al. 2009; Cukier 565 
et al. 2014) and leukoencephalopathy (Gaitán-Peñas et al. 2017). CHRD and CLCN2 show co-expression which 566 
could be due to their close location, both belong to a gene cluster at 3q27. Interestingly, CLCN2 shows co-567 
expression with TREM2, which other than being a risk gene for AD, is known to cause leukoencephalopathy in 568 
the PLOSL (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy) form, also known 569 
as Nasu-Hakola disease. 570 
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 571 
PTK2B, was described as a GWAs hit locus in the largest GWAs meta-analysis conducted to date (Lambert et 572 
al. 2013), and later corroborated by others (Wang et al. 2015; Beecham et al. 2014). The protein encoded by 573 
PTK2B is a member of the focal adhesion kinase (FAK) family that can be activated by changes in intracellular 574 
calcium levels, which are disrupted in AD brains. Its activation regulates neuronal activity such as mitogen-575 
activated protein kinase (MAPK) signaling (Rosenthal and Kamboh 2014). PTK2B could also be involved in 576 
hippocampal synaptic function (Lambert et al. 2013). Although there is no co-expression or genetic interaction 577 
between CLCN2 and PTK2B, both are involved in regulation of ion transport. Additionally, PTK2B is involved 578 
in regulation of lipidic metabolic processes, like APOE, a cholesterol-related gene. Despite no association has 579 
yet been reported between APOE and HDLBP, the High-Density Lipoprotein Binding Protein plays a role in 580 
cell sterol metabolism, protecting cells from over-accumulation of cholesterol, which has been reported as risk 581 
factor for atherosclerotic vascular diseases. 582 
 583 
CPAMD8 causes a Unique Form of Autosomal-Recessive Anterior Segment Dysgenesis (Cheong et al. 2016). 584 
No shared pathway association was found between CPAMD8 and the known AD genes, but it seems to have a 585 
genetic interaction with APP (Lin et al. 2010). In our study CPAMD8 was identified as a candidate gene (with 586 
p-value < 1×10-4) for AD by at least nine gene-based methods from different software, and we found that 587 
several variants within this gene show varying degrees of perfect segregation in more than twenty families. 588 
Variant p.(Ser1103Ala) segregates with disease status in two families with two and three carriers respectively, 589 
and is present in another two families. Variant p.(His465Arg) segregates with disease status in five families 590 
with two or three carriers per family and is present in another 11 families. Variant p.(Arg1380Cys) is private to 591 
a family with three carriers, p.(Ala1492Pro) is private to a family with five carriers, and p.(Val521Met) is 592 
private to a family with three carriers. 593 
 594 
We have reviewed over 22 algorithms from eight different software available for the gene-based analysis in 595 
complex families. After a thorough examination of these tests performance under different scenarios, we present 596 
a methodology to identify genes associated with the studied phenotype. We have applied this methodology to 597 
285 European-American families affected with late onset Alzheimer disease (LOAD). We have identified six 598 
candidate genes with suggestive or significant genome-wide p-values and we are confident that some of these 599 
genes are truly involved on AD pathology. 600 
  601 
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Table 1. Demographic data for the familial dataset employed in this study. 

  N 
*Age ± 

SD 
*Age 
range % Fe 

% 
APOE4 

Cases 824 73 ±7 48-99 63% 73% 
Controls 411 83 ± 9 39-104 59% 51% 

Total 1235 77 ± 10 39-104 61% 65% 
* Age At Onset (AAO) for cases and Age at Last Assessment (ALA) for controls. 
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Table 2. Number of samples for which whole genome sequencing (WGS) or whole exome sequencing (WES) 
was performed, with detail of the exon library kits employed in this study. 

Exon library kit WGS WES 

WGS 153  

Agilent’s SureSelect Human All Exon kits V3  0 28 

Agilent’s SureSelect Human All Exon kits V5 0 665 
Roche VCRome 0 389 

Total 153 1082 
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Table 3. Relationship of programs and models tested according to their main features and kinship matrix that 
they use. 

