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Abstract: 21 

Climate change is challenging plants and animals not only with increasing temperatures, but also 22 

with shortened intervals between extreme weather events.  Relatively little is known about 23 

diverse assemblages of organisms responding to extreme weather, and even less is known about 24 

landscape and life history properties that might mitigate effects of extreme weather.  We find that 25 

northern California butterflies were impacted by a millennium-scale drought differentially at low 26 

and high elevations.  At low elevations, phenological shifts facilitated persistence and even 27 

recovery during drought, while at higher elevations a shortened flight season was associated with 28 

decreases in species richness.  Phenological and faunal dynamics are predicted by temperature 29 

and precipitation, thus advancing the possibility of understanding and forecasting biological 30 

responses to extreme weather. 31 

 32 

Main text: 33 

Extreme weather events have occurred with increasing severity and frequency in recent decades, 34 

a trend that has been linked to anthropogenic climate change and shifts in atmospheric 35 

circulation1.  Human societies are vulnerable to disruption by weather phenomena that include 36 

hurricanes and heat waves, and these events add to and interact with other climate change 37 

effects2.  Natural systems of plants and animals have been studied intensively from the 38 

perspective of shifting average climatic conditions3,4, but we know less about the impacts of 39 

either elevated variation or extreme events on wild organisms5,6.  Here we take advantage of 40 

decades of data on 163 butterfly species across an elevational gradient in Northern California 41 

(Fig. 1a) to address knowledge gaps within the context of a severe, millennium-scale drought 42 

that impacted the region from 2011 to 20157.  Specifically, we asked the following: 1) does an 43 
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extraordinary, multi-year drought elicit a faunal response that is extreme relative to faunal 44 

behavior in previous dry years?  2) Are impacts on the fauna consistent or divergent across 45 

elevations?  A theoretical expectation is that organisms living in more heterogeneous 46 

environments should be more resilient to extremes of temporal variation8.  We predicted that 47 

butterflies at montane sites would be robust relative to populations at lower elevations in 48 

landscapes that are both less spatially variable and already impacted by a history of human 49 

activity.  3) Finally, we asked if population-level responses to drought are mediated by 50 

phenological shifts.  Species that are able to begin activity earlier in the spring might reach 51 

higher population densities9, potentially offsetting detrimental drought effects.  Another 52 

possibility is that ectotherms exposed to longer growing seasons could fall into a developmental 53 

trap by which extra generations fail because of insufficient time10. 54 

 Investigations of butterflies at our focal sites have reported that a majority of populations 55 

at the lowest elevations have been in decline since at least the mid-1990s11, which has been 56 

attributed to changes in land use and warming temperatures12.  Populations at higher elevations, 57 

in contrast, have shown relatively less directional change over time, with the exception of a 58 

decline in more dispersive, disturbance-associated species that rely on demographic connections 59 

with lower-elevation source populations13.  Previous analyses of abiotic effects, prior to the 60 

2011-2015 drought, have noted responses to weather that were heterogeneous and idiosyncratic 61 

among sites and species14,15.  In contrast to the previously-documented heterogeneity in 62 

population response, we find here that the recent, extreme drought years resulted in a number of 63 

faunal responses that were consistent across sites and elevational subsets of sites (montane 64 

versus valley sites). 65 

 66 
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Results 67 

A prolonged and consistent shift towards earlier spring flights can be seen in Fig. 1b.  While the 68 

shift in phenology is evident across elevations, the dynamics of the flight window diverge later in 69 

the season: at higher elevations, the date of last flight shifted to an earlier time during the 70 

drought, while at lower elevations the last flight dates from 2011 to 2015 are closer to the long-71 

term average (Fig. 1c).  In other words, the total flight window expanded at lower elevations, 72 

while in the mountains the flight window shifted and compressed towards the start of the season, 73 

a change that is reflected in fewer overall flight days at higher sites (Fig. 1d).   74 

