History of LINE and SINE extinction

1 Tracing the History of LINE and SINE Extinction in Sigmodontine Rodents

- 2
- 3 Lei Yang^{1, 2, 3} and Holly A. Wichman^{1, 2}
- 4 ^{1, 2}Department of Biological Sciences & Institute for Bioinformatics and Evolutionary Studies,
- 5 University of Idaho, Moscow, Idaho, United States of America
- ⁶ ³Present address: Department of Biology, Pennsylvania State University, University Park,
- 7 Pennsylvania, United States of America
- 8
- 9 Corresponding author: Holly A. Wichman
- 10
- 11 Email: hwichman@uidaho.edu
- 12 Fax: +1(208)885-7905
- 13 Phone: +1(208)885-7805
- 14 Running title: History of LINE and SINE extinction

History of LINE and SINE extinction

15 Abstract

16 Background: L1 retrotransposons have co-evolved with their mammalian hosts for the 17 entire history of mammals and currently make up to 20% of a typical mammalian genome. B1 18 retrotransposons are dependent on L1 for retrotransposition and span the evolutionary history of 19 rodents since their radiation. L1s were found to have lost their activity in a group of South 20 American rodents, the Sigmodontinae, and B1 inactivation preceded the extinction of L1 in the 21 same group. Consequently, a basal group of sigmodontines have active L1s but inactive B1s and 22 a derived clade have both inactive L1s and B1s. It has been suggested that B1s became extinct 23 during a long period of L1 quiescence and that L1s subsequently reemerged in the basal group. 24 **Results:** Here we investigate the evolutionary histories of L1 and B1 in the sigmodontine 25 rodents and show that L1 activity continued until after the split of the L1-extinct clade and the 26 basal group. After the split, L1s had a small burst of activity in the former group, followed by 27 extinction. In the basal group, activity was initially low but was followed by a dramatic increase 28 in L1 activity. We found the last wave of B1s retrotransposition was large and probably preceded 29 the split between the two rodent clades.

30 **Conclusions:** Given that L1s had been steadily retrotransposing during the time 31 corresponding to B1 extinction and that the burst of B1 activity preceding B1 extinction was 32 large, we conclude that B1 extinction was not a result of L1 quiescence. Rather, the burst of B1 33 activity may have contributed to L1 extinction both by competition with L1 and by putting 34 strong selective pressure on the host to control retrotransposition.

35

History of LINE and SINE extinction

36 Background

37 LINEs (Long INterspersed Elements) are autonomous non-LTR (non-long terminal 38 repeat) retrotransposons that move through an RNA intermediate. L1 (LINE-1) is the most 39 successful family of LINEs in eutherian mammals [1] and make up $\sim 20\%$ of a typical 40 mammalian genome [2, 3]. A functional full-length L1 is typically 6,000-7,000 bp long and 41 composed of a 5' untranslated region (5'UTR) harboring an RNA polymerase II promoter, two 42 non-overlapping open reading frames (ORFs) known as ORF1 and ORF2 and a 3'UTR followed 43 by a poly-adenosine sequence [4]. The structure of L1 can be diverse among different mammals, 44 particularly in the 5' UTR and ORF1 [5]. The ORF-encoded proteins are strictly required for L1 45 retrotransposition and are highly *cis*-preferential [6, 7]. L1s are adenosine rich ($\sim 40\%$) on their 46 coding strand, which results in biased codon usage compared to host genes [8, 9], elongation 47 defects [10], and premature RNA splicing [11]. This A-richness contributes to the inefficiency of 48 L1 retrotransposition and is proposed to regulate the genes in their vicinity [10]. 49 SINEs (Short INterspersed Elements) are relatively short non-autonomous, non-LTR 50 transposable elements. SINEs do not encode proteins for their own retrotransposition and 51 depend on the reverse transcriptase encoded by other transposable elements such as LINEs [12, 52 13]. Although L1s are highly *cis*-preferential [6, 7], SINEs can take advantage of L1-encoded 53 proteins for their own retrotransposition [12-14]. Despite their short length, SINEs account for 54 $\sim 10\%$ of a typical mammalian genome due to their high copy numbers [2, 3]. Among the ~ 70 55 SINE families found in mammals [15], B1 is the most abundant in mouse [3] and possibly most 56 rodent species [16], occupying $\sim 3\%$ of the mouse genome [3]. B1s derived from the RNA 57 component of signal recognition particle 7SL RNA [17, 18] and share features with its ancestors 58 - a functional B1 is ~150 bp long and transcribed by RNA polymerase III with the aid of its two

History of LINE and SINE extinction

transcription factor binding boxes [19, 20]. B1 sequences are rich in CpG sites, which are methylated and thus prone to mutation in mammalian genomes [21], and the elevated mutation rate is pronounced compared to the A-rich L1s. Because the majority of new L1 and B1 inserts are neutrally-evolving pseudogenes, the CpG-rich B1 sequences decay faster than the A-rich L1 sequences.

Both L1 and B1 have long histories of co-evolution with their host genomes. Unlike 64 65 some transposable elements, there is no known targeted mechanism for L1s excision and thus 66 L1s persist in the genome unless they are removed by non-specific mechanisms. The oldest L1s 67 trace back to the common ancestor of placental mammals and marsupials, ~160 MYA [1, 22]. 68 L1s evolve as master lineages so that a single or a few lineages are responsible for the total 69 retrotransposition in a short time window [23-26]. New master elements replace the old ones, 70 eventually dominating retrotransposition, and this replacement process happens recurrently. B1s 71 are younger than L1s, having arisen just before the divergence of the common ancestor of 72 rodents, ~65 MYA [27], and they are specific to rodents. Other SINEs, including B2, B4 and ID 73 elements, are also present in rodent genomes [16]. SINE families have been interacting with L1s 74 for more than 100 MYA, and fossil remnants of extinct SINE families are detectable in well-75 characterized mammalian genomes [15, 28]. Despite being under strict regulation, L1 and B1 76 make up approximately a quarter of a typical rodent genome [3]. For example, in the mouse 77 genome, there are \sim 599,000 total copies of L1, responsible for \sim 19% of the genome [3], of which 78 ~3,000 copies are potentially functional [29], and ~564,000 copies of B1s, responsible for ~3% 79 of the genome [3].