 
Collapsing Variance-component Combined 

Transmission-
disequilibrium 

Kinship 

 
Burden CMC VT C-ALPHA SKAT  SKATO  BN IBS Ped 

EPACTS 
 

X X 
 

X    X 
  

RVGDT 
     

  X 
   

SKAT-v2 
    

X    X X X 
GSKAT X 

   
X    

  
X 

FSKAT 
    

X    
  

X 
FarVat-Adj X X 

 
X 

 
 X  

   
FarVat-BLUP X X 

 
X 

 
 X  

   
Pedgne X 

   
X    

   
RareIbd 

     
  X 
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Table 4. Representation of the segregation pattern of the simulated gene. One (1) means that all cases within the 
family are carriers of the variant. Zero (0) means that the variant is not present in that family. 

 GENE-A 
  SNP1 SNP2 SNP3 SNP4 SNP5 
Fam1 1 0 0 0 0 
Fam2 0 1 0 0 0 
Fam3 0 0 1 0 0 
Fam4 0 0 0 1 0 
Fam5 0 0 0 0 1 
Fam6 1 0 0 0 0 
Fam7 0 1 0 0 0 
Fam8 0 0 1 0 0 
Fam9 0 0 0 1 0 
Fam10 0 0 0 0 1 
Fam11 1 0 0 0 0 
Fam12 0 1 0 0 0 
Fam13 0 0 1 0 0 
Fam14 0 0 0 1 0 
Fam15 0 0 0 0 1 
Fam16 1 0 0 0 0 
Fam17 0 1 0 0 0 
Fam18 0 0 1 0 0 
Fam19 0 0 0 1 0 
Fam20 0 0 0 0 1 
Fam21 1 0 0 0 0 
Fam22 0 1 0 0 0 
Fam23 0 0 1 0 0 
Fam24 0 0 0 1 0 
Fam25 0 0 0 0 1 
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Table 4. Gene-based p-values for the simulated dataset under different scenarios for the gene-based methods tested in the subset of 25 families. 

SET GSKA
T 

FSKA
T 

SKA
T 

RVGD
T 

PedGene 
Rare 
IBD 

EPACTS
* 

 
FarVAT 

 
FarVAT-BLUP 

SKA
T 

Burden SKAT CMC CLP CALPH
A 

Burden SKATO CMC CLP CALPH
A 

Burden SKATO 

5FCx0FNC 0.236 NA 0.141 0.004 0.301 0.003 <1×10-5 NA  
5.42×10-

6 
4.66×10-

6 
NA NA NA  3.93×10-9 3.06×10-9 NA NA NA 

5FCx5FNC 0.235 0.124 0.023 0.002 0.123 7.99×10-4 <1×10-5 NA  0.004 0.005 NA NA NA  2.10×10-5 4.00×10-5 NA NA NA 

5FCx10FNC 0.354 0.338 0.112 0.005 0.079 7.99×10-4 <1×10-5 NA  0.032 0.036 NA NA NA  7.71×10-4 1.01×10-3 NA NA NA 

5FCx15FNC 0.377 0.359 0.202 0.005 0.095 0.002 <1×10-5 NA  0.062 0.061 NA NA NA  0.002 2.84×10-3 NA NA NA 

5FCx20FNC 0.377 0 0.201 0.006 0.114 0.003 <1×10-5 0.321  0.073 0.075 0.670 0.075 0.134  0.002 2.40×10-3 0.132 0.002 0.005 

10FCAx15FNC 0.083 0 0.028 9×10-4 0.004 2.65×10-6 <1×10-5 0.047  0.005 0.008 0.272 0.008 0.017  6.81×10-6 1.33×10-5 0.013 1.33×10-5 3.62×10-5 

15FCx10FNC 0.014 0 0.005 9×10-4 0.001 1.77×10-9 <1×10-5 0.051  
1.72×10-

6 
6.31×10-

5 
0.024 

6.31×10-

5 
1.30×10-

4 
 

4.26×10-

11 
3.27×10-9 0.001 3.27×10-9 8.93×10-9 

20FCx5FNC 0.002 0 0.002 9×10-4 0.002 1.30×10-9 <1×10-5 0.039  
1.48×10-

11 
7.85×10-

7 
0.024 

7.85×10-

7 
1.14×10-

6 
 

6.12×10-

18 
2.12×10-

12 
6.32×10-4 

2.12×10-

12 
2.54×10-

10 

25FCx0FNC 3×10-4 0 0.001 9×10-4 0.001 
1.42×10-

10 
<1×10-5 0.033  

1.55×10-

19 
4.44×10-

8 
0.025 

4.44×10-

8 
7.06×10-

8 
 

4.59×10-

29 
4.58×10-

15 
5.10×10-4 

4.58×10-

15 
2.54×10-

10 

 