 Along with the recent reduction in the average number of days that butterflies were 75 

observed flying at higher elevations during the drought years, there have been fewer butterfly 76 

species observed per year at the same sites (Figs. 2a – 2e).  In some cases, the millennium 77 

drought was associated with a discrete downturn (e.g., Figs. 2b and 2c), while at other montane 78 

sites the recent drought years contributed to ongoing, negative trends (Figs. 2d and 2e).  A 79 

downward trend in species richness is less evident at the highest site (CP, Fig. 2a), which 80 

previous analyses have found to be receiving immigrants from lower elevations as populations 81 

shift upslope in warmer years13.  In a dramatic reversal of fortunes, the lowest elevation sites 82 

during the millennium drought experienced some of their most productive years in nearly two 83 

decades, as reflected both in numbers of species (Figs. 2g – 2j) and numbers of individuals 84 

observed (Figs. 2l – 2o).  Results shown in Fig. 2 are for simple richness (the number of species 85 

observed per year).  We repeated the analyses using alpha diversity Hill numbers that down 86 

weight the importance of rare species (Fig. S1, S2), and found similar results for all sites except 87 

for GC, where a long-term decline in the number of species becomes evident when rare, or 88 

transient species have less influence. 89 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242560doi: bioRxiv preprint 

https://doi.org/10.1101/242560
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   5 

Why did the low elevation sites apparently rebound during the drought years?  Using the 90 

lowest sites (RC, WS, NS and SM) and a span of years starting just before the millennium 91 

drought, we discovered an effect of phenological plasticity.  Specifically, species whose first 92 

flight shifted to an earlier day were the species that became more abundant (r = -0.50, P < 0.001; 93 

Fig. S3).  Butterflies at the lowest elevations are almost entirely multivoltine, and an earlier start 94 

for those species led to an extension of the flight season (Fig. 1d), and an increase in abundance 95 

and richness (Fig. 2).  To understand climatic drivers of phenology, at low and high elevations, 96 

we modeled the dates of first flight as a function of maximum and minimum temperatures, 97 

precipitation, and El Niño (ENSO) conditions.  Models explained 60% of the inter-annual 98 

variation at low elevations (F6,138 = 35.17, P < 0.001), and 72% at the higher elevation sites 99 

(F6,138 = 59.68, P < 0.001) (Table S1).  Minimum and maximum temperatures had negative 100 

effects on first flight dates (warmer temperatures lead to earlier flights), and the effect of the 101 

former was most noticeable at higher elevations (Figs. 3a and 3b).  Precipitation, as reflected by 102 

local weather and ENSO conditions, had a delaying effect on phenology (positive β coefficients 103 

in Figs. 3c and 3d), which is expected as wetter conditions are associated with cooler, cloudy 104 

days and delayed spring emergence.   105 

 Models of species richness revealed even more pronounced variation in weather effects 106 

across elevations, including an increased importance of variation in minimum temperatures (Fig. 107 

3e), maximum temperatures (Fig. 3f), and precipitation at higher elevations (Fig. 3g) (see Table 108 

S2 for full details).  The highest elevations are most negatively affected by dry years with 109 

warmer nighttime temperatures.  While daily maximum temperatures have risen everywhere 110 

(Fig. 3j) and patterns of precipitation have fluctuated in concert across sites (Fig. 3k), minimum 111 

temperatures have risen most steeply at the mountain sites (Fig. 3i).  Models of species richness 112 
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also included phenology (date of first flight) as an explanatory variable, and we found an overall 113 

negative association (Fig. 3h), such that earlier emergence is associated with elevated richness 114 

(consistent with the effect of phenology on abundance at low elevations; Fig. S3).  However, the 115 

beneficial effects of earlier emergence at higher elevations might not be as consequential because 116 

of a lack of multivoltine species, or they may simply be outweighed by the negative effects of 117 

minimum temperatures.  Negative effects of minimum temperatures at the higher elevation sites 118 

range from 0.48 fewer species seen for every degree Celsius of warming at WA, to 6.46 fewer 119 

species seen for every degree at DP (Table S3). 120 

 121 

Discussion 122 

In contrast to previous observations that extreme weather elicits species-specific responses16, the 123 

millennium California drought produced consistent responses across many sites that included 124 

advanced dates of first flight with elevation-specific changes in flight windows and species 125 

richness.  The resilience exhibited by the lowest elevations is associated with phenological 126 

flexibility combined with multivoltine life histories and climatic associations that are less 127 

detrimental (in the context of current climatic trends) than biotic-abiotic associations at higher 128 

elevations.  Many researchers have hypothesized an impending mismatch between trophic levels 129 

as a result of climate change17.  The results from low elevation butterflies in California perhaps 130 

challenge that hypothesis, or at least suggest that a shift in phenology at the consumer trophic 131 

level need not always have negative consequences.  In addition to having multiple generations 132 

each year, populations at the lowest elevations have access to agricultural lands.  Although 133 

association with irrigation does not appear to predict population dynamics during the drought 134 

