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Abstract
Gene-based tests to study the combined effect of rare variants towards a particular phenotype have been widely
developed for case-control studies, but their evolution and adaptation for family-based studies, especially for
complex incomplete families, has been slower. In this study, we have performed a practical examination of all
the latest gene-based methods available for family-based study designs using both simulated and real datasets.
We have examined the performance of several collapsing, variance-component and transmission disequilibrium
tests across eight different software and twenty-two models utilizing a cohort of 285 families (N=1,235) with
late-onset Alzheimer disease (LOAD). After a thorough examination of each of these tests, we propose a
methodological approach to identify, with high confidence, genes associated with the studied phenotype with
high confidence and we provide recommendations to select the best software and model for family-based gene-
based analyses. Additionally, in our dataset, we identified PTK2B, a GWAS candidate gene for sporadic AD,
along with six novel genes (CHRD, CLCN2, HDLBP, CPAMDS, NLRP9, MASIL) as candidates genes for
familial LOAD.

Running title: gene-based family-based methods in Alzheimer disease
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1 Introduction

Alzheimer disease (AD) is a complex condition for which almost 50% of its phenotypic variability is due to
genetic causes; yet, only 30% of the genetic variability is explained by known markers (Ridge et al. 2016).
GWAS studies have identified more than 20 risk loci (Lambert et al. 2013); and sequencing studies have
identified additional genes harboring low frequency variants with large effect size (TREM2, PDL3, UNC5C,
SORL1, ABCA7, (Sims et al. 2017)). Recent studies also indicate that Late-Onset AD (LOAD) families are
enriched for genetic risk factors (Cruchaga et al. 2017). Therefore studying those families may lead to the
identification of novel variants and genes (Cruchaga et al. 2014; Guerreiro et al. 2013).

Current consensus is that the missing heritability for complex traits and AD may be hidden under the effect of
rare variants with low to moderate effect on disease risk (Frazer et al. 2009; Manolio et al. 2009; Cirulli and
Goldstein 2010). The rarity of these markers requires specific study designs and statistical analysis for their
detection. The simplest approach to detect rare variants for association is to test each variant individually using
standard contingency table and regression methods. But due to the few observations of the rare minor allele at a
specific variant, the statistical power to detect association with any rare variant is limited; hence, extremely
large samples are required and a more stringent multiple-test correction applies as compared to common
variants (Bansal et al. 2010; B. Li and Leal 2008). It has been acknowledged that the best alternative is to
collapse sets of pre-defined candidate rare variants within significant units, usually genes (gene-based sets) (Lee
et al. 2014; Neale and Sham 2004). Collapsing tests work under the framework of giving each variant a certain
weight and perform summation of weights through all variants within the region; depending on the weights and
how summation is performed there are four major types of gene-based methods: collapsing tests, variance-
component tests, and combined tests (Lee et al. 2014). Collapsing tests, analyze whether the overall burden of
rare variants is significantly different in cases compared to controls by regressing disease status on minor allele
counts (MAC). The Cohort Allelic Sum Test (CAST) is a dominant genetic model that assumes that the
presence of any rare variant increases disease risk (Morgenthaler and Thilly 2007); whereas the Combined
Multivariate and Collapsing (CMC) method, collapses rare variants in different MAF categories and evaluates
the joint effect of common and rare variants through Hoteling’s test (Li and Leal 2008). However, neither
CAST nor CMC tests allow correcting for directional effect. The Variable Threshold (VT) test instead allows
for both trait-increasing and trait-decreasing variants; it selects optimal frequency thresholds for burden tests of
rare variants and estimates p-values analytically or by permutation (Price et al. 2010). Variance-componence
methods test for association by evaluating the distribution of genetic effects for a group of variants while
appropriately weighting the contribution of each variant. The sequence kernel association test (SKAT) casts the
problem in mixed models (Lee et al. 2014), and in the absence of covariates, SKAT reduces to C-alpha test.
(Neale et al. 2011). Finally, collapsing and variance component tests can be combined into one statistical
method, the SKAT-O approach (Lee et al. 2012), which is statistically efficient regardless of the direction and
effect of the variants studied.

All these methods were initially designed for unrelated case-control study designs; but given the rarity of these
variants, large datasets are required to achieve statistical power. (Laird and Lange 2006). Alternatively, family-
based studies in which several family members share the same phenotype may provide more statistical power
than regular case-controls studies (Li et al. 2006; Cirulli and Goldstein 2010; Ott et al. 2011; Kazma and Bailey
2011). Pioneering methods were designed for testing nuclear families, trios or sibships (lonita-Laza et al. 2013;
Horvath et al. 2001; Laird et al. 2000; De et al. 2013; Ott et al. 2011). However, considering the late-onset
nature of Alzheimer disease it is often difficult to obtain genetic information from parents (to conform trios), or
nuclear family units. The usual pedigree in familial LOAD corresponds to incomplete, large familial units
(Figure 1). Most of the initial software for gene-based family-based studies were not suitable for complex
pedigrees like those observed in Alzheimer studies, but in recent years a plethora of methods have been
developed that take into account complex family structure in gene-based calculations. Among the software that
take into account large pedigrees we find SKAT (Wu et al. 2011), FSKAT (Yan et al. 2015) , GSKAT (Wang et
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al. 2013), RV-GDT (Chen et al. 2009), EPACTS (http://genome.sph.umich.edu/wiki/EPACTS), FarVAT (Choi
et al. 2014), PedGene (Schaid et al. 2013) and RarelBD (Sul et al. 2016).

In this study, we wanted to evaluate the performance of the eight most common gene-based family-based
methods available using a real dataset, over 250 multiplex families affected with Alzheimer disease, under
different conditions and models. We simulated multiple scenarios in which a candidate variant perfectly
segregates with disease status to rank the different programs and models. We also tested the performance of
these tests at evaluating known causal genes for AD in our cohort. Finally, we performed genome-wide analysis
to evaluate the power of each of these tests. Altogether, we discuss the pros and cons of each method that can be
very informative for other investigators performing similar analyses: complex diseases in complex, incomplete,
large families. We want to emphasize that although this work is centered on AD, the information extracted from
this work can be equally applied to other complex traits. Finally, based on the results from the methods
analyzed, we present some candidate genes for AD.

2 Materialsand Methods

2.1 Cohort

The LOAD families included in this study originated from two cohorts: Washington University School of
Medicine (WUSM) cohort and ADSP cohort.

211 WUSM cohort

Samples from the Washington University School of Medicine (WUSM) cohort were recruited by either the
Charles F. and Joanne Knight Alzheimer's Disease Research Center (Knight ADRC) at the WUSM in Saint
Louis or the National Institute on Aging Genetics Initiative for Late-Onset Alzheimer’s Disease (NIA-LOAD).
This study was approved by each recruiting center Institutional Review Board. Research was carried out in
accordance with the approved protocol. Written informed consent was obtained from participants and their
family members by the Clinical and Genetics Core of the Knight ADRC. The approval number for the Knight
ADRC Genetics Core family studies is 201104178. The NIA-LOAD Family Study has recruited multiplex
families with two or more siblings affected with LOAD across the United States. A description of these samples
has been reported previously (Wijsman et al. 2011) (Fernandez et al. 2017; Cruchaga et al. 2012). We selected
individuals for sequencing from families in which APOEe4 did not segregate with disease status, and in which
the proband of the family did not carry any known mutation in APP, PSEN1, PSEN2, MAPT, GRN or C9orf72
(described previously (Cruchaga et al. 2012)).

2.1.2 ADSP cohort

The Alzheimer's Disease Sequencing Project (ADSP) is a collaborative work of five independent groups across
the USA that aims to identify new genomic variants contributing to increased risk for LOAD.
(https://www.niagads.org/adsp/content/home). During the discovery phase, they generated whole genome
sequence (WGS) data from members of multiplex LOAD families, and whole exome sequence (WES) data
from a large case-control cohort. These data are available to qualified researchers through the database of
Genotypes and Phenotypes (https://www.ncbi.nlm.nih.gov/gap Study Accession: phs000572.v7.p4).