80 LINEs and SINEs have considerable impact on the mammalian genome, although they
81 were traditionally viewed as "junk DNA". As LINEs and SINEs, including L1s and B1s,

History of LINE and SINE extinction

82 retrotranspose and recombine, they introduce genome instability [30], cause disease [31] and 83 may occasionally be co-opted by the host to serve certain functions, such as their proposed roles 84 in neuro-plasticity [32, 33], X chromosome inactivation [34, 35], regulatory functions [36, 37], 85 DNA break-repair [38] and genome organization [39, 40]. Due to the deleterious effects of 86 LINEs and SINEs on the genome, the hosts have evolved many mechanisms to defend against 87 them [41-45]. In addition, the fact that L1 doesn't encode all the enzymatic components required 88 for retrotransposition could result in ongoing competition between L1s and the host for these 89 required host factors [46, 47]. Host defense against L1s and B1s are especially strong in 90 germline cells due to germline-specific host defense mechanisms, so that only a limited number 91 of new copies are inserted in each generation [48, 49]. L1s and B1s are both epigenetically 92 silenced [50, 51] and under the control of small RNAs [52], which are specifically expressed in 93 germline cells.

94 Since L1 retrotransposition is under strict control by multiple host defenses, it might 95 seem reasonable for the host to occasionally win the evolutionary arms race with L1s, resulting 96 in loss of L1 activity (L1 extinction). L1s are not known to move horizontally, so such 97 extinctions would affect all derived host species. Two factors are of note here. First, clades with 98 early L1 extinctions could have given rise to large mammalian lineages without L1 activity and 99 be easily detected because of both the number of species affected and the deterioration of the 100 remnant sequences in the genome. Secondly, recent extinctions will be difficult to differentiate 101 from periods of L1 quiescence. To clarify the terms related to loss of L1 activity in this work, 102 we refer to a period of low L1 activity as "quiescence" and complete loss of L1 activity as 103 "extinction". Given the large phylogenetic impact of early extinctions, one might expect L1s to 104 eventually become extinct in most mammalian genomes, and yet L1s have persisted throughout

History of LINE and SINE extinction

105	the entire evolutionary history of their placental mammal and marsupial hosts. Thus, either most
106	L1 extinctions are either recent or rare, or mammalian lineages subject to ancient L1 extinctions
107	do not persist or they give rise to few new species. Understanding the dynamics of L1 extinction
108	will be as important as understanding the dynamics of L1 activity in sorting out the impact of
109	L1s on mammalian genome evolution.
110	Several cases of L1 extinction have been proposed in the literature [53-61] and two of
111	these are deep extinction events that cover major groups of mammals [53-57]. One of the major
112	L1 extinctions [55-57] occurred in a large group of South American rodents and includes most
113	species in Sigmodontinae. Sigmodontinae is a subfamily of the Cricetidae family, including
114	approximately 377 species classified into 74 genera in nine tribes (Figure 1) [62] and thus
115	contains to 7-8% of the estimated 5,000 mammalian species [63]. Given that B1
116	retrotransposition is dependent on that of L1, it is expected that B1s should lose their activity
117	simultaneously with L1s. However, the B1 extinction in Sigmodontinae appears to have
118	preceded that of L1s based on samples from 14 genera in five tribes [55-57], where the basal
119	genus Sigmodon carries inactive B1 and active L1, and the descendant genera carry both inactive
120	L1 and B1 (Figure 1). It has also been shown that loss of L1 and B1 activity follows the
121	expansion of a group of endogenous retrovirus [64, 65].
122	It was previously hypothesized by Cordaux and Batzer that the L1 can experience long-
123	term quiescence as a "stealth driver" [66], and B1 extinction could have happened during this
124	period of L1 quiescence [57]. Since B1s are more prone to mutations than the average sequence
125	due to enriched CpG content, Rinehart et al. [57] hypothesized that B1 was unable to
126	retrotranspose at a high enough rate during L1 quiescence to replace their active copies,
127	accumulating debilitating mutations more rapidly [21] than L1s. When a more active family of

History of LINE and SINE extinction

L1 emerged in the Sigmodontini, B1 was too degenerated to retrotranspose, resulting in B1
extinction even in the presence of high L1 activity.
In this study, we investigate the evolution histories of L1 and B1 spanning the time of
their extinctions and the radiation of the extant species in Sigmodontinae (Figure 1). Since the
group carrying extinct L1s and B1s (Oryzomyalia, Figure 1) shares a common ancestor, we used
the marsh rice rat *Oryzomys palustris* to represent this group, hereafter referred to as the "L1-

134 extinct clade". We used the hispid cotton rat Sigmodon hispidus to represent the clade carrying

135 active L1 but inactive B1, hereafter referred to as the "basal group". We used the deer mouse

136 *Peromyscus maniculatus* to represent a closely related clade carrying both active L1 and B1,

137 hereafter referred to as the "outgroup".

138 Using genome trace files from the species representing the L1-extinct clade and the basal 139 group, we show that the activity of L1 and B1 families that precede the divergence of the clades 140 is comparable in the current genomes of the two groups. L1 families had been steadily replaced 141 before the split of the two groups and maintained activity after the split of the basal group and 142 the L1-extinct clade. Shortly after this split L1 activity ceased in the L1-extinct clade but 143 became highly active in the basal group. B1s, on the other hand, had a very large increase in 144 activity prior to the split between the L1-extinct clade and the basal group, and there is no strong 145 evidence of activity in the two groups following their divergence. The large burst of B1 activity 146 just prior to extinction suggests that L1 quiescence is unlikely responsible for B1 extinction. The 147 last wave of B1 retrotransposition is the largest detectable in the B1 evolutionary history of the 148 group, suggesting B1s' strong competition with L1s or enhanced host defense triggered by 149 radical B1 expansion might have contributed to the extinction of L1.

150

History of LINE and SINE extinction

151 **Results**

152To investigate the history of L1 retrotransposition in *O. palustris* and *S. hispidus*, we used153COSEG [67] to identify closely related L1 groups based on shared, co-segregating sites as154described in Methods. We follow the convention of COSEG to designate these groups as155subfamilies. RepeatMasker [67] was used to initially assign genomic L1 copies to subfamilies,156and seven subfamilies with no assigned sequences were removed from further consideration,157leaving 47 subfamilies for further analysis.