(Fig. S3), we cannot rule out the possibility that low elevation populations were buffered during 135 
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the drought by irrigated crops or agricultural margins.  If true, a reliance on agriculture would be 136 

interesting in the light of a recent hypothesis that long-term declines in low elevations butterfly 137 

populations are associated with intensification of pesticide applications18.  It is possible that the 138 

rebound of the drought years could be followed by a more severe decline following concentrated 139 

agriculture dependency and toxin exposure.   140 

 It has been known for some time that high latitude environments are warming faster than 141 

the rest of the planet.  It is only recently that climatologists have become aware that higher 142 

elevations may also be experiencing a disproportionate share of warming19, which raises the 143 

issue of how cold-adapted, montane ecosystems will respond.  Contrary to the expectation that 144 

mountains offer microclimatic refugia and preadapt species for climatic variation8,20, we found 145 

high elevation butterfly communities to be declining and especially sensitive to dry years with 146 

warmer minimum temperatures.  Warmer and drier years are associated with lower productivity 147 

of mesic-adapted plant communities21, and shorter windows during which montane plants are 148 

optimal for nectar and herbivory22.  We did not model snowfall because it is highly correlated 149 

with annual precipitation at our sites (see Methods), but reduced snowpack in dry, warm years 150 

would have additional negative effects including higher overwinter mortality for life history 151 

stages that typically spend the winter under a blanket of snow23.  The daily temperature range 152 

(the difference between maximum and minimum temperatures) has been shrinking around the 153 

globe24, but the ecological consequences of this thermal homogenization are poorly understood 154 

and not yet incorporated into theoretical expectations of global change biology25.  The results 155 

reported here suggest that we have much yet to learn about organismal responses to extreme 156 

weather at low and high elevations, but that powerful and simple models predicting faunal 157 

dynamics are possible for ectotherms even in the face of unprecedented climatic variation.  158 
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 159 

Methods 160 

Butterfly data.  Ten study sites (Fig. 1a) were visited biweekly (every two weeks) by a one of us 161 

(AMS) for between 45 and 29 years, depending on the site, and only during good “butterfly 162 

weather” when conditions were suitable for insect flight (nearly year round at low elevations, 163 

and during a more narrow period at higher elevations).  At each site, a fixed route was walked 164 

and the presence and absence of all butterfly species noted.  Maps of survey routes and site-165 

specific details, as well as publically-archived data can be found at http://butterfly.ucdavis.edu/.   166 

 For most analyses, we restricted data to a common set of years, from 1988 to 2016, for 167 

which we have data from all sites (the plots in Fig. 1 that go back to 1985 are exception, and do 168 

not include all sites in the first few years).  Plots and analyses (described below) primarily 169 

involve species richness or phenological data, specifically dates of first flight (DFF) or dates of 170 

last flight (DLF).  The later two variables (DFF and DLF) involved filtering to avoid biases 171 

associated with variation in the intensity or timing of site visits.  Specifically, DFF values were 172 

only used if they were proceeded by an absence; in other words, there must be a negative 173 

observation before a positive observation is taken as a DFF record.  Similarly, DLF values were 174 

not used if they were not followed by an absence; so any species observed on the last visit to a 175 

site in a particular year did not have a record of DLF for that year.  If a species was only 176 

observed on a single day in a particular year, then that date was used as a DFF (and only if 177 

proceeded by an absence) but not as a DLF, in order to not use the same data point twice. 178 

 For a subset of years and sites, absolute counts of individual butterflies (by species) were 179 

taken in addition to the presence/absence data; this was done at the 5 lowest elevation sites 180 

starting in 1999.  These data are used here to investigate the dynamics of the low elevation 181 
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butterflies during the drought years, specifically the relationship between phenological shifts, 182 

changing abundance and dependence on irrigation.  For the latter (dependence on irrigation), one 183 

of us (AMS) ranked species a priori (without knowing the results of analyses) based on natural 184 

history observations.  Dependency on irrigated areas was categorized as follows: 1), butterfly 185 

species that are essentially independent of irrigation; 2), species that use irrigated, non-native 186 

hosts in some areas as well as native, non-irrigated hosts in other areas; 3), species that use 187 

irrigated, non-native hosts in at least one of multiple generations; and 4), species that are 188 

completely dependent on irrigated, non-native hosts.  189 

 190 

Weather variables.  Analyses included the following weather variables: maximum and 191 

minimum daily temperatures, total precipitation, and a sea surface temperature variable 192 

associated with regional conditions15.  Following previous analyses13, maximum and minimum 193 

temperatures were averaged and precipitation was totaled from the start of September of the 194 

previous year through August of the current year.  Previous fall through current summer is a 195 

useful climatological time period in a Mediterranean climate and captures precipitation and 196 

overwintering conditions that potentially affect butterflies through both direct effects on juvenile 197 

and adult stages, and indirect effects through host and nectar plants.  Data were generated as 198 

monthly values using the PRISM system (Parameter-elevation Relationships on Independent 199 