The familial cohort of the ADSP consists of 582 individuals from 111 multiplex AD families from European-
American, Caribbean Hispanic, and Dutch ancestry (details about the samples are available at NIAGADS). We
downloaded raw data (.sra format) from dbGAP for 143 IDs (113 cases and 23 controls) from 37 multiplex
families of European-American ancestry that were incorporated with the WUSM cohort.
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2.2 Sequencing

Samples were sequenced using either whole-genome sequencing (WGS, 12%) or whole-exome sequencing
(WES, 88%). Exome libraries were prepared using Agilent’s SureSelect Human All Exon kits V3 and V5 or
Roche VCRome (Table 2). Both, WES and WGS samples were sequenced on a HiSeq2000 with paired ends
reads, with a mean depth of coverage of 50x to 150x for WES and 30x for WGS. Alignment was conducted
against GRCh37.p13 genome reference. Variant calling was performed separately for WES and WGS following
GATK’s 3.6 Best Practices (https://software.broadinstitute.org/gatk/best-practices/) and restricted to Agilent’s
V5 kit plus a 100bp of padding added to each capture target end. We used BCFTOOLS
(https://samtools.github.io/bcftools/beftools.html) to decompose multiallelic variants into biallelic prior variant
quality control. Variant Quality Score Recalibration (VQSR) was performed separately for WES and WGS, and
for SNPs and INDELs. Only those SNPs and indels that fell within the above 99.9 confidence threshold, as
indicated by WQSR, were considered for analysis; variants within low complexity regions were removed from
both WES and WGS and variants with a depth (DP) larger than the average DP + 5 SD in the WGS dataset were
removed. At this point SNPs and indels from WES and WGS datasets were merged into one file. Non-
polymorphic variants and those outside the expected ratio of allele balance for heterozygosity calls
(ABHet=0.3-0.7) were removed. Additional hard filters implemented included quality depth (QD >7 for indels
and QD>2 for SNPs), mapping quality (MQ>40), fisher strand balance (FS>200 for indels and FS>60 for
SNPs), Strand Odds Ratio (SOR>10 for Indels and SOR>3 for SNPs), Inbreeding Coefficient (IC >-0.8 for
indels) and Rank Sum Test for relative positioning of reference versus alternative alleles within reads (RPRS>-
20 for Indels and RPRS>-8 for SNPs) (Figure S1). We wused PLINK1.9 (https://www.cog-
genomics.org/plink2/ibd) to remove variants out of Hardy Weinberg equilibrium (p-value <1x10°), with a
genotype calling rate below 95%, with differential missingness between cases vs controls, WES vs WGS, or
among different sequencing platforms (p-value<1x10®).

Samples with more than 10% of missing variants (four samples) and whose genotype data indicated a sex
discordant from the clinical database (three samples) were removed from dataset. Individual and familial
relatedness was confirmed using identity-by-descent (IBD) calculations, an existing GWAS dataset for these
individuals, and the pedigree information. Because many of the ADSP families were also recruited from the
NIA-LOAD repository there is a certain overlap (48 individuals) between the WUSM and the ADSP familial
cohorts; we kept the duplicated pair that had better genotyping rate after QC. Principal Component Analysis
(PCA) was calculated to corroborate ancestry and restrict our analysis to only samples from European American
origin. Functional impact and population frequencies of variants were annotated with SnpEff (Cingolani et al.
2012). For this analysis, only SNVs with a minor allele frequency (MAF) below 1%, as registered in EXAC
(Lek et al. 2016),were taken into account.

We excluded families carrying a known pathogenic mutation in any of the Mendelian genes for Alzheimer
disease, Frontotemporal Dementia, or Parkinson disease (Fernandez et al. 2017). We restricted the selection of
families to those families with at least one case and one control in the family, and we excluded any participants
initially diagnosed as AD but that turned into other after pathological examination. Finally, our dataset
consisted of 1235 non-hispanic whites (NHW), 824 cases and 411 controls, from 285 different families (Table
1, Table S1).

2.3 Study design & analysis.

The goal of this study was to test the performance and power of different gene-based family-based methods
available to date, using a real dataset consisting of 1,235 non-hispanic white individuals from 285 families
densely affected with AD. We set up three different scenarios to test (Figure 2). First, using the real phenotype
and pedigree structure of 25 from the 285 families, we generated a synthetic dataset with multiple variants and
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families with perfect segregation. Second, we evaluated different variant-combinations for the APOE gene.
Third, we performed genome-wide gene-based analysis accounting only for non-synonymous SNPs with a
MAF < 1%. For each one of these scenarios we evaluated the performance of the different gene-based methods
(collapsing, variance-component, and transmission disequilibrium) from the following family-based packages:
SKAT (Wu et al. 2011), FSKAT (Yan et al. 2015), GSKAT (Wang et al. 2013), RVGDT (He et al. 2017),
EPACTS (http://genome.sph.umich.edu/wiki/EPACTS), FarVAT (Choi et al. 2014), PedGene (Schaid et al.
2013), RarelBD (Sul et al. 2016). Some of these software offer the option to run different gene-based
algorithms; e.g. GSKAT, EPACTS, FarVAT or PedGene can run collapsing and variance-component tests;
therefore, we ran a total of 25 models (Table 3). The details of each one of these scenarios are described next.

2.3.1 Simulated data

We selected 25 representative families from our entire dataset for which there was genotypic data for three to
seven members (Table S2). We used the existing family structure and phenotype of these families, and a
simulated gene called “GENE-A” containing five variants. We generated several scenarios in which different
numbers of families presented perfect segregation with disease status for a variant in GENE-A (Table 4 and
Table S2). First, we considered a scenario in which only the first five families of the dataset were included in
the analyses, and each family presented a different perfectly segregating variant of GENE-A (scenario 5 family
carriers (FC) and 0 non-carriers (FNC): 5FCx0FNC). Second, we generated additional scenarios in which we
kept the same five families carrier of segregating variants in GENE-A, and added five (scenario 5SFCx5FNC),
ten (scenario SFCx10FNC), 15 (scenario 5FCx15FNC), and 20 (scenario 5SFCx20FNC) families that were not
carriers of any variant in GENE-A. Then, we considered four scenarios of 25 families in which each new
scenario added families who were carriers of a segregating variant in GENE-A. We started with the scenario
5FCx20FNC, then we simulated ten families carriers and 15 families non-carriers (scenario 10FCx15FNC), 15
families carries and 10 families non-carriers (scenario 15FCx10FNC), 20 families carriers and five families
non-carriers (scenario 20FCx5FNC) and concluded with a scenario in which all 25 families were carriers of
one, of the possible five, segregating variant in GENE-A (scenario 25FCx0FNC). We tested each one of these
scenarios with all previously mentioned gene-based methods and software to evaluate their power to associate
perfect segregating variants with disease.

2.3.2 Candidate genes

APOE is the largest genetic risk factor for Alzheimer’s disease. The allelic combination of two SNPs, rs429358
(APOE 4; 19:45411941:T:C) and rs7412 (APOE 2: 19:45412079:C:T), determines one of the three major
isoforms of APOE protein, €2, €3 or 4. The dosage of these isoforms determines a person’s risk to suffer AD,
from having a protective effect APOE €2/¢2 (OR 0.6) or €2/e3 (OR 0.6) to different degrees of increased risk
according to the number of copies of the €4 allele (e2/e4, OR 2.6; €3/e4, OR 3.2; e4/e4, OR 14.9) (Farrer et al.
1997). We tested the power of all previously mentioned gene-based methods and software to detect association
of APOE gene with disease in our entire dataset (N=1,235) under different conditions. We first tested all
polymorphic variants (nonsynonymous with MAF <1%) in the APOE gene, second we tested only those
variants considered to have a high or moderate effect on the protein including rs429358 and rs7412, and then
we tested high and moderate variants alone, and finally tested rs429358 and rs7412 alone.

2.3.3 Genome-wide analyses

We performed gene-based burden analysis on a genome-wide level in our entire dataset (families n=285;
samples N=1,235) to evaluate the power of each of the previously mentioned methods to detect novel genes
significantly associated with disease; only single nucleotide variants (SNVs) with a minor allele frequency
equal or below 1%, based on the EXAC dataset (Lek et al. 2016) (MAF < 1%), and with a predicted high or
moderate effect, according to SnpEff (Cingolani et al. 2012) were included in the analysis. Quantile-Quantile
(QQ) plots from gene-based p-values were generated with the R package “ggplot2” (Wickham 2009). We also
evaluated the correlation between these methods using Pearson correlation (Pc) and Spearman correlation (Sc)
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tests on the log of the p-value using R v3.4.0 (R Core Team 2017). Pc evaluates the linear relationship between
two continuous variables whereas Sc evaluates the monotonic relationship between two continuous or ordinal
variables.