1Simulated scenarios: 5FC: five families carrier of variants within the hypothetical gene; 5FCx5FNC: five families carrier of variants within the hypothetical gene and five 
families non-carrier of variants within the hypothetical gene; 5FCx10FNC: five families carrier of variants within the hypothetical gene and ten families non-carrier of variants 
within the hypothetical gene; 5FCx15FNC: five families carrier of variants within the hypothetical gene and fifteen families non-carrier of variants within the hypothetical gene; 
5FCx20FNC: five families carrier of variants within the hypothetical gene and twenty families non-carrier of variants within the hypothetical gene; 10FCx15FNC: ten families 
carrier of variants within the hypothetical gene and fifteen families non-carrier of variants within the hypothetical gene; 15FCx10FNC: fifteen families carrier of variants within 
the hypothetical gene and ten families non-carrier of variants within the hypothetical gene; 20FCx5FNC: twenty families carrier of variants within the hypothetical gene and five 
families non-carrier of variants within the hypothetical gene; 25FC: twenty-five families carrier of variants within the hypothetical gene. 
*we tested SKAT, CMC and VT on EPACTS, but CMC and VT reported all NA values so data is not shown. 
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Table 5. Gene-based p-values for the APOE gene under different gene-set scenarios for the gene-based methods tested in the entire dataset (N=1235, 
285 families). In the analysis, only nonsynonymous variants (only SNVs) with a MAF<0.01, and the APOE ε2 and ε4, were considered and we 
adjusted by sex and PCAs. Highlighted in bold, significant p-values after multiple test correction. 
 

APOE N GSKAT FSKAT SKAT RVGDT 
PedGene 

Rare 
IBD 

EPACTS* 
 

FarVAT 
 

FarVAT-BLUP 

SKAT Burden SKAT CMC CLP CALPHA Burden SKATO CMC CLP CALPHA Burden SKATO 

gene 19 0.035 0.037 0.061 0.164 0.008 0.515 0.712 0.205  0.053 0.379 0.003 0.379 0.005  0.036 0.311 0.017 0.311 0.034 

HM- ε2ε4 4 0.003 0.002 0.001 0.005 0.412 0.414 0.359 0.020  7.87×10-15 0.420 4.99×10-4 0.420 0.001  3.73×10-14 0.275 3.99×10-4 0.275 6.99×10-4 

HM 2 0.067 0.089 0.048 0.237 0.177 0.177 0.741 0.022  0.028 0.052 0.014 0.052 0.018  0.053 0.090 0.024 0.090 0.031 

ε2ε4 2 0.005 0.002 0.003 0.004 0.849 0.855 0.002 0.024  7.87×10-15 0.002 0.002 0.002 0.003  3.73×10-14 0.002 0.001 0.001 0.001 

 

gene: set of 19 polymorphic variants within APOE gene, including APOE ε2 and ε4 variants; HM-ε2ε4: set of variants considered HIGH or MODERATE including APOE ε2 and 
ε4 variants; HM: set of variants considered HIGH or MODERATE without APOE ε2 and ε4 variants; ε2ε4: APOE ε2 and ε4 variants alone. N: number of variants that went into 
analysis. 
*we tested SKAT, CMC and VT on EPACTS, but CMC and VT reported all NA values so data is not shown. 
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Table 6. Top results for all gene-based methods tested. Top gene, p-value and lambda for each test is given, 
ordered by lambda value. 