Slopes Model, PRISM Climate Group; http:// prism. oregonstate.edu) for latitude and longitude 200 

coordinates at the center of each survey route.   201 

 As a complement to the site-specific, PRISM-derived weather variables, we used an 202 

index of sea-surface temperature associated with the El Niño Southern Oscillation (ENSO).  203 

Specifically, we used the ONI (Oceanic Niño Index) values for December, January and February 204 
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(a single value is reported for those winter months; http://cpc.ncep.noaa.gov) from the winter 205 

preceding butterfly observations for a given year.  Higher values of this index correspond to 206 

regionally warmer and wetter conditions.  We also downloaded snowfall data from the Central 207 

Sierra Snow Lab located near our Donner Pass site (station number 428, http://wcc.sc.egov. 208 

usda.gov/nwcc), but preliminary investigations found that annual snowfall totals were highly 209 

correlated with annual precipitation totals.  Correlation coefficients between snowfall and 210 

precipitation were between 0.80 and 0.88, and the inclusion of snowfall caused variance inflation 211 

factors from linear models (described below) to often exceed 10; thus snowfall was not included 212 

in final models.  In contrast, correlations among other weather variables (maximum 213 

temperatures, minimum temperatures, precipitation, and ENSO values) were generally lower: 214 

across sites and weather variables, the mean of the absolute value of correlation coefficients was 215 

0.31 (standard deviation = 0.23). 216 

 Weather variables that were included in models were z-standardized within sites to be in 217 

units of standard deviations.  This allows variables from sites with different average conditions 218 

(e.g., mountain and valley sites) to be readily compared and, more important, it allows for slopes 219 

from multiple regression models to be compared among weather variables that are themselves 220 

measured on different scales (as is the case with precipitation and temperature). 221 

 222 

Analyses.  Statistical investigations involved two phases.  First, we used plots of z-standardized 223 

data to visualize patterns in phenology (DFF and DLF) and flight days; the latter variable, the 224 

number of days flying, was expressed as the fraction of days that a species is observed divided 225 

by the number of visits to a site per year (this has been referred to as “day positives” in other 226 

publications using these data15).  DFF, DLF, and flight days were z-standardized within species 227 
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at individual sites and then averaged across species to facilitate comparisons of patterns across 228 

sites and years.  We also used plots of species richness to explore faunal changes over time at 229 

each site.  Plots of richness were accompanied by splines (with 5 degrees of freedom) and 230 

predicted values from random forest analyses26, which both allow for visualization of non-linear 231 

relationships.  The spline analysis has the advantage of producing smoothed relationships 232 

(between richness and years), while the random forest analysis, performed with the 233 

randomForest27 package in R28, has the complementary advantage of being able to incorporate 234 

covariates (in this case the number of visits per year) as well as the advantage of making no 235 

assumptions about the shape of the relationship (between richness and years, while controlling 236 

for sampling effort).  Patterns in species richness over time were also explored using diversity 237 

indices and Hill numbers that weight rare and common species differently (at different levels of 238 

q, which determines the sensitivity of the analysis to rare species)29-31, using the vegetarian 239 

(v1.2) package32 in R28.  In addition, we used the combination of spline and random forest 240 

analyses to investigate changes in abundance (numbers of individuals observed per year) at the 241 

low elevation sites where abundance data was available.  As with other variables, abundance 242 

values were z-standardized within species and sites, and z-scores were averaged across species. 243 