158 To examine the activity of L1s in *O. palustris* and *S. hispidus*, we searched the trace files 159 of both genomes separately with the consensus sequences of the abovementioned 47 subfamilies 160 and identified 19,254 sequences in O. palustris and 90,526 in S. hispidus. The age of each 161 sequence was approximated by its percent divergence from the corresponding subfamily 162 consensus – the higher the percent divergence, the older the sequence. The peak of the 163 distribution was used as an approximation of the age of the subfamily (Table S1). Given the 164 possible changes of evolution rate in the detectable range of L1 evolutionary, a global conversion 165 from percent divergence to time is challenging. However, because of the shared evolutionary 166 history of O. palustris and S. hispidus, percent divergence is a reasonably good marker to 167 compare the age of L1 subfamilies of the two species.

Subfamily consensus sequences were also subjected to phylogenetic analysis (Figure S1). Subsequently, phylogenetic relationships and sequence similarities between subfamilies were used to assign subfamilies to families with the stipulation that the pairwise distance between subfamilies within a family be no greater than 3.5%. This distance was determined operationally based on the divergences among phylogenetically clustered subfamilies. Clusters of subfamilies that were similar at the sequence level but differed in age were assigned to different families.

History of LINE and SINE extinction

174	This process identified five families specific to <i>S. hispidus</i> (S1 to S5), four families shared by <i>O</i> .
175	palustris and S. hispidus (OS1 to OS4) and two shared by P. maniculatus, O. palustris and S.
176	hispidus (OSP1 and OSP2, Table S1). A distance-based phylogeny reflecting the relationship
177	between L1 families is presented in Figure 2A. Individual sequences were assigned to the
178	families to which their subfamilies belong; the age distribution within a family is based on the
179	distance of each sequence from its subfamily consensus (Figure 3).
180	As expected, sequences from L1 families shared by O. palustris and S. hispidus are
181	present in both genomes, and these shared families are fairly synchronized in time and
182	comparable in copy number (Figure 3A). The Sigmodon-specific L1 families (Figure 3B,
183	families S1-5) experienced substantial amplification after divergence from the L1-extinct clade,
184	whereas no Oryzomys-specific subfamilies were identified by COSEG. The Sigmodon-specific
185	subfamilies had a few sequences from the O. palustris genome assigned to them, but these
186	assignments appear to be anomalous since the sequences are highly divergent from the subfamily
187	consensus sequences (Table S1). Family OS1, the youngest shared family is of special interest.
188	Family OS1 corresponds to a single L1 subfamily, suggesting that there was little divergence of
189	L1s within the family. It is the last active family prior to the L1 extinction and has ~1.5-fold
190	higher copy numbers per Gbp of sequence in O. palustris than in S. hispidus. This difference in
191	L1 deposition between O. palustris and S. hispidus suggests that L1s remained active in the L1-
192	extinct clade after the separation of that group from the basal group. Furthermore, L1s were
193	more active in the lineage leading to Oryzomyalia, in which L1s eventually became extinct, than
194	in the lineage leading to Sigmodontini. A direct comparison of the activity of the L1 families
195	directly preceding this split (OS2), directly following the split (OS1) and at the base of the
196	Sigmodontini (S5) is presented in Figure 4A. Thus, L1 experienced an expansion (family OS1)

History of LINE and SINE extinction

197	in the lineage leading to Oryzomyalia immediately before L1 extinction, while the lineage
198	leading to Sigmodontini experienced a delayed but much larger L1 expansion.
199	In order to study the B1 dynamics in sigmodontine rodents, we performed the analysis on
200	B1 similar to that done on L1. Because of the short length and CpG-rich nature of B1, we
201	required twice as many sequences to form a subfamily in the second round COSEG as described
202	in Methods. The analysis revealed 30 subfamilies and five families of B1 in both species (Table
203	S2). A distance-based phylogeny reflecting the relationships between B1 families is presented in
204	Figure 2B. One of the families (OS1) is shared by O. palustris and S. hispidus and the other four
205	(families OSP1-5) are shared by O. palustris, S. hispidus and P. maniculatus. All of the B1
206	families are shared by O. palustris and S. hispidus and the representation of these families in
207	both genomes is fairly synchronized in time and comparable in copy number (Figure 5). Since
208	the outgroup, represented by <i>P. maniculatus</i> , carries both active L1s and B1s, we know that B1
209	extinction happened after the split of the outgroup, yet the point at which B1 lost activity in the
210	basal group is to be determined. Here we show that the peak of the most recent B1 family
211	resides at ~11.3% in O. palustris and ~10.7% in S. hispidus (Table S2). These peaks reside in
212	the same time window as L1 family OS2 (~11.1% in O. palustris and ~10.3% in S. hispidus,
213	Table S1), suggesting that B1 family OS1 is coincident in time with L1 family OS2. Since L1
214	family OS2 is the youngest L1 family prior to the separation of the basal group and the L1-
215	extinct clade, the last wave of B1 retrotransposition likely preceded the extinction of L1.
216	
217	Discussion

In this paper we explore the tempo of L1 and B1 activity surrounding the extinction of both elements that occurred in most species within the rodent subfamily Sigmodontinae. This