24 Softwaretested

A companying supporting file (Supplementary material) provides a summary of the code employed to run
each of the programs described below.

241 GSKAT

GSKAT (Wang et al. 2013) is among the first R packages to come out with the goal of extending burden and
kernel-based gene set association tests for population data to related samples with binary phenotypes. To handle
the correlated or clustered structure in the family data, GSKAT fits a marginal model with generalized
estimated equations (GEE). The basic idea of GEE is to replace the covariance matrix in a generalized linear
mix model (GLMM) with a working covariance matrix that reflects the cluster dependencies. Accordingly,
GSKAT blends the strengths of kernel machine methods and generalized estimating equations (GEE), to test for
the association between a phenotype and multiple variants in a SNP set. We ran GSKAT correcting for sex and
first two PCs.

242 SKAT

The sequence kernel association test SKAT (Wu et al. 2011) is an R package initially designed for case-control
analysis. Later they incorporated the Efficient Mixed-Model Association eXpedited (EMMAX) algorithm
(Zhou and Stephens 2012; Kang et al. 2010) that allows for performing family-based analysis. EMMAX
simultaneously corrects for both population stratification and relatedness in an association study by using a
linear mixed model with an empirically estimated relatedness matrix to model the correlation between
phenotypes of sample subjects. The efficient application of EMMAX algorithm depends on appropriate estimate
of the variance parameters. Relatedness matrices can be calculated based on pedigree structure or estimated
from genotype data. For the latter, different methods have been proposed. Relatedness can be estimated using
those alleles that have descended from a single ancestral allele, i.e. those that are Identical by Descent (IBD), or
using the Balding-Nichols (BN) method (Balding and Nichols 1995) which explicitly models current day
populations via their divergence from an ancestral population specified by Wright's Fy statistic. We ran SKAT
v1.2.1, on R v3.3.3, using option SKAT_Null_EMMAX correcting for sex and first two PCs and we tested four
different kinship matrices: pedigree, IBS, BN and a BN based kinship matrix (HR) that EPACTS software
constructs (Table S3).

243 FSKAT

FSKAT (Yan et al. 2015), also an R package, is based on a kernel machine regression and can be viewed as an
extension of the sequence kernel association test (SKAT and famSKAT) for application to family data with
dichotomous traits. FSKAT is based on a GLMM framework. Moreover, because it uses all family samples,
FSKAT claims to be more powerful than SKAT that uses only unrelated individuals (founders) in the family
data. FSKAT constructs a kinship matrix based on pedigree relationships using the R kinship library. We ran
FSKAT correcting for sex and first two PCs.

244 EPACTS

Efficient and Parallelizable Association Container Toolbox (EPACTS) is a stand-alone software that
implements several gene-based statistical tests (CMC, VT and SKAT) and adapts them to complex families by
using EMMAX (https://genome.sph.umich.edu/wiki/EPACTS). EPACTS generates a kinship matrix based on
BN algorithm and also annotates the genotypic input file and offers filtering tools (frequency and predicted
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effect of variants) for easier user-selection of variants that go into gene-based analysis. Nonetheless, we used
the same set of variants as in other tests, and corrected for sex and first two PCs, to run our analysis with
EPACTS.

245 FarVAT

The Family-based Rare Variant Association Test (FarVAT) (Choi et al. 2014) provides a burden and a variance
component test (VT) for extended families, and extends these approaches to the SKAT-O statistic. FarVAT
assumes that families are ascertained based on the disease status if family members, and minor allele
frequencies between affected and unaffected individuals are compared. FarVAT is implemented in C++ and is
computationally efficient. Additionally, if genotype frequencies of affected and unaffected samples are
compared to detect the genetic association, it has been shown that the statistical efficiency can be improved by
modifying the phenotype; and so FarVAT uses prevalence (Lange and Laird 2002) or Best Linear Unbalanced
Predictor (BLUP) (Thornton and McPeek 2007) as covariate to modify the genotype.

246 PedGene

PedGene (Schaid et al. 2013) is an R package that extends burden and kernel statistics to analyze binary traits in
family data, using large-scale genomic data to calculate pedigree relationships. To derive the kernel association
statistic and the burden statistic for data that includes related subjects, they take a retrospective view of
sampling, with the genotypes considered random.

247 RVGDT

The Rare Variant Generalized Disequilibrium Test (RVGDT) (He et al. 2017), implemented in Python, differs
from the previous methods presented. Instead of using a kernel method to evaluate variants, derives from the
generalized disequilibrium test (GDT) which uses genotype differences in all discordant relative pairs to assess
associations within a family (Chen et al. Rich 2009). The rare-variant extension of GDT (RVGDT) aggregates a
single-variant GDT statistic over a genomic region of interest, which is usually a gene. We ran RVGDT
correcting for sex and first two PCs.

248 RarelBD

RarelBD (Sul et al. 2016) claims to be a program without restrictions on family size, type of trait, whether
founders are genotyped, or whether unaffected individuals are genotyped. The method is inspired by non-
parametric linkage analysis and looks for a rare variants whose segregation pattern among affected and
unaffected individuals is different from the predicted distributions based on Mendelian inheritance and
computes a statistic measuring the difference.

3 Reaults

3.1 Simulated dataset

Results from the simulated dataset indicate that RVGDT, rarelBD and collapsing-based methods (Burden, CMC
and CLP), provided more statistical power than the variance-component methods to detect association of
perfectly segregating variants with disease status (Table 4).

In an hypothetical scenario of five families in which each one of these families presents perfect segregation with
disease status for a different variant within the same gene (5FCxONFC), transmission-disequilibrium based
methods evaluate this association as significant (even after multiple test correction; e.g. RVGDT p-value=0.004;
p-value after multiple test correction 0.004x9 = 0.036). RVGDT reaches a ceiling p-value of 1x10™; at 10
families carriers (FC) plus 15 families non-carriers (FNC). RVGDT was unable to produce a p-value smaller
than 9x10™, therefore it is not possible to rank or determine the significance of genes with this p-value.
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Similarly, RarelBD reports the same p-value for all simulated scenarios, which can be an artifact or a flaw of
the program. Collapsing-based methods (Burden, CMC and CLP) started with significant p-values for the
5FCxONFC scenario, but as we added FNC in the analysis, the association became less significant. Then, as we
increased the number of FC of segregating variants, the association became more significant. In our analyses,
most variance-component tests could not work with the scenarios with only five families carrying the
segregating variant; most of the tests only provided p-values once 25 families are included in the analysis
(5FCx20FNC). After that, as we increased the number of FC of a segregating variants, the p-value became
smaller. SKAT required 15FCx10FNC to report nominally significant p-values, GSKAT required 20FCx5FNC
to report statistically significant p-values, FarVAT-CALPHA did not generate significant p-values, except if we
used the BLUP correction; FarVAT SKATO reported p-values that were significant at 15FCx10FNC, and at
5FCx20FNC if we used the BLUP correction. P-values from EPACTS-SKAT were not statistically significant
after multiple test correction. FSKAT did not deal well with perfectly segregating scenarios; it did not provide
p-values for a scenario of only five families all carriers of the segregating variant (SFCxXOFNC — FSKAT p-
value=NA), and after five families carrying the segregating variant, the program saturated giving no p-value.

Overall, Transmission-disequilibrium tests and collapsing tests were the models that identified these simulated
segregating variants as associated with the phenotype; the CMC model provided by FarVAT-BLUP was the one
providing most genome-wide significant p-values, even in the SFCxOFNC scenario.

3.2 Candidate genes- APOE

We examined the performance of four gene-sets generated for the APOE gene with the twenty-two family-
based gene-based methods in our entire familial cohort. Neither the entire set of polymorphic variants (set
“gene” in Table 5) nor the set including only rare non-synonymous variants (set “HM” in Table 5) confer risk
for these families. The association seems to be driven by the common APOE €2 and ¢4 variants, since only
when these were considered, either alone (set “c2e4” in Table 5) or in conjunction with the rest of rare non-
synonymous variants (set “HM- €2e4” in Table 5), most of the tests yielded a significant p-value (after multiple
test correction). Only EPACTS-SKAT did not consider the APOE €2 and &4 variants as significantly associated,
after multiple test correction, with our dataset (Table 5). The most significant association for APOE €2 and &4
variants was reported by FarVAT-CMC test.