 Following the visualization phase of investigation, we developed simple linear models 244 

that were focused on prediction of dates of first flight (DFF) and species richness.  Independent 245 

variables for both sets of models included average daily minimum temperatures, average daily 246 

maximum temperatures, total precipitation, ENSO (ONI sea surface temperatures), sampling 247 

effort (number of visits), and year.  Models of species richness included date of first flight as an 248 

additional variable because we were interested in the possibility that the timing of species 249 

emergence affects butterfly populations and consequently observed species richness.  These 250 
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models (for both DFF and richness) were estimated for each site individually and for high and 251 

low sites as groups of sites (5 sites in each model).  Additional model complexities were 252 

explored that included interactions between weather variables, time lags (effects of previous 253 

years on current year dynamics) and cumulative effects (sliding windows of averaged 254 

precipitation values).  Interactions were rare, but we report interactions between weather 255 

variables that were significant (at P < 0.05).  Lagged and cumulative weather variables did not 256 

add to the explanatory power of models and the individual lagged and cumulative effects were 257 

rarely significant and not discussed further. 258 

 As we have found elsewhere for analyses of phenology and richness with these data11,33, 259 

linear models satisfied assumptions of normality and homogeneity of variance.  To address 260 

potential collinearity among predictor variables, variance inflation factors were investigated and 261 

found generally to be between 0 and 5, and in a few cases between 5 and 10.  For instances 262 

where inflation factors approached 10, quality control was conducted by including and excluding 263 

correlated variables to verify that estimated β coefficients were not affected.  Linear models were 264 

also used to test the hypothesis that phenological shifts at low elevations have demographic 265 

consequences for individual species.  For each species at the lowest sites (SM, WS, NS, and RC), 266 

we separately regressed dates of first flight against years, and annual abundance against years.  267 

Slopes from those regressions were then compared using correlation to ask if species that shifted 268 

to an earlier flight (negative slopes for DFF versus years) were also species that become more 269 

abundant (positive slopes of abundance versus years).  This was done for the years 2008 – 2016 270 

to capture the transition into the millennium drought years, and only included species that were 271 

present in at least 6 of those years.  As with other analyses, linear models were performed and 272 

assumptions investigated using R28. 273 

274 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242560doi: bioRxiv preprint 

https://doi.org/10.1101/242560
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   13 

References 274 

1. N. S. Diffenbaugh, D. L. Swain, D. Touma, Proc. Natl. Acad. Sci. USA 112, 3931-3936 (2015). 275 

2. P. K. Thornton, P. J. Ericksen, M. Herrero, A. J. Challinor, Global Change Biol. 20, 3313-3328 276 

(2014). 277 

3. C. Parmesan, Annu. Rev. Ecol. Evol. Syst. 37, 637-669 (2006). 278 

4. B. Martay et al., Ecography 40, 1139-1151 (2017). 279 

5. B. Helmuth et al., Climate Change Responses 1, 6 (2014). 280 

6. S. F. Matter, J. Roland, Ecosphere 8,  (2017). 281 

7. D. Griffin, K. J. Anchukaitis, Geophys. Res. Lett. 41, 9017-9023 (2014). 282 

8. C. P. Nadeau, M. C. Urban, J. R. Bridle, Trends Ecol. Evol. 32, 786-800 (2017). 283 

9. J. R. Forrest, Current Opinion in Insect Science 17, 49-54 (2016). 284 

10. H. Van Dyck, D. Bonte, R. Puls, K. Gotthard, D. Maes, Oikos 124, 54-61 (2015). 285 

11. M. L. Forister, J. P. Jahner, K. L. Casner, J. S. Wilson, A. M. Shapiro, Ecology 92, 2222-2235 286 

(2011). 287 

12. K. L. Casner et al., Conservation Biol. 28, 773-782 (2014). 288 

13. M. L. Forister et al., Proc. Natl. Acad. Sci. USA 107, 2088-2092 (Feb, 2010). 289 

14. C. C. Nice, M. L. Forister, Z. Gompert, J. A. Fordyce, A. M. Shapiro, Ecology 95, 2155-2168 290 

(2014). 291 

15. N. Pardikes, A. M. Shapiro, L. A. Dyer, M. L. Forister, Ecology 96, 2891-2901 (2015). 292 

16. G. Palmer et al., Phil. Trans. R. Soc. B 372, 20160144 (2017). 293 

17. L. H. Yang, V. H. W. Rudolf, Ecol. Lett. 13, 1-10 (Jan, 2010). 294 

18. M. L. Forister et al., Biol. Lett. 12, 20160475 (2016). 295 

19. Mountain Research Initiative EDW Working Group, Nature climate change 5, 424-430 (2015). 296 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242560doi: bioRxiv preprint 

https://doi.org/10.1101/242560
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   14 