History of LINE and SINE extinction

220	work is made possible by sequencing methods that allow us to gather large amounts of sequence
221	data and by the availability of a robust species phylogeny for the group (Figure 1). A recent
222	phylogenetic analysis of muroid rodents [68] indicates that the tribe Sigmodontini is basal to the
223	group and sister to the tribe Ichthyomyini. These two tribes are sister to a large, polytomic group
224	(the Oryzomyalia) which includes the remaining five tribes; this group is the result of a rapid
225	radiation of rodents into South America about 5 MYA [69]. Previous work indicated that L1s
226	are extinct in the Oryzomyalia but active in the Sigmodontini, which includes one genus,
227	Sigmodon, with 14 species. L1 extinction in the Oryzomyalia has been documented in 14 genera
228	distributed across four tribes spanning this group (Figure 1) [56]. B1s are extinct in Oryzomyalia
229	and Sigmodontini, but the status of both L1s and B1 in the intermediate tribe, Ichthyomyini, is
230	unknown. Thus, L1 extinction from this single event likely affects between 345 and 362 species,
231	or about 7% of all mammalian species.
232	We reconstructed the shared evolutionary history of L1s and B1s in Sigmodontinae in the
233	period preceding and following extinction of these elements. Our results suggest that L1 master
234	elements have been replaced steadily prior to the extinction of both L1 and B1. This is reflected
235	by the consecutive series of L1 families shared by O. palustris and S. hispidus after their
236	divergence from <i>Peromyscus</i> . B1 elements did not appear to take advantage of every wave of L1
237	activity, but a wave of L1 retrotransposition (family L1-OS2) corresponds to the B1
238	retrotransposition peak just prior to B1 extinction (B1-OS1).
239	There is reasonably strong evidence that L1 extinction occurred after the split between
240	the L1-extinct clade and the basal group. A summary diagram showing the higher level of OS1
241	activity in O. palustris compared to S. hispidus (Figure 4A) suggests that the events leading to
242	L1 extinction also happened after the split, rather than that a recovery occurred in S. hispidus as

History of LINE and SINE extinction

243	has been previously suggested [56]. The evolutionary history of B1 in O. palustris and S.
244	hispidus is comparable. New B1 deposition into the genome was low except for the period
245	directly preceding B1 extinction (Figures 4B and 5). Given the short length of B1s, it is more
246	difficult to identify subfamily clusters, so our estimation of the timing of B1 extinction is weaker
247	than for L1. However, two lines of evidence suggest that the last burst of B1 activity occurred
248	prior to the split between the L1-extinct and basal groups. First, the peak activity of B1OSP1
249	corresponds most closely to the peak activity of L1OS2, which appears to precede the split of
250	these two rodent clades. Secondly, there is no indication of large differences of activity for any
251	of the B1 subfamilies, as was the case for L1. We suggest that finding the status of both L1s
252	and B1s in the Ichthyomyini lineage might be critical to resolving the timing of B1 extinction.
253	The most challenging part of studying transposable element evolution history in rodents
254	is the limitation of time windows reflected by detectable sequences. The sequences detectable
255	by RepeatMasker decrease drastically beyond 40% divergence. Since the mutation rate in the
256	rodent lineage is one of the highest in all mammals, 40% divergence in L1 and B1 traces back to
257	the common ancestor of sigmodontine rodents and <i>P. maniculatus</i> , while similar studies on bats
258	[54] and primates [70, 71] trace back to the common ancestor of mammals. Fortunately, P.
259	maniculatus carries both active L1s and B1s and is close enough to serve as an outgroup in this
260	study. We were able to identify an L1 family shared by O. palustris, S. hispidus and P.
261	maniculatus, family OSP1.
262	However, there is an advantage of studying rodents in this type of evolutionary study.
263	Since the mutation rate in the rodent lineage is higher than that of primates and bats due to
264	shorter generation time, evolution in L1 and B1 families reflected by a given span of divergence
265	covers a wider window of time compared to more slowly evolving species. This gives the age

History of LINE and SINE extinction

266 distributions of L1s and B1s higher resolution and allows us to discern subtle differences267 between subfamily ages.

268 This study is fully bioinformatics-based, but several points are important if one is to 269 consider the underlying molecular events relevant to transpositional bursts and extinctions. L1 270 and B1 retrotransposition is regulated by a plethora of cellular factors [41-43, 52] and reliant on 271 others [46, 47]. For evolutionary studies, especially the ones related to L1 and B1 extinction, the 272 historical state of host cellular factors could dramatically change the retrotransposition 273 landscape. Given that not all cellular factors that affect L1 and B1 retrotransposition are known 274 and that coevolution between the elements and these cellular factors is expected, it is not 275 currently possible to fully deduce the molecular events surrounding L1 extinction. However, 276 from an evolutionary perspective, fixed retrotransposition events are recorded in the genome and 277 evolve neutrally as pseudogenes unless excised or too old to be recognized. Therefore, the fossil 278 record of L1s and B1s in the genome is a good temporal record of retrotransposition over time. 279 However, one should keep in mind that estimation of retrotransposition rate based on historical 280 L1 copy numbers could be affected by the excision rate of the host genome. It has been shown 281 that the mammalian genomes have been constantly expelling sequences by various mechanisms 282 and the excision rate varies in different clades of mammals [72]. As old insertions are not 283 actively making new copies, they are exposed to the excision mechanisms for longer time, thus 284 fewer copies of the older families are represented on the histogram. Old L1 and B1 copies also 285 suffer from the recognition limitation of alignment algorithms. Detectable L1 and B1 copies are 286 drastically reduced beyond 40% divergence.

287

288 Methods

History of LINE and SINE extinction

289	O. palustris and S. hispidus genomic DNA was sequenced in two separate batches using
290	MiSeq (Illumina, Inc., San Diego, CA) at the IBEST Genomic Resources Core (University of
291	Idaho, Moscow, ID). Paired-end libraries were generated with an insert size of 450-550 bp; ~13
292	and 14 million total reads were generated for O. palustris and S. hispidus, respectively.
293	Sequences were processed with SeqyClean (https://bitbucket.org/izhbannikov/seqyclean) and the
294	paired-ends were joined with FLASH [73]. Genome coverage was equivalent to approximately
295	1.5X; 5.47 Gbp of sequence were generated for O. palustris and 6.06 Gbp for S. hispidus, but we
296	note that genome size within the sigmodontine rodents varies. Although the genome size of O.
297	palustris is not documented to our knowledge, the genome size of sister species in Oryzomys
298	suggests that Sigmodon genomes are 11-16% larger than those of Oryzomys [74].
299	L1 reconstruction for both species was generated based on partial genomic sequences
300	generated by 454 Pyrosequencing (Roche Applied Science, Penzberg, Germany) at the IBEST
301	Genomic Resources Core, 203 Mbp of sequence for O. palustris and 214 Mbp for S. hispidus. P.
302	maniculatus genome trace files were obtained from NCBI. Reconstruction of the 3' ends of O.
303	palustris and S. hispidus L1s started with a 575 bp consensus seed in the 3' half of L1 ORF2
304	generated following Cantrell et al. [75]. A bioinformatic pipeline for reconstructing a full length
305	L1 is described by Yang et al. [54]. Briefly, sequences were acquired from the genome trace
306	files based on percent identity. The overhangs of the found sequences allowed the creation of
307	new seeds at both ends of the L1 fragment and were used to initiate another round of query. In
308	this case, the reconstruction walk was repeated in the 3' direction until the 3' end of ORF2 was
309	reached. Percent identity cutoff was set at 92% for O. palustris and higher percent identity (97
310	to 99%) was used for S. hispidus to assure a satisfactory consensus for each walk and the