3.3 Genome-wide analyses

Overall, we examined eight software and over 22 algorithms for genome-wide association analysis in our
extended family dataset of 285 families and 1235 non-hispanic white individuals. We only included in the
analysis non-synonymous SNPs with a MAF < 1% and we corrected per sex and first two PCs. All 22
algorithms were run using the same input dataset. The results for these 22 algorithms are described grouped per
category, as detailed in the following sections. First, we compared the correction effect provided by four kinship
matrices (Figure 3A). Second, we compare the performance of nine variance-component software and
algorithms (Figure 3B). Third is the comparison of eight collapsing software and algorithms. Fourth, we
compare two transmission-disequilibrium tests. We conclude the results section by providing a summary of the
pros and cons encountered while running these methods. Overall, most of the gene-based methods tested
seemed quite deflated. Only PedGene, FarVAT and Rare-IBD seem to provide values closer or above the
expected under the null hypothesis. The most efficient in terms of power and p-value inflation appears to be
FarVAT with BLUP correction.

3.3.1 Kinship matrices

We tested the correction provided by four kinship matrices using the SKAT method with EMMAX correction
implemented in the R package SKATV2. The four kinship matrices tested were pedigree calculation (PED),
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Identity By State (IBS) estimation, Balding-Nichols (BN) estimation, and the kinship generated by EPACTS
(HR) which is also based on BN algorithm (Figure 3A). Table S3 offers a comparison of these kinships for
FAM#1 and FAM#2 of our simulated dataset. For these analyses, we ran the SKAT-EMMAX method in our
entire dataset, gene-wide and calculated a QQ plot and inflation factor (1) to obtain a general ideal of the
behavior of each matrix. Matrices based on the BN algorithm seemed to have a similar performance (SKAT-BN
1=0.038, SKAT-HR 1=0.039, Table 6) although their concordance was lower than expected given they are
based on the same algorithm (Pearson correlation (Pc)=0.85; Spearman correlation (Sc)=1). Although the PED
matrix generates a more restrictive correction than the IBS matrix (SKAT-PED A= 0.36, SKAT-IBS 1=0.67,
Table 6), these two tests have a similar overall performance as the p-values for the different genes are highly
correlated (Pc=0.97; Sc=0.98), making the PED matrix a good surrogate for the IBS matrix. Finally, there were
clear performance differences between the BN-type matrices (BN and HR) and the IBS-type matrices (IBS and
PED), exemplified by the different top candidate genes (NR1D1 for BN-type matrices and CHRD for IBS-type
matrices) and by the correlation algorithms (SAKT-IBS vs SKAT-BN Pc=0.8; Sc=0.89). Overall, we found that
the IBS matrix provided to our dataset the best balance between covariance-correction and overcorrection.

3.3.2 Collapsing tests

The collapsing methods tested from four different software (PedGene, FarVAT, EPACTS and GSKAT) were
Burden, CMC and VT (Figure 3c). In order to compare the different tests, we followed a similar approach as
above, and we ran the different software with the same imputed file and compared the A.

In our analyses, the burden test by GSKAT presented the most deflated values; although the lambda does not
illustrate so (GSKAT-Burden A=1.71, Table 6) because of the initial inflation among the low or non-significant
genes. EPACTS-CMC (A= 0.85) and EPACTS-VT (A=0.95) provided values closer to the expected, and despite
their QQ-plots seem to follow a similar trend, their correlation is weak (Pc=0.54; Sc=0.68), pointing to different
top genes. The Burden and CMC methods by FarVAT and FarVAT-BLUP provided p-values closest to the
expected (FarVAT-Burden 1=0.98; FarVAT-CMC 1=0.99, FarVAT-BLUP-Burden A=1.03; FarVAT-BLUP-
CMC 1=1.07). The correlation for the gene p-values was higher between results generated by the same method
(FarVAT-BLUP-CMC vs FarVAT-BLUP-Burden Pc=0.99; Sc=0.96; FarVAT-CMC vs FarVAT-Burden
Pc=0.98; Sc=0.97) than between results generated using the same algorithm (FarVAT-BLUP-CMC vs FarVAT-
CMC Pc=0.88; Sc=0.8; FarVAT-BLUP-Burden vs FarVAT-Burden Pc=0.85; Sc=0.77). PedGene in the burden
model is the software that provided most significant p-values; however, these are clearly inflated compared to
the predicted p-values (Pedgene-Burden A=2.99, Table 6) and its results were not correlated with any other
Collapsing test (Pc and Sc values < 0.1).

3.3.3 Variance component tests

This subset included all the VVariance component-based methods available, CLP, CALPHA and SKAT, from six
different software: PedGene, FarVAT, FSKAT, EPACTS, SKAT and GSKAT (Figure 3c). GSKAT was the
software presenting more deflated values though the lambda does not illustrate this (GSKAT-SKAT A= 1.681,
Table 6) because of the initial inflation among the low or non-significant genes. GSKAT was followed by
SKAT and EPACTS which showed similar A and performance-values for each gene (Pc=0.8, Sc=0.8, Figure 4).
The CLP, CALPHA and SKATO methods by FarVAT and FarVAT-BLUP provided p-values closest to the
expected (FarVAT-CLP A=1.00; FarVAT-CALPHA A =1.15; FarVAT-SKATO %=1.02, FarVAT-BLUP-CLP
2=1.11; FarVAT-BLUP-CALPHA %1=1.26; FarVAT-BLUP-SKATO A=1.10). FarVAT-CALPHA, FarVAT-
SKATO, FarVAT-BLUP-CALPHA and FarVAT-BLUP-SKATO pointed to the same top candidate gene
(CHRD) (Table 6), although the overall p-value correlation is lower than expected considering they are based
on the same algorithm (FarVAT-SKATO vs FarVAT-BLUP-SKATO Pc=0.6, Sc=0.7; FarVAT-CALPHA vs
FarVAT-BLUP-CALPHA Pc=0.82 Sc=0.82, Figure 4). On the other hand, and despite the fact that FarVAT-
CLP and FarVAT-BLUP-CLP have higher correlation (Pc=0.85, Sc=0.77), these two tests point to different top
genes (FarVAT-CLP top gene is MASLL, and FarVAT-BLIP-CLP top gene is NLRP9). PedGene in the SKAT
model is the software that provided the most significant p-values, but we can observe how these are inflated
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(Pedgene-SKAT A=3.53, Table 6) and that its correlation with other variance component tests is low to null (Pc
and Sc values < 0.2).

3.34 Transmission disequilibrium tests

We have tested two transmission disequilibrium tests, RVGDT and Rare-IBD, which are designed to account
for large extended families of arbitrary structure (Figure 3d). Of these two, RVGDT is the test that more
closely approached the expected under the null (x=0.99), whereas Rare-IBD provided slightly inflated p-values
(x=1.450, Table 6). The correlation between these two methods was very low (Pearson correlation = 0.23,
Spearman correlation = 0.17). A common issue with both methods is that we could see some stratification
towards more significant p-values which made it difficult to determine a top significant gene.

3.35 PROSand COSN of the different gene-based methods

Among all the methods tested, EPACTS and FarVAT are the most user-friendly, time-efficient and versatile
software. EPACTS is an all-in-one package that annotates the input file, generates the kinship matrix and
performs gene-based analysis under different conditions (minor allele frequency and predicted functionality of
the variant) with only tag specification. In addition, the program can be run on a genome-wide base or at
smaller scale given genes or regions specified by the user. FarVAT can generate the kinship matrix by either
using the pedigree relationships or using the genetic relationship among individuals. It does not annotate the
input file and requires that the user provide their own set of genes and variants per gene to analyze; it allows the
user to choose between BLUP (best linear unbiased prediction) or prevalence to estimate and incorporate
random effects on the phenotype. FarVAT has initial conditioning that only takes founder-based MAF, i.e.
when a genetic variant has its minor alleles only in non-founders (offspring), these numbers will not be counted.
This is a big difference with respect to the other programs that take into account all variants regardless of their
presence in founders or not. Since for many of our families we only had genetic data for siblings, i.e. we did not
have genetic data for founders, we ran FarVAT with the “—freq all” option, so all variants would be included
regardless if they are present in founders or not.