20. C. Daly, D. R. Conklin, M. H. Unsworth, International journal of climatology 30, 1857-1864 297 

(2010). 298 

21. M. Gottfried et al., Nature climate change 2, 111-115 (2012). 299 

22. N. Pettorelli, F. Pelletier, A. v. Hardenberg, M. Festa-Bianchet, S. D. Côté, Ecology 88, 381-390 300 

(2007). 301 

23. C. M. Williams, H. A. Henry, B. J. Sinclair, Biological Reviews 90, 214-235 (2015). 302 

24. R. S. Vose, D. R. Easterling, B. Gleason, Geophys. Res. Lett. 32,  (2005). 303 

25. C. J. Speights, J. P. Harmon, B. T. Barton, Current Opinion in Insect Science 23, 1-6 (2017). 304 

26. L. Breiman, Machine learning 45, 5-32 (2001). 305 

27. A. Liaw, M. Wiener, R news 2, 18-22 (2002). 306 

28. RCoreTeam, R: a language and environment for statistical computing.  (R Foundation for 307 

Statistical Compu, Vienna http://www.R-project.org/, 2013). 308 

29. M. O. Hill, Ecology 54, 427-432 (1973). 309 

30. L. Jost, Oikos 113, 363-375 (2006). 310 

31. L. Jost, Ecology 88, 2427-2439 (2007). 311 

32. N. Charney, S. Record, R Package Vegetarian version 1.2,  (2009). 312 

33. M. L. Forister, A. M. Shapiro, Global Change Biol. 9, 1130-1135 (Jul, 2003). 313 

 314 

Acknowledgements 315 

Research was funded by the National Science Foundation (DEB-1638773 to CCN, DEB-316 

1638922 to JAF, and DEB-1638793 to MLF), and  MLF was supported by a Trevor James 317 

McMinn professorship. 318 

 319 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242560doi: bioRxiv preprint 

https://doi.org/10.1101/242560
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   15 

Author contributions 320 

A.M.S. designed and carried out data collection.  J.H.T. and D.P.W. managed data entry and 321 

curation.  M.L.F., J.A.F. and C.C.N. analyzed the data.  All authors contributed to writing. 322 

 323 

Additional information 324 

Supplementary information is available in the online version of the paper. 325 

 326 

Competing financial interests 327 

The authors declare no competing financial interests. 328 

329 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242560doi: bioRxiv preprint 

https://doi.org/10.1101/242560
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   16 

 329 

Figure legends 330 

Figure 1.  (a) Elevational profile of Northern California (left) and map of the same area (on the 331 

right) with ten study sites indicated on both; site names as follows, from west to east: Suisun 332 

Marsh (SM), Gates Canyon (GC), West Sacramento (WS), North Sacramento (NS), Rancho 333 

Cordova (RC), Washington (WA), Lang Crossing (LC), Donner Pass (DP), Castle Peak (CP) and 334 

Sierra Valley (SV).  (b) Average dates of first flight and (c) last flight across species at each 335 

location and year.  (d) Average flight days, which are the average fraction of days individual 336 

species are observed per year.  In panels b, c, and d, color coding for individual lines 337 

corresponds to sites as in panel a, and the data are shown as z-standardized values.  Grey 338 

rectangles in panels b, c, and d, indicate the major drought years from late 2011 into 2015.  339 

 340 

Figure 2.  Species richness (a through j) for all sites, and abundance (k through o) for low 341 

elevation sites (abundance data was only collected at the low sites).  Two letter site names and 342 

colors follow Fig. 1A.  In all panels, patterns are visualized with both a spline fit with five 343 

degrees of freedom (thin black line) and predicted values from random forest analysis (thick gray 344 

line) incorporating variation in sampling effort.  In panels k through o, values plotted are z-345 

standardized values of total abundance (number of individuals) per year averaged across species. 346 

 347 

Figure 3.  Results from a model of phenology (a through d) and a model of species richness (e 348 

through h), as well as plots of weather variables through time (i through l).  In the model results 349 

(a through h), the values shown are β coefficients (with standard errors) that summarize the 350 

effect of a particular weather variable (while controlling for other variables) on either phenology 351 

or richness for each site.  Trend lines are only shown in plots where the effect of a particular 352 
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weather variable changes with elevation (* P < 0.05; ** P < 0.01; *** P < 0.001; see Table S4 353 

for additional details).  In panels i through k, weather patterns are visualized using splines with 354 

five degrees of freedom; panel l is the El Niño index (ONI) for each year.  Weather variables are 355 

shown as z-standardized values in panels i through k, and site specific colors in all plots are the 356 

same as in Fig. 1a. 357 

 358 

 359 

360 
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Fig. 1 360 
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Fig. 2 383 
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Fig. 3 407 
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