History of LINE and SINE extinction

311	exclusion of older L1 elements. The 3' 300 bp of the reconstructed L1s were then used as the
312	reference sequences for COSEG analysis described below.
313	B1 sequences from Rinehart et al. [57] were used as starting seeds for B1 analysis. The
314	PCR-amplified B1s from O. palustris and S. hispidus were aligned with Lasergene MegAlign
315	(DNASTAR, Madison, WI) and the consensus sequence (146 bp) was used as the reference
316	sequence for COSEG analysis.
317	L1 and B1 subfamilies in O. palustris and S. hispidus were identified and characterized in
318	similar fashion as described below and are summarized in Table S1 and S2.
319	The reconstructed 300 bp sequences from the 3' end of O. palustris and S. hispidus L1
320	ORF2 were each used as the initial L1 query sequences, and the full length B1 consensuses from
321	each species, based on Rinehart et al. [57], were used as the initial B1 query sequences. O.
322	palustris and S. hispidus MiSeq genomic DNA libraries were queried to identify homologous
323	sequences using RepeatMasker [67] with default parameters. Hits from each search were filtered
324	for >90% coverage of the query sequence and subsequently used for the first COSEG [67]
325	(http://www.repeatmasker.org/COSEGDownload.html) run to identify subfamilies base on
326	shared, co-segregating sequence variants. All COSEG runs were conducted under default
327	parameter except as noted. Parameters were set such that at least 250 sequences were required to
328	form an L1 subfamily and 1,000 were required to form a B1 subfamily. In order to identify older
329	subfamilies, the consensus sequences of the subfamilies identified by the first COSEG run were
330	used as queries to again search the O. palustris and S. hispidus MiSeq libraries using
331	RepeatMasker. The identified sequences from the second RepeatMasker run were filtered for
332	>90% coverage and extracted. O. palustris and S. hispidus sequences are combined and a second
333	COSEG run was carried out on the combined sequences. To avoid the possible formation of

History of LINE and SINE extinction

334	random subfamilies due to the short length of B1 and the high copy number of the detected
335	sequences, the sequences required to form a subfamily was increased from 1,000 (for the former
336	separate run) to 2,000, whereas this number for L1 remained unchanged at 250. The consensus
337	sequences of the resulting COSEG subfamilies were trimmed to exclude ends that were not
338	common to all subfamilies and the CpG sites were removed and, thus, treated as gaps by
339	RepeatMasker and not counted for the divergence calculation. These modified subfamily
340	consensus sequences were used for a final query of the individual O. palustris and S. hispidus
341	MiSeq libraries using RepeatMasker. Sequences from this third run were assigned to subfamilies
342	based on percent divergence and this information was stored for further analysis.
343	P. maniculatus genome trace files were data-mined in a similar fashion through a single
344	round of RepeatMasker and COSEG. The O. palustris L1 and B1 sequences described above
345	were used as the initial query seeds for this run. Selected P. maniculatus subfamilies were used
346	to demarcate the ages of the subfamilies identified in the O. palustris and S. hispidus genomes
347	(Figure 3).
348	Subfamily consensus sequences generated by the second COSEG run of the O. palustris
349	and S. hispidus libraries were combined and aligned with MegAlign using the Clustal W method
350	for L1 or Clustal V method for B1 and a distance matrix was calculated based on the alignment.
351	Based on the alignment, a maximum likelihood tree was constructed using PhyML [76] with the
352	GTR+I+G model and 100 bootstrap replicates (Figure S1). L1 and B1 sequences were then
353	assigned to families based on the topology of the tree and a no more than 3.5% within-family
354	pairwise distance from their subfamily consensuses for L1 and 4.4% for B1. Given that the L1
355	and B1 masters are constantly being replaced during evolution, perfect designation of large
356	families is not possible. The 3.5% threshold was chosen so as to cluster closely related

History of LINE and SINE extinction

357	subfamilies without inflating the number of families. Families are named according to their		
358	species-specificity and age: "S" indicates Sigmodon-specific families, "OS" for families shared		
359	by Sigmodon and Oryzomys and "OSP" for families shared by Sigmodon, Oryzomys and		
360	Peromyscus; numbers in family names indicates the age of a family within the family group with		
361	"1" being the youngest. Histograms of L1 and B1 age distributions were generated by R [77]		
362	histogram function using a window size of 1% (Figure 3). Percent divergence corresponding to		
363	retrotransposition peaks of individual families and subfamilies were determined by R using the		
364	kernel smoothing function with 0.4% bandwidth (Table S1 and S2).		
365			
366	Availability of supporting data		
367	All data generated or analyzed during this study are included in this published article and		
368	its supplementary information files.		
369			
370	List of abbreviations		
371	LINE: Long INterspersed Element		
372	SINE: Short INterspersed Element		
373	MYA: Million Years Ago		
374	ORF: Open Reading Frame		
375	O. palustris: Oryzomys palustris		
376	S. hispidus: Sigmodon hispidus		
377	P. maniculatus: Peromyscus maniculatus		
378			
379	Competing interests		

History of LINE and SINE extinction

380 The authors claim no competing interests.

381

382 Author's contributions

LY and HAW perceived and designed the experiment, analyzed the data and wrote the
 manuscript. LY prepared the DNA library for high-throughput sequencing and performed the
 bioinformatics analysis.