FSKAT, GSKAT and SKAT require of some R knowledge from the user, and are less flexible. For FSKAT and
GSKAT the user has to provide a genotype, a phenotype, and a gene-set file. For SKAT the user has to
additionally provide the kinship matrix. Because these programs were designed to run on a per gene basis, these
take longer to compute and to be run on a genome-wide level than EPACTS or FarVAT, even if the user
parallelizes computation. PedGene is also an R package that requires a genotype, a phenotype file with
complete pedigree information (to generate the kinship matrix), and a gene-set file. PedGene provides
phenotype adjustment by logistic regression on the trait of interest, but it does not allow for extra covariates,
which prohibits correction by multiple PCs or other variables. RVGDT is a python based program, quite user-
friendly since it is operated with simple command-line but is limited in its options. Similar to FSKAT, GSKAT
and SKAT, it is designed to be run on a per-gene basis for which loops and parallelization have to be set up for
genome-wide testing. The same goes for RareIBD which requires a genotype, a phenotype, and a Kinship
coefficient file for each gene that the user wants to test. For each gene the program computes first statistics for
each founder within each family and then calculates the gene-based p-value. The first step of this process can
easily take between three to five minutes for families with less than 100 individuals; hence, the overall time for
one gene is directly dependent on the number of families to test and the time required for a genome-wide
analysis is proportional to the number of genes being tested. Although it is possible to parallelize the jobs using
a high-performance cluster (if available) this program is the slowest of all tested.

One of the major drawbacks we found is that some of these programs do not accept missing data (FSKAT or
RarelBD) or will not generate a p-value if the gene set contains only one variant (GSKAT, PedGene or
FarVAT). FSKAT does not accept missing data, and although it calculates p-values for genes that only have one
informative SNP (2154 one-SNP-gene), there were at least 75 (3.26%) of these one SNP-genes for which the
returned p-value was “2”. GSKAT did not provide p-values for more than 1,875 one-SNP-genes. Pedgene also
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had trouble generating p-values for 44 one-SNP-genes out of a total of 1,916 singletons. FarVAT did not
generate a p-value for the 1,875 one-SNP-genes using the Burden and SKATO models but it generated p-values
using the CMC and CLP models for the same 1,875 one-SNP-genes.

3.4 Candidate genesfor FASe project

Our results indicate that transmission disequilibrium tests identify genes that have a Mendelian behavior,
whereas collapsing and variance-component tests identify genes that confer risk for disease. Therefore, we
decided to combine and compare results from all approaches to identify the genes with most consistent results
(Table 7).

PEDGENE provided the most significant p-values for NTN5 (Pedgene-Burden p-value = 5.80x10°®; Pedgene-
SKAT p-value = 1.26x10®) and ANKRD42 (Pedgene-Burden p-value = 3.62x107"; Pedgene-SKAT p-value =
1.16x10"). However, the inflated p-values observed and low correlation with any of the other software tested
using the same algorithms makes us suspicious of the validity of these results.

CHRD was the gene with the third most significant p-value. CHRD had a p-value <5x107 in three different
models (FarVAT-CALPHA, FarVAT-SKATO, FarVAT-BLUP-CALPHA). In addition, as we lowered the
considered p-value threshold we found that more tests identified CHRD as a potential candidate gene associated
with AD. When we lowered the threshold to suggestive genome-wide p-value (p-value<5x10™) we found that
seven different models identified CHRD as a gene significantly associated with AD. Following the same
method we found that CLCN2, MASLL and PTK2B had p-values < 5x10™ in at least three tests, and if we
lowered the threshold to <5x10 p-value, these genes were identified as significant by at least three additional
tests.

Among genes with a p-value < 5x10°%; CPAMDS8 was identified by at least nine gene-based methods (FarVAT,
FarVAT-BLUP and PedGene). The exact p-value for CPAMDS could not be estimated by RVGDT as it showed
a p-value of 9x10"%, which is the most significant p-value provided by this test. Therefore, we cannot conclude
that CPAMDS presented a p-value < 5x10* by RVGDT. CHRD, CLCN2, MASIL, PTK2B and CPAMDS,
NLRP9, and HDLBP were also potential novel candidate genes for familial LOAD as they had p-values <5x%10
% using at least five or more tests (Table 7).

Since these were identified by multiple gene-based methods, we wanted to determine whether any of these
seven candidate genes are involved in known AD pathways. Common variants in PTK2B have been associated
with AD risk at genome-wide level (J.-C. Lambert et al. 2013). Our results indicate there are additional low-
frequency and rare non-synonymous variants in PTK2B that are associated with AD risk in late-onset families.
We used the GeneMANIA (http://pages.genemania.org/) algorithm on the seven candidate genes (CHRD,
MASIL, PTK2B, CPAMDS8, NLRP9, CLCNZ2 and HDLBP) along with known AD-related genes (APP, PSEN1,
PSEN2, APOE, TREM2, PLD3, ADAM10) which represent some of the AD genes and pathways (APP-
metabolism and immune response). GeneMANIA is a software that looks for relationships among a list of given
genes by searching within multiple publicly available biological datasets. These datasets include protein-
protein, protein-DNA and genetic interactions, pathways, reactions, gene and protein expression data, protein
domains and phenotypic screening profiles. We found that our candidate genes have genetic interactions and co-
localization with known AD genes. CHRD and PTK2B are involved in “regulation of cell adhesion” like
ADAM10; PTK2B is involved in “regulation of neurogenesis” like APOE and “perinuclear region of cytoplasm”
like APP, PSEN1 and PSEN2. Finally, CLCN2 and PTK2B are connected through “regulation of ion transport”
(Figure 5).

4 Discussion
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The remaining missing heritability in AD, and in many complex diseases, may be found in very rare-variants
for which discovery will require either large datasets (eg. the ADSP Discovery Phase which has over 10,000
sequenced individuals) or datasets enriched for rare variants (such as families with history of AD). In this study,
we present the most comprehensive performance analyses for multiple gene-based methods in 285 families with
AD. Some of the current methods available are underpowered or too restrictive to detect genes significantly
associated with this disease (Figure 4). Results from our simulated data (Table 4) show that only certain highly
restricted scenarios provide gene-wide significant p-values in a family-based analysis; whereas, similar
scenarios in a case-control study would result in gene-wide p-values. To circumvent this power issue, we relied
on the combination of multiple evidence towards the same gene.

One key aspect to adapt gene-based analyses to a family-based context is to account for the population
stratification and hidden relatedness that may appear due to the inherent nature of the dataset. To take into
account this issue, gene-based algorithms must incorporate kinship matrices to model the relationships among
samples. Therefore, an appropriate estimate of the kinship matrix is of utmost importance. In this work we show
how different relationship matrices influence results. We tested the three most common types of kinship matrix,
pedigree reconstruction (PED), identity by state (IBS), and Balding-Nichols (BN). We show that for a situation
of complex incomplete families, correction using PED or BN matrices will lead to an overcorrection of the
relationships decreasing the power of these tests (Table 6, Figure 4A).

In order to choose the best gene-based algorithm for analysis, it is important to take into account the nature
(impact and directionality) of the variants that are being included in the test. Collapsing tests are powerful when
a large proportion of variants are causal and effects are in the same direction. Variance-component tests are
supposed to be more powerful than collapsing tests because these allow for admixture of risk and protective
variants within the region being tested (lonita-Laza et al. 2013). It is not practical to account for the nature of
the variants included in each gene-set, and the true disease model is unknown and variable; hence, omnibus or
combined tests such as SKAT-O would be desirable for genome-wide studies (Lee et al. 2012); however, most
family-based methods do not incorporate the SKAT-O algorithm, except for FarVAT. Therefore, the best
approach to perform genome-wide rare variant discovery is to combine different algorithms and look for
common signatures across the tests performed. Nonetheless, we are aware that running all available tests is a
time-consuming task that requires additional expertise and resources. In our analyses FarVAT, with the BLUP
adjustment, provide the best results in terms of significant p-values and inflation, for genome-wide gene-based
analysis; it is a fast software that provides results from multiple tests at the same time. The R version of SKAT
or EPACTS, would be alternative valid choices, taking into account that these overcorrect and the p-value
threshold should be lowered.