Software TEST Top gene Top p-value Lambda 

PedGene SKAT KANSL1L 2.42×10-12 3.533 
PedGene Burden TTN 1.04×10-8 2.997 
GSKAT Burden PCSK6 3.04×10-3 1.704 
GSKAT SKAT NR1D1 1.90×10-3 1.681 
Rare-IBD TDT SNTB2 1.00×10-4 1.450 
FarVAT-
BLUP 

CALPHA CHRD 4.60×10-07 1.259 

FarVAT CALPHA CHRD 2.09×10-07 1.152 
FarVAT-
BLUP 

CLP NLRP9 1.14×10-4 1.112 

FarVAT-
BLUP 

SKATO CHRD 7.37×10-7 1.101 

FarVAT-
BLUP 

CMC IGHV1-69 1.28×10-4 1.066 

FarVAT-
BLUP 

Burden NLRP9 1.14×10-4 1.031 

FarVAT SKATO CHRD 3.54×10-7 1.016 
FarVAT CLP MAS1L 1.25×10-5 1.000 
RVGDT TDT RTN3 9.99×10-4 0.995 
FarVAT CMC HSD3B1 4.40×10-5 0.993 
FarVAT Burden MAS1L 1.25×10-5 0.985 

EPACTS VT 
PPAN-
P2RY11 

1.20×10-4 0.954 

FSKAT SKAT CHRD 2.00×10-5 0.938 
EPACTS CMC BTN2A2 1.05×10-3 0.849 
SKAT IBS CHRD 7.94×10-5 0.668 

EPACTS SKAT CHRD 2.42×10-5 0.635 

SKAT PED CHRD 2.47×10-4 0.360 
SKAT HR NR1D1 2.06×10-2 0.039 
SKAT BN NR1D1 2.21×10-2 0.038 
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Table 7. Most frequent genes, within p-value threshold category, across the different gene-based family-based methods tested. Highlighted in bold 
the tests with significant p-value according to threshold category. 
 P-
value 
thresho
ld 