386

387 Acknowledgements

388 We thank LuAnn Scott for helpful discussions, editing and proofreading of the 389 manuscript. We thank Dr. Jerzy Jurka at the Genetic Information Research Institute for offering 390 the bioinformatics training. We thank John Brunsfeld and Dr. Celeste Brown on helpful ideas of 391 the L1 reconstruction pipeline design. We thank Drs. Wenfeng An, Celeste Brown and James 392 Foster for helpful comments and discussions. We thank the IBEST Genomics Resources Core 393 for helping us to generate the high-throughput sequencing data used and the IBEST Computer 394 Resources Core for hosting the clusters used for the bioinformatics analysis. This work was 395 funded by National Institute of Health R01-GM38737 to HW and National Science Foundation 396 DDIG-1210694 to HW and LY; analytical resources were provided by National Institute of 397 Health GM103324 and GM103408. The funder had no role in study design, data collection and 398 analysis, decision to publish, or preparation of the manuscript. 399

400 **References**

401 1. Smit AF: The origin of interspersed repeats in the human genome. *Curr Opin Genet*402 *Dev* 1996, 6(6):743-748.

History of LINE and SINE extinction

403	2.	Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K,
404		Doyle M, FitzHugh W et al: Initial sequencing and analysis of the human genome.
405		Nature 2001, 409 (6822):860-921.
406	3.	Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J,
407		Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M et al: Initial
408		sequencing and comparative analysis of the mouse genome. Nature 2002,
409		420 (6915):520-562.
410	4.	Furano AV: The biological properties and evolutionary dynamics of mammalian
411		LINE-1 retrotransposons. Progress in nucleic acid research and molecular biology
412		2000, 64 :255-294.
413	5.	Boissinot S, Sookdeo A: The Evolution of LINE-1 in Vertebrates. Genome Biol Evol
414		2016, 8 (12):3485-3507.
415	6.	Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV:
416		Human L1 retrotransposition: cis preference versus trans complementation.
417		<i>Molecular and cellular biology</i> 2001, 21 (4):1429-1439.
418	7.	Kulpa DA, Moran JV: Cis-preferential LINE-1 reverse transcriptase activity in
419		ribonucleoprotein particles. Nat Struct Mol Biol 2006, 13(7):655-660.
420	8.	Han JS, Boeke JD: A highly active synthetic mammalian retrotransposon. Nature
421		2004, 429 (6989):314-318.
422	9.	An W, Dai L, Niewiadomska AM, Yetil A, O'Donnell KA, Han JS, Boeke JD:
423		Characterization of a synthetic human LINE-1 retrotransposon ORFeus-Hs. Mob
424		DNA 2011, 2 (1):2.

History of LINE and SINE extinction

425	10.	Han JS, Szak ST, Boeke JD: Transcriptional disruption by the L1 retrotransposon
426		and implications for mammalian transcriptomes. Nature 2004, 429(6989):268-274.
427	11.	Belancio VP, Hedges DJ, Deininger P: LINE-1 RNA splicing and influences on
428		mammalian gene expression. Nucleic acids research 2006, 34 (5):1512-1521.
429	12.	Dewannieux M, Esnault C, Heidmann T: LINE-mediated retrotransposition of
430		marked Alu sequences. Nature genetics 2003, 35(1):41-48.
431	13.	Dewannieux M, Heidmann T: L1-mediated retrotransposition of murine B1 and B2
432		SINEs recapitulated in cultured cells. Journal of molecular biology 2005, 349(2):241-
433		247.
434	14.	Wallace N, Wagstaff BJ, Deininger PL, Roy-Engel AM: LINE-1 ORF1 protein
435		enhances Alu SINE retrotransposition. Gene 2008, 419(1-2):1-6.
436	15.	Vassetzky NS, Kramerov DA: SINEBase: a database and tool for SINE analysis.
437		Nucleic acids research 2013, 41(Database issue):D83-89.
438	16.	Deininger PL, Tiedge H, Kim J, Brosius J: Evolution, expression, and possible
439		function of a master gene for amplification of an interspersed repeated DNA family
440		in rodents. <i>Progress in nucleic acid research and molecular biology</i> 1996, 52 :67-88.
441	17.	Weiner AM: An abundant cytoplasmic 7S RNA is complementary to the dominant
442		interspersed middle repetitive DNA sequence family in the human genome. Cell
443		1980, 22 (1 Pt 1):209-218.
444	18.	Ullu E, Tschudi C: Alu sequences are processed 7SL RNA genes. Nature 1984,
445		312 (5990):171-172.
446	19.	Geiduschek EP, Kassavetis GA: The RNA polymerase III transcription apparatus.
447		Journal of molecular biology 2001, 310 (1):1-26.

History of LINE and SINE extinction

448	20.	Schramm L, Hernandez N: Recruitment of RNA polymerase III to its target
449		promoters. Genes & development 2002, 16 (20):2593-2620.
450	21.	Bird AP: DNA methylation and the frequency of CpG in animal DNA. Nucleic acids
451		research 1980, 8(7):1499-1504.
452	22.	Luo ZX, Yuan CX, Meng QJ, Ji Q: A Jurassic eutherian mammal and divergence of
453		marsupials and placentals. <i>Nature</i> 2011, 476 (7361):442-445.
454	23.	Casavant NC, Hardies SC: The dynamics of murine LINE-1 subfamily amplification.
455		<i>Journal of molecular biology</i> 1994, 241 (3):390-397.
456	24.	Pascale E, Liu C, Valle E, Usdin K, Furano AV: The evolution of long interspersed
457		repeated DNA (L1, LINE 1) as revealed by the analysis of an ancient rodent L1
458		DNA family . J Mol Evol 1993, 36 (1):9-20.
459	25.	Adey NB, Schichman SA, Graham DK, Peterson SN, Edgell MH, Hutchison CA, 3rd:
460		Rodent L1 evolution has been driven by a single dominant lineage that has
461		repeatedly acquired new transcriptional regulatory sequences. Molecular biology
462		and evolution 1994, 11 (5):778-789.
463	26.	Clough JE, Foster JA, Barnett M, Wichman HA: Computer simulation of transposable
464		element evolution: random template and strict master models. J Mol Evol 1996,
465		42 (1):52-58.
466	27.	Kramerov DA, Vassetzky NS: Short retroposons in eukaryotic genomes. International
467		review of cytology 2005, 247 :165-221.
468	28.	Ogiwara I, Miya M, Ohshima K, Okada N: Retropositional parasitism of SINEs on

469 LINEs: identification of SINEs and LINEs in elasmobranchs. *Molecular biology and*470 *evolution* 1999, **16**(9):1238-1250.