In this study, we identified CHRD as a candidate gene with a genome-wide significant p-value (5x10")
reported by three tests, and another six genes that had a suggestive genome-wide p-value < 5x10™* in at least
five and up to nine of the different test performed: CLCN2, CPAMDS, HDLBP, MASLL, NLRP9 and PTK2B. In
addition, these genes seem to have direct and indirect interactions (genetic interaction, co-localization or shared
function) with known AD genes (APP, PSEN1, PSEN2, APOE, TREM2, PLD3 and ADAM10).

CHRD, chordin, is a developmental protein, highly conserved, inhibiting the ventralizing activity of bone
morphogenetic proteins, active during gastrulation, expressed in fetal and adult liver and cerebellum, associated
with Cornelia de Lange syndrome (Smith et al. 1999). CLCNZ, chloride voltage-gated channel 2, has several
functions including the regulation of cell volume; membrane potential stabilization, signal transduction and
transepithelial transport. It has been associated with different epilepsy modes (Saint-Martin et al. 2009; Cukier
et al. 2014) and leukoencephalopathy (Gaitan-Pefias et al. 2017). CHRD and CLCN2 show co-expression which
could be due to their close location, both belong to a gene cluster at 3g27. Interestingly, CLCNZ2 shows co-
expression with TREM2, which other than being a risk gene for AD, is known to cause leukoencephalopathy in
the PLOSL (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy) form, also known
as Nasu-Hakola disease.
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PTK2B, was described as a GWAs hit locus in the largest GWAs meta-analysis conducted to date (Lambert et
al. 2013), and later corroborated by others (Wang et al. 2015; Beecham et al. 2014). The protein encoded by
PTK2B is a member of the focal adhesion kinase (FAK) family that can be activated by changes in intracellular
calcium levels, which are disrupted in AD brains. Its activation regulates neuronal activity such as mitogen-
activated protein kinase (MAPK) signaling (Rosenthal and Kamboh 2014). PTK2B could also be involved in
hippocampal synaptic function (Lambert et al. 2013). Although there is no co-expression or genetic interaction
between CLCN2 and PTK2B, both are involved in regulation of ion transport. Additionally, PTK2B is involved
in regulation of lipidic metabolic processes, like APOE, a cholesterol-related gene. Despite no association has
yet been reported between APOE and HDLBP, the High-Density Lipoprotein Binding Protein plays a role in
cell sterol metabolism, protecting cells from over-accumulation of cholesterol, which has been reported as risk
factor for atherosclerotic vascular diseases.

CPAMDS causes a Unique Form of Autosomal-Recessive Anterior Segment Dysgenesis (Cheong et al. 2016).
No shared pathway association was found between CPAMDS and the known AD genes, but it seems to have a
genetic interaction with APP (Lin et al. 2010). In our study CPAMDS8 was identified as a candidate gene (with
p-value < 1x10™) for AD by at least nine gene-based methods from different software, and we found that
several variants within this gene show varying degrees of perfect segregation in more than twenty families.
Variant p.(Ser1103Ala) segregates with disease status in two families with two and three carriers respectively,
and is present in another two families. Variant p.(His465Arg) segregates with disease status in five families
with two or three carriers per family and is present in another 11 families. Variant p.(Arg1380Cys) is private to
a family with three carriers, p.(Alal492Pro) is private to a family with five carriers, and p.(Val521Met) is
private to a family with three carriers.

We have reviewed over 22 algorithms from eight different software available for the gene-based analysis in
complex families. After a thorough examination of these tests performance under different scenarios, we present
a methodology to identify genes associated with the studied phenotype. We have applied this methodology to
285 European-American families affected with late onset Alzheimer disease (LOAD). We have identified six
candidate genes with suggestive or significant genome-wide p-values and we are confident that some of these
genes are truly involved on AD pathology.
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Epidemiology (CHARGE) funded by NIA (R01 AG033193), the National Heart, Lung, and Blood Institute
(NHLBI), other National Institute of Health (NIH) institutes and other foreign governmental and non-
governmental organizations. The Discovery Phase analysis of sequence data is supported through
UF1AG047133 (to Drs. Schellenberg, Farrer, Pericak-Vance, Mayeux, and Haines); U01AG049505 to Dr.
Seshadri; U01AG049506 to Dr. Boerwinkle; U01AG049507 to Dr. Wijsman; and U01AG049508 to Dr. Goate
and the Discovery Extension Phase analysis is supported through U01AG052411 to Dr. Goate, U01AG052410
to Dr. Pericak-Vance and U01 AG052409 to Drs. Seshadri and Fornage. Data generation and harmonization in
the Follow-up Phases is supported by U54AG052427 (to Drs. Schellenberg and Wang).

The ADGC cohorts include: Adult Changes in Thought (ACT), the Alzheimer’s Disease Centers (ADC), the
Chicago Health and Aging Project (CHAP), the Memory and Aging Project (MAP), Mayo Clinic (MAYO),
Mayo Parkinson’s Disease controls, University of Miami, the Multi-Institutional Research in Alzheimer’s
Genetic Epidemiology Study (MIRAGE), the National Cell Repository for Alzheimer’s Disease (NCRAD), the
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National Institute on Aging Late Onset Alzheimer's Disease Family Study (NIA-LOAD), the Religious Orders
Study (ROS), the Texas Alzheimer’s Research and Care Consortium (TARC), Vanderbilt University/Case
Western Reserve University (VAN/CWRU), the Washington Heights-Inwood Columbia Aging Project
(WHICAP) and the Washington University Sequencing Project (WUSP), the Columbia University Hispanic-
Estudio Familiar de Influencia Genetica de Alzheimer (EFIGA), the University of Toronto (UT), and Genetic
Differences (GD).

The CHARGE cohorts are supported in part by National Heart, Lung, and Blood Institute (NHLBI)
infrastructure grant HL105756 (Psaty), RC2HL102419 (Boerwinkle) and the neurology working group is
supported by the National Institute on Aging (NIA) RO1 grant AG033193. The CHARGE cohorts participating
in the ADSP include the following: Austrian Stroke Prevention Study (ASPS), ASPS-Family study, and the
Prospective Dementia Registry-Austria (ASPS/PRODEM-Aus), the Atherosclerosis Risk in Communities
(ARIC) Study, the Cardiovascular Health Study (CHS), the Erasmus Rucphen Family Study (ERF), the
Framingham Heart Study (FHS), and the Rotterdam Study (RS). ASPS is funded by the Austrian Science Fond
(FWF) grant number P20545-P05 and P13180 and the Medical University of Graz. The ASPS-Fam is funded by
the Austrian Science Fund (FWF) project 1904),the EU Joint Programme - Neurodegenerative Disease Research
(JPND) in frame of the BRIDGET project (Austria, Ministry of Science) and the Medical University of Graz
and the Steiermarkische Krankenanstalten Gesellschaft. PRODEM-Austria is supported by the Austrian
Research Promotion agency (FFG) (Project No. 827462) and by the Austrian National Bank (Anniversary Fund,
project 15435. ARIC research is carried out as a collaborative study supported by NHLBI contracts
(HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C,
HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C).
Neurocognitive data in ARIC is collected by U0l 2U01HL096812, 2U01HL096814, 2U01HL096899,
2U01HL096902, 2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD), and with previous brain
MRI examinations funded by R01-HL70825 from the NHLBI. CHS research was supported by contracts
HHSN268201200036C, HHSN268200800007C, NO1HC55222, NO1HC85079, NO1HC85080, NO1HC85081,
NO01HC85082, N01HC85083, NO1HC85086, and grants UO1HL080295 and U0O1HL130114 from the NHLBI
with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS).
Additional support was provided by R01AG023629, R01AG15928, and R0O1AG20098 from the NIA. FHS
research is supported by NHLBI contracts NO1-HC-25195 and HHSN2682015000011. This study was also
supported by additional grants from the NIA (R01s AG054076, AG049607 and AG033040 and NINDS (R0O1
NS017950). The ERF study as a part of EUROSPAN (European Special Populations Research Network) was
supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also
received funding from the European Community's Seventh Framework Programme (FP7/2007-2013)/grant
agreement HEALTH-F4-2007-201413 by the European Commission under the programme "Quality of Life and
Management of the Living Resources” of 5th Framework Programme (no. QLG2-CT-2002-01254). High-
throughput analysis of the ERF data was supported by a joint grant from the Netherlands Organization for
Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). The Rotterdam
Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, the Netherlands Organization
for Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the
Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European
Commission (DG XII), and the municipality of Rotterdam. Genetic data sets are also supported by the
Netherlands Organization of Scientific Research NWO Investments (175.010.2005.011, 911-03-012), the
Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in
the Elderly (014-93-015; RIDE?2), and the Netherlands Genomics Initiative (NGI)/Netherlands Organization for
Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project 050-060-810. All
studies are grateful to their participants, faculty and staff. The content of these manuscripts is solely the
responsibility of the authors and does not necessarily represent the official views of the National Institutes of
Health or the U.S. Department of Health and Human Services.
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The three LSACs are: the Human Genome Sequencing Center at the Baylor College of Medicine (U54
HG003273), the Broad Institute Genome Center (U54HG003067), and the Washington University Genome
Institute (U54HG003079).