gene # 
EPACTS 

FSKAT 
GSKAT 

RVGD
T 

SKAT 
 

FarVAT 
 

FarVAT-BLUP 
Rare-
IBD CM

C 
VT SKAT 

SKA
T 

Burde
n 

IBS CMC CLP Burden 
CALPH

A 
SKAT

O 
CMC CLP Burden 

CALPH
A 

SKAT
O 

≤5x10-7 CHRD 3 
0.00

7 
0.03

1 
2.42×10

-5 
1.50×10

-5 
0.01

3 
0.013 0.990 

7.94×1
0-5 

 0.007 0.007 0.007 
2.09×10

-7 
3.54×1

0-7 
 0.004 0.004 0.004 

4.06×10
-7 

7.37×1
0-7 

0.071 

≤5x10-6 CHRD 
4 

0.00
7 

0.03
1 

0.000 0.000 
0.01

3 
0.013 0.990 0.000  0.007 0.007 0.007 

2.09×10
-7 

3.54×1
0-7 

 0.004 0.004 0.004 
4.06×10

-7 
7.37×1

0-7 
0.071 

≤5x10-5 

CHRD 
5 

0.00
7 

0.03
1 

2.42 
×10-5 

1.50 
×10-5 

0.01
3 

0.013 0.990 0.000  0.007 0.007 0.007 
2.09×10

-7 
3.54×1

0-7  0.004 0.004 0.004 
4.06×10

-7 
7.37×1

0-7 0.071 

CLCN2 4 
0.01

8 
0.04

3 
2.33×10

-4 
2.07×10

-4 
0.00

2 
0.020 1.000 

7.30×1
0-4 

 0.006 0.005 0.005 
6.46×10

-6 
1.12×1

0-5  0.011 0.009 0.009 
6.51×10

-6 
1.32×1

0-5 
0.299 

MAS1L 
3 

0.00
2 

0.00
3 

0.057 0.019 
0.18

7 
0.187 0.998 0.042  

4.65×1
0-4 

1.25×1
0-5 

1.25×1
0-5 

4.27×10
-4 

1.96×1
0-5 

 0.001 
1.32×1

0-4 
1.32×1

0-4 
0.015 

2.73×1
0-4 

0.685 

PTK2B 
3 

0.00
1 

0.00
9 

0.331 0.205 
0.09

0 
0.090 1.000 0.193  

1.23×1
0-4 

1.31×1
0-5 

1.31×1
0-5 0.060 

2.46×1
0-5  0.001 

2.39×1
0-4 

2.39×1
0-4 

0.113 
4.93×1

0-4 
0.443 

≤5x10-4 

CPAM
D8 8 

0.00
2 

0.00
3 

0.652 0.178 0.15
5 

0.191 9.99×1
0-4 

0.572  6.91×1
0-5 

2.02×1
0-4 

2.02×1
0-4 

0.309 4.22×1
0-4 

 1.69×1
0-4 

2.03×1
0-4 

2.03×1
0-4 

0.268 4.23×1
0-4 

6.00×10
-4 

NLRP9 
8 

0.00
1 

0.01
3 

0.020 0.013 0.02
9 

0.029 0.998 0.019  2.81×1
0-4 

2.40×1
0-4 

2.40×1
0-4 

0.002 3.78×1
0-4 

 4.50×1
0-4 

1.14×1
0-4 

1.14×1
0-4 

0.003 2.59×1
0-4 

0.157 

MAS1L 
8 

0.00
2 

0.00
3 

0.057 0.019 0.18
7 

0.187 0.998 0.042  4.65×1
0-4 

1.25×1
0-5 

1.25×1
0-5 

4.27×10
-4 

1.96×1
0-5 

 0.001 1.32×1
0-4 

1.32×1
0-4 

0.015 2.73×1
0-4 

0.685 

CHRD 
7 

0.00
7 

0.03
1 

2.42×10
-5 

1.50×10
-5 

0.01
3 

0.013 0.990 7.94×1
0-5 

 0.007 0.007 0.007 2.09×10
-7 

3.54×1
0-7 

 0.004 0.004 0.004 4.60×10
-7 

7.37×1
0-7 

0.071 

PTK2B 
7 

0.00
1 

0.00
9 

0.331 0.205 0.09
0 

0.090 1.000 0.193  1.23×1
0-4 

1.31×1
0-5 

1.31×1
0-5 

0.060 2.46×1
0-5 

 0.001 2.39×1
0-4 

2.39×1
0-4 

0.113 4.93×1
0-4 

0.443 

CLCN2 
6 

0.01
8 

0.04
3 

2.33×10
-4 

2.07×10
-4 

0.02
0 

0.020 1.000 7.30×1
0-4 

 0.006 0.005 0.005 6.46×10
-6 

1.12×1
0-5 

 0.011 0.009 0.009 6.51×10
-6 

1.32×1
0-5 

0.299 

HDLBP 
5 

0.00
2 

0.02
4 

0.009 0.001 0.03
1 

0.032 0.996 0.002  0.021 0.028 0.028 0.068 0.046  1.79×1
0-4 

4.92×1
0-4 

4.92×1
0-4 

2.89×10
-4 

1.22×1
0-4 

0.428 

*PedGene results have not been included given the inflated results of this test and the low correlation with the other gene-based methods. 
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Figure 1. Structure of families used in this study. Black diamonds represent cases and white diamonds represent 

controls. Y: genetic data available. N: no genetic data available. 
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Figure2. Schematic design of the analysis performed in this study. 
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Figure 3. Quantile-quantile (QQ) plots from different family-based gene-based methods for all nonsynonymous 
variants with a MAF <1% in our family-based dataset. a) Comparison of SKAT test using different kinship 
matrices: pedigree calculation (PED), Identity By Similarity (IBS) estimation, Balding-Nichols (BN) 
estimation, and the kinship generated by EPACTS (HR). c) Comparison of different collapsing tests: GSKAT, 
EPACTS, FarVAT and PedGene. b) Comparison of different variance-component gene-based methods: 
GSKAT, FSKAT, SKAT, EPACTS, FarVAT and PedGene. d) Comparison of transmission disequilibrium 
tests: RVGDT and RareIBD. 
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Figure 4. Correlation plots from different family-based gene-based methods for genes with a p-value ≤ 0.005. 
a) Pearson correlation correlates genes according to their p-values. b) Spearman correlation correlates genes 
according to their rankings. 
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Figure 5. Gene network for the seven candidate genes (CHRD, CLCN2, CPAMD8, HDLBP, MAS1L, NLRP9 
and PTK2B) with multiple evidence of a p-value ≤ 5×10-04, anchored with known AD genes (APP, PSEN1, 
PSEN2, APOE, TREM2, ADAM10, PLD3), as described by GeneMania. 
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