History of LINE and SINE extinction

471	29.	Goodier JL, Ostertag EM, Du K, Kazazian HH, Jr.: A novel active L1 retrotransposon
472		subfamily in the mouse. Genome research 2001, 11(10):1677-1685.
473	30.	Hedges DJ, Deininger PL: Inviting instability: Transposable elements, double-strand
474		breaks, and the maintenance of genome integrity. Mutation research 2007, 616(1-
475		2):46-59.
476	31.	Belancio VP, Hedges DJ, Deininger P: Mammalian non-LTR retrotransposons: for
477		better or worse, in sickness and in health. Genome research 2008, 18(3):343-358.
478	32.	Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH: Somatic mosaicism
479		in neuronal precursor cells mediated by L1 retrotransposition. Nature 2005,
480		435 (7044):903-910.
481	33.	Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O'Shea
482		KS, Moran JV, Gage FH: L1 retrotransposition in human neural progenitor cells.
483		Nature 2009, 460 (7259):1127-1131.
484	34.	Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P,
485		Wutz A, Barillot E et al: LINE-1 activity in facultative heterochromatin formation
486		during X chromosome inactivation. Cell 2010, 141(6):956-969.
487	35.	Cantrell MA, Carstens BC, Wichman HA: X chromosome inactivation and Xist
488		evolution in a rodent lacking LINE-1 activity. PLoS One 2009, 4(7):e6252.
489	36.	Sasaki T, Nishihara H, Hirakawa M, Fujimura K, Tanaka M, Kokubo N, Kimura-Yoshida
490		C, Matsuo I, Sumiyama K, Saitou N et al: Possible involvement of SINEs in
491		mammalian-specific brain formation. Proc Natl Acad Sci USA 2008, 105(11):4220-
492		4225.

History of LINE and SINE extinction

- 493 37. Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, Ng HH, Bourque G:
- 494 Transposable elements have rewired the core regulatory network of human
- 495 **embryonic stem cells**. *Nature genetics* 2010, **42**(7):631-634.
- 496 38. Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA,
- 497 Moran JV: DNA repair mediated by endonuclease-independent LINE-1
- 498 retrotransposition. *Nature genetics* 2002, **31**(2):159-165.
- 499 39. Carbone L, Harris RA, Mootnick AR, Milosavljevic A, Martin DI, Rocchi M, Capozzi O,
- 500 Archidiacono N, Konkel MK, Walker JA et al: Centromere remodeling in Hoolock
- 501 leuconedys (Hylobatidae) by a new transposable element unique to the gibbons.
- 502 *Genome Biol Evol* 2012, **4**(7):648-658.
- 503 40. Cournac A, Koszul R, Mozziconacci J: The 3D folding of metazoan genomes
- 504 **correlates with the association of similar repetitive elements**. *Nucleic acids research*
- 505 2016, **44**(1):245-255.
- 506 41. Wissing S, Montano M, Garcia-Perez JL, Moran JV, Greene WC: Endogenous
- 507 APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human
- 508 **embryonic stem cells**. *J Biol Chem* 2011, **286**(42):36427-36437.
- 509 42. Suzuki J, Yamaguchi K, Kajikawa M, Ichiyanagi K, Adachi N, Koyama H, Takeda S,
- 510 Okada N: Genetic evidence that the non-homologous end-joining repair pathway is
- 511 **involved in LINE retrotransposition**. *PLoS genetics* 2009, **5**(4):e1000461.
- 512 43. Gasior SL, Roy-Engel AM, Deininger PL: ERCC1/XPF limits L1 retrotransposition.
- 513 DNA Repair (Amst) 2008, 7(6):983-989.
- 514 44. Goodier JL, Cheung LE, Kazazian HH, Jr.: MOV10 RNA helicase is a potent inhibitor
- 515 of retrotransposition in cells. *PLoS genetics* 2012, **8**(10):e1002941.

History of LINE and SINE extinction

516	45.	McLaughlin RN, Jr., Young JM, Yang L, Neme R, Wichman HA, Malik HS: Positive
517		selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals
518		suggest a dual role in genome defense and pluripotency. PLoS genetics 2014,
519		10 (9):e1004531.
520	46.	Dai L, Taylor MS, O'Donnell KA, Boeke JD: Poly(A) binding protein C1 is essential
521		for efficient L1 retrotransposition and affects L1 RNP formation. Molecular and
522		<i>cellular biology</i> 2012, 32 (21):4323-4336.
523	47.	Taylor MS, LaCava J, Mita P, Molloy KR, Huang CR, Li D, Adney EM, Jiang H, Burns
524		KH, Chait BT et al: Affinity proteomics reveals human host factors implicated in
525		discrete stages of LINE-1 retrotransposition. Cell 2013, 155(5):1034-1048.
526	48.	Cordaux R, Hedges DJ, Herke SW, Batzer MA: Estimating the retrotransposition rate
527		of human Alu elements. Gene 2006, 373 :134-137.
528	49.	Huang CR, Schneider AM, Lu Y, Niranjan T, Shen P, Robinson MA, Steranka JP, Valle
529		D, Civin CI, Wang T et al: Mobile interspersed repeats are major structural variants
530		in the human genome. <i>Cell</i> 2010, 141 (7):1171-1182.
531	50.	Yoder JA, Walsh CP, Bestor TH: Cytosine methylation and the ecology of
532		intragenomic parasites. Trends Genet 1997, 13(8):335-340.
533	51.	Bourc'his D, Bestor TH: Meiotic catastrophe and retrotransposon reactivation in
534		male germ cells lacking Dnmt3L. Nature 2004, 431(7004):96-99.
535	52.	Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ: Developmentally
536		regulated piRNA clusters implicate MILI in transposon control. Science 2007,
537		316 (5825):744-747.