Biological samples and associated phenotypic data used in primary data analyses were stored at Study
Investigators institutions, and at the National Cell Repository for Alzheimer’s Disease (NCRAD,
U24AG021886) at Indiana University funded by NIA. Associated Phenotypic Data used in primary and
secondary data analyses were provided by Study Investigators, the NIA funded Alzheimer’s Disease Centers
(ADCs), and the National Alzheimer’s Coordinating Center (NACC, U01AG016976) and the National Institute
on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, U24AG041689) at the University of
Pennsylvania, funded by NIA, and at the Database for Genotypes and Phenotypes (dbGaP) funded by NIH. This
research was supported in part by the Intramural Research Program of the National Institutes of health, National
Library of Medicine. Contributors to the Genetic Analysis Data included Study Investigators on projects that
were individually funded by NIA, and other NIH institutes, and by private U.S. organizations, or foreign
governmental or nongovernmental organizations.
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Table 1. Demographic data for the familial dataset employed in this study.

*Age *Age %
N SD range % Fe APOE4

Cases 824 73 +7 48-99 63% 73%
Controls 411 83+9 39-104 59% 51%

Total 1235 77+10 39-104 61% 65%

* Age At Onset (AAOQ) for cases and Age at Last Assessment (ALA) for controls.
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Table 2. Number of samples for which whole genome sequencing (WGS) or whole exome sequencing (WES)
was performed, with detail of the exon library kits employed in this study.

Exon library kit WGS WES
WGS 153
Agilent’s SureSelect Human All Exon kits V3 0 28
Agilent’s SureSelect Human All Exon kits V5 0 665
Roche VCRome 0 389

Total 153 1082



https://doi.org/10.1101/242545

bioRxiv preprint doi: https://doi.org/10.1101/242545; this version posted January 9, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Fernandez et al., gene-based fam-based AD

Table 3. Relationship of programs and models tested according to their main features and kinship matrix that
they use.

Transmission-

Collapsing Variance-component  Combined disequilibrium Kinship
Burden CMC VT C-ALPHA SKAT SKATO BN IBS Ped
EPACTS X X X X
RVGDT X
SKAT-v2 X X X X
GSKAT X X X
FSKAT X X
FarVat-Adj X X X X
FarVat-BLUP X X X X
Pedgne X X

Rarelbd X
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Table 4. Representation of the segregation pattern of the simulated gene. One (1) means that all cases within the
family are carriers of the variant. Zero (0) means that the variant is not present in that family.

GENE-A
SNP1 SNP2 SNP3 SNP4 SNP5

Faml 1 0 0 0 0
Fam2 O 1 0 0 0
Fam3 O 0 1 0 0
Fam4 O 0 0 1 0
Fam5 O 0 0 0 1
Fam6 1 0 0 0 0
Fam7 O 1 0 0 0
Fam8 0 0 1 0 0
Fam9 O 0 0 1 0
Fam10 O 0 0 0 1
Famll 1 0 0 0 0
Faml12 O 1 0 0 0
Fam13 O 0 1 0 0
Faml14 O 0 0 1 0
Faml1l5 O 0 0 0 1
Faml6 1 0 0 0 0
Faml7 O 1 0 0 0
Fam18 0 0 1 0 0
Fam19 O 0 0 1 0
Fam20 O 0 0 0 1
Fam21 1 0 0 0 0
Fam22 0 1 0 0 0
Fam23 0 0 1 0 0
Fam24 0 0 0 1 0
Fam25 O 0 0 0 1
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Table 4. Gene-based p-values for the simulated dataset under different scenarios for the gene-based methods tested in the subset of 25 families.

o

" Burden SKAT cMc CLP " Burden  SKATO cMc CLP " Burden  SKATO
5FCXOFNC 0.236 NA 0141 0004 0301 0003  <Ix10° NA 5.42x10°  4.66x10 NA NA NA 3.93x10°  3.06x10° NA NA NA
5FCX5FNC 0.235 0.124  0.023 0.002 0.123  7.99x10*  <1x10°® NA 0.004 0.005 NA NA NA 2.10x10°  4.00x10° NA NA NA
5FCX10FNC 0354 0338 0412 0005 0079 7.99x10¢  <Ix10° NA 0.032 0.036 NA NA NA 771x10*  1.01x10°  NA NA NA
5FCX15FNC 0377 0359 0202 0005 0095 0002  <Ix10° NA 0.062 0.061 NA NA NA 0002  284x10°  NA NA NA
5FCX20FNC 0.377 0 0201 0006 0114 0003  <Ix10°  0.321 0.073 0.075 0.670 0075 0.134 0002 240x10°  0.32 0.002 0.005
10FCAXISFNC  0.083 0 0028  9x10* 0004 265x10°  <Ix10°  0.047 0.005 0.008 0.272 0008  0.017 6.81x10° 1.33x10° 0013  1.33x10°  3.62x10°
15FCXIOFNC  0.014 0 0005 9x10* 0001 L77x10°  <Ix10°  0.051 L7210 63140 gy 631100 130x10 42610 357%10° 0001  3.27x10°  8.93x10°
20FCX5FNC 0.002 0 0002  9x10* 0002 130x10°  <1x10° 0.039 14810 785100 gpy 785107 L14X10 6.12x10°  212x10° g apeqge  212X10° 254x10
25FCXOFNC  3x10* 0 0001 ox10* 0001 0 x10% 003 15507 448400 g o5 A444X10° 7.06x10 4.59x10°  458x10° g g0 498X107 25410

!Simulated scenarios: 5FC: five families carrier of variants within the hypothetical gene; SFCx5FNC: five families carrier of variants within the hypothetical gene and five
families non-carrier of variants within the hypothetical gene; 5SFCx10FNC: five families carrier of variants within the hypothetical gene and ten families non-carrier of variants
within the hypothetical gene; SFCx15FNC: five families carrier of variants within the hypothetical gene and fifteen families non-carrier of variants within the hypothetical gene;
5FCx20FNC: five families carrier of variants within the hypothetical gene and twenty families non-carrier of variants within the hypothetical gene; 10FCx15FNC: ten families
carrier of variants within the hypothetical gene and fifteen families non-carrier of variants within the hypothetical gene; 15FCx10FNC: fifteen families carrier of variants within
the hypothetical gene and ten families non-carrier of variants within the hypothetical gene; 20FCx5FNC: twenty families carrier of variants within the hypothetical gene and five

families non-carrier of variants within the hypothetical gene; 25FC: twenty-five families carrier of variants within the hypothetical gene.
*we tested SKAT, CMC and VT on EPACTS, but CMC and VT reported all NA values so data is not shown.
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Table 5. Gene-based p-values for the APOE gene under different gene-set scenarios for the gene-based methods tested in the entire dataset (N=1235,
285 families). In the analysis, only nonsynonymous variants (only SNVs) with a MAF<0.01, and the APOE €2 and €4, were considered and we
adjusted by sex and PCAs. Highlighted in bold, significant p-values after multiple test correction.