History of LINE and SINE extinction

- 538 53. Cantrell MA, Scott L, Brown CJ, Martinez AR, Wichman HA: Loss of LINE-1 activity
- 539 in the megabats. *Genetics* 2008, **178**(1):393-404.
- 540 54. Yang L, Brunsfeld J, Scott L, Wichman H: **Reviving the dead: history and reactivation**
- **of an extinct l1**. *PLoS genetics* 2014, **10**(6):e1004395.
- 542 55. Casavant NC, Scott L, Cantrell MA, Wiggins LE, Baker RJ, Wichman HA: The end of
- 543 the LINE?: lack of recent L1 activity in a group of South American rodents.
- 544 *Genetics* 2000, **154**(4):1809-1817.
- 545 56. Grahn RA, Rinehart TA, Cantrell MA, Wichman HA: Extinction of LINE-1 activity
- 546 coincident with a major mammalian radiation in rodents. Cytogenet Genome Res
- 547 2005, **110**(1-4):407-415.
- 548 57. Rinehart TA, Grahn RA, Wichman HA: **SINE extinction preceded LINE extinction in**
- 549 sigmodontine rodents: implications for retrotranspositional dynamics and

550 mechanisms. Cytogenet Genome Res 2005, **110**(1-4):416-425.

- 551 58. Platt RN, 2nd, Ray DA: A non-LTR retroelement extinction in Spermophilus
 552 tridecemlineatus. *Gene* 2012, 500(1):47-53.
- 553 59. Boissinot S, Roos C, Furano AV: Different rates of LINE-1 (L1) retrotransposon
- amplification and evolution in New World monkeys. *J Mol Evol* 2004, **58**(1):122-130.
- 555 60. Waters PD, Dobigny G, Pardini AT, Robinson TJ: LINE-1 distribution in Afrotheria
- and Xenarthra: implications for understanding the evolution of LINE-1 in
- **557 eutherian genomes**. *Chromosoma* 2004, **113**(3):137-144.
- 558 61. Gallus S, Hallstrom BM, Kumar V, Dodt WG, Janke A, Schumann GG, Nilsson MA:
- 559 Evolutionary histories of transposable elements in the genome of the largest living

History of LINE and SINE extinction

560		marsupial carnivore, the Tasmanian devil. Molecular biology and evolution 2015,
561		32 (5):1268-1283.
562	62.	Smith MF, Patton JL: Phylogenetic relationships and the radiation of sigmodontine
563		rodents in South America: evidence from cytochrome b. Journal of mammalian
564		evolution 1999, 6 (2):89-128.
565	63.	Wilson DE: Mammal Species of the World: A Taxonomic and Geographic
566		Reference, vol. 2: JHU Press; 2005.
567	64.	Cantrell MA, Ederer MM, Erickson IK, Swier VJ, Baker RJ, Wichman HA: MysTR: an
568		endogenous retrovirus family in mammals that is undergoing recent amplifications
569		to unprecedented copy numbers. Journal of virology 2005, 79(23):14698-14707.
570	65.	Erickson IK, Cantrell MA, Scott L, Wichman HA: Retrofitting the genome: L1
571		extinction follows endogenous retroviral expansion in a group of muroid rodents.
572		Journal of virology 2011, 85 (23):12315-12323.
573	66.	Cordaux R, Batzer MA: The impact of retrotransposons on human genome evolution.
574		<i>Nat Rev Genet</i> 2009, 10 (10):691-703.
575	67.	Smit A, Hubley R: RepeatMasker Open-3.0. In.; 1996-2010.
576	68.	Schenk JJ, Rowe KC, Steppan SJ: Ecological opportunity and incumbency in the
577		diversification of repeated continental colonizations by muroid rodents. Systematic
578		<i>biology</i> 2013, 62 (6):837-864.
579	69.	Marshall LG, Butler RF, Drake RE, Curtis GH, Tedford RH: Calibration of the great
580		american interchange. Science 1979, 204(4390):272-279.
581	70.	Smit AF, Toth G, Riggs AD, Jurka J: Ancestral, mammalian-wide subfamilies of
582		LINE-1 repetitive sequences. Journal of molecular biology 1995, 246(3):401-417.

History of LINE and SINE extinction

583	71.	Khan H, Smit A, Boissinot S: Molecular evolution and tempo of amplification of
584		human LINE-1 retrotransposons since the origin of primates. Genome research 2006,
585		16 (1):78-87.
586	72.	Gregory TR: Insertion-deletion biases and the evolution of genome size. Gene 2004,
587		324 :15-34.
588	73.	Magoc T, Salzberg SL: FLASH: fast length adjustment of short reads to improve
589		genome assemblies. Bioinformatics 2011, 27(21):2957-2963.
590	74.	Animal Genome Size Database. [http://www.genomesize.com/]
591	75.	Cantrell MA, Grahn RA, Scott L, Wichman HA: Isolation of markers from recently
592		transposed LINE-1 retrotransposons. Biotechniques 2000, 29(6):1310-1316.
593	76.	Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New
594		algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
595		performance of PhyML 3.0. Systematic biology 2010, 59(3):307-321.
596	77.	R Core Team: R: A Language and Environment for Statistical Computing. In.
597		Vienna, Austria; 2013.
598		
599	Figur	e legends
600		
601		Figure 1. The phylogeny of the sigmodontine rodents. The tree is based on Schenck et
602	<i>al</i> . [68	3]. Taxa are the sampled genera in the group; tribes are indicated on the right side of the
603	taxa.	Eight of the nine tribes and 12 of the 14 sampled genera by Rinehart <i>et al.</i> [57] are shown.
604	L1 and	d B1 activity of each taxon is demonstrated by gray scale and: black indicates active L1
605	and B	1, dark gray indicates active L1 and inactive B1 and medium gray indicates the taxa where

History of LINE and SINE extinction

606	L1 activity cannot be inferred and light gray indicates the taxa where L1 can be inferred to be
607	active. "o" corresponds to active L1 and B1 and "x" corresponds to inactive L1 and B1.
608	Figure 2. The phylogenies of L1 and B1 families. Panel A shows the L1 tree and B
609	shows the B1 tree. To reflect ages of the families, the trees were based on the distance between
610	families. The distance between any two families was calculated by taking the average pairwise
611	distance of the consensus sequences of subfamilies that belong to each family.
612	Figure 3. The age distribution of L1 families. L1 families in each row are arranged in
613	chronological order with the youngest families on