PedGene Rare EPACTS* FarVAT FarVAT-BLUP
APOE N GSKAT FSKAT SKAT RVGDT 1BD
SKAT  Burden SKAT CMC CLP CALPHA Burden SKATO CMC CLP CALPHA Burden SKATO
gene 19 0.035 0.037 0.061 0.164 0.008 0.515 0.712 0.205 0.053 0.379 0.003 0.379 0.005 0.036 0.311 0.017 0.311 0.034
HM-g2:4 4 0.003 0.002 0.001 0.005 0.412 0.414 0.359 0.020 7.87x10"°  0.420  4.99x10” 0.420 0.001 3.73x10 0.275  3.99x10" 0.275 6.99x10"
HM 2 0.067 0.089 0.048 0.237 0.177 0.177 0.741 0.022 0.028 0.052 0.014 0.052 0.018 0.053 0.090 0.024 0.090 0.031
e2g4 2 0.005 0.002 0.003 0.004 0.849 0.855 0.002 0.024 7.87x10%  0.002 0.002 0.002 0.003 3.73x10™  0.002 0.001 0.001 0.001

gene: set of 19 polymorphic variants within APOE gene, including APOE €2 and &4 variants; HM -g2¢4: set of variants considered HIGH or MODERATE including APOE &2 and
€4 variants; HM: set of variants considered HIGH or MODERATE without APOE e2 and €4 variants; £2¢4: APOE €2 and €4 variants alone. N: number of variants that went into
analysis.

*we tested SKAT, CMC and VT on EPACTS, but CMC and VT reported all NA values so data is not shown.
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Table 6. Top results for all gene-based methods tested. Top gene, p-value and lambda for each test is given,
ordered by lambda value.

Software TEST Top gene Top p-value Lambda
PedGene SKAT KANSLIL  2.42x10™"2 3.533
PedGene Burden  TTN 1.04x10°® 2.997
GSKAT Burden  PCK6 3.04x10® 1.704
GSKAT SKAT NR1D1 1.90x10° 1.681
Rare-IBD TDT SNTB2 1.00x10™ 1.450
FarVAT- CALPHA CHRD 4.60x107 1.259
BLUP

FarVAT CALPHA CHRD 2.09x10% 1.152
EiﬁfT' CLP NLRP9 1.14x10™ 1.112
FarVAT- 7

BLUP SKATO CHRD 7.37x10 1.101
FarVAT- 4

BLUP CMC IGHV1-69  1.28x10 1.066
EiﬁfT' Burden  NLRP9 1.14x10™ 1.031
FarVAT SKATO CHRD 3.54x107 1.016
FarVAT CLP MASIL 1.25x10° 1.000
RVGDT DT RTN3 9.99x10.4 0.995
FarVAT CMC HSD3B1 4.40%x10° 0.993
FarVAT Burden  MASIL 1.25x10° 0.985
EPACTS VT ESQYNil 1.20x10™ 0.954
FSKAT SKAT CHRD 2.00x10 0.938
EPACTS CMC BTN2A2 1.05x10°3 0.849
SKAT IBS CHRD 7.94x10° 0.668
EPACTS SKAT CHRD 2.42x10° 0.635
SKAT PED CHRD 2.47x10™ 0.360
SKAT HR NR1D1 2.06x10 0.039
SKAT BN NR1D1 2.21x1072 0.038
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Table 7. Most frequent genes, within p-value threshold category, across the different gene-based family-based methods tested. Highlighted in bold
the tests with significant p-value according to threshold category.

P-

EPACTS GSKAT SKAT FarVAT FarVAT-BLUP
value gene # FSKAT RVGD Rare-
thresho ™Mt okar SKA  Burde T - oMe  oLp Buden CALPH  SKAT oMe ol Bugen CALPH  SKAT  1BD
Id c T n A 0 A 0
<5x107  CHRD 3 0'30 Ofg 2.42x10 - 1.50x10 0;21 0013 0.990 7'%‘_"?1 0007 0007 0007 20910 3'%‘_‘7"1 0004 0004 o004 40810 7%77” 0.071
$x10°  CHRD 0'30 O'fg 0000  0.000 0'391 0013 0990  0.000 0007 0007 o007 2090 3‘%‘.‘7"1 0004 0004 0004  06X10 7'?577"1 0.071
000 003 242 150 001 200x10  3.54x1 206x10  7.37x1
cwro o O : < ey 1 0013 09% 0000 0007 0007  0.007 2 pac 0004 0004  0.004 6 o 0.071
CLCN2 4 o.gl 0'34 2.33x10  2.07x10 o.go 0020  1.000 7%%1 0006  0.005 0005  ©46X10 1'%)?;1 0.011 0.009 0009  ©51X10 1'?6?5"1 0.299
<5x10°
MASIL o.go o.go 0057  0.019 0'718 0.187 0998  0.042 4'%5_311 1%‘?1 1%5;‘1 4.27x10 1'%‘_35*1 0.001 1'%%,*1 1'%%,*1 0.015 2'?,*1 0.685
PTK2B Ofo o_go 0331 0205 0'89 0090 1000 0193 1'20311 1'%%” 1'%%” 0.060 Z'Ac'f’sxl 0.001 2'%%” 2'%%” 0.113 4'%??1 0.443
CPAM 000 000 0652 0178 015 0191 9991 0572 691x1  202x1  202x1 0300  422x1 160x1  203x1  203xL 0268 4231 6.00x10
D8 8 2 3 5 0* 0® o o 0* 0t 0t 0t o “
NLRPO 000 00l 0020 0013 002 0029 0998  0.019 281x1  240x1  240x1 0002  3.78x1 450x1  114x1  114x1 0003  250x1  0.157
8 1 3 9 0t 0* 0 0t 04 0t 0t 0
MASLL 000 000 0057 0019 018 0187 0998  0.042 465x1  125x1  125x1  427x10  1.96x1 0001  132x1 132x1 0015  273x1  0.685
8 2 3 7 0t 0’ 0’ E 0® 0* 04 0*
. CHRD 000 003 242x10 150x10 001 0013 0990  7.94x1 0007 0007 0007 209x10 354x1 0004 0004 0004 460x10 7.37x1  0.071
<5x10 7 7 1 5 5 3 0° 7 o7 7 o7
PTK2B 000 000 033 0205 009 0090 1000  0.193 123x1  131x1  131x1 0060  246x1 0001  239x1  239x1 0113 4931 0443
7 1 9 0 0t 0° 0’ 0° 0t 0t 0
CLCN2 001 004 233x10 207x10 002 0020 1000  7.30x1 0006 0005 0005 646x10 1.12x1 0011 0009 0009 651x10 132x1  0.299
6 8 3 “ 4 0 0* o 0° s 0°®
HDLEP 000 002 0009 0001 003 0032 099%  0.002 0021 0028 0028 0068 0046 179x1  49@x1  49x1  289x10  122x1  0.428
5 5 4 1 o* o* o* 4 o4

*PedGene results have not been included given the inflated results of this test and the low correlation with the other gene-based methods.
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Figure 1. Structure of families used in this study. Black diamonds represent cases and white diamonds represent

controls. Y: genetic data available.

N: no genetic data available.
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Figure2. Schematic design of the analysis performed in this study.
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Figure 3. Quantile-quantile (QQ) plots from different family-based gene-based methods for all nonsynonymous
variants with a MAF <1% in our family-based dataset. a) Comparison of SKAT test using different kinship
matrices: pedigree calculation (PED), Identity By Similarity (IBS) estimation, Balding-Nichols (BN)
estimation, and the kinship generated by EPACTS (HR). ¢) Comparison of different collapsing tests: GSKAT,
EPACTS, FarVAT and PedGene. b) Comparison of different variance-component gene-based methods:
GSKAT, FSKAT, SKAT, EPACTS, FarVAT and PedGene. d) Comparison of transmission disequilibrium
tests: RVGDT and RarelBD.
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Figure 4. Correlation plots from different family-based gene-based methods for genes with a p-value < 0.005.
a) Pearson correlation correlates genes according to their p-values. b) Spearman correlation correlates genes

according to their rankings.
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Figure 5. Gene network for the seven candidate genes (CHRD, CLCN2, CPAMDS, HDLBP, MASIL, NLRP9
and PTK2B) with multiple evidence of a p-value < 5x10™, anchored with known AD genes (APP, PSEN1,
PSEN2, APOE, TREM2, ADAM10, PLD3), as described by GeneMania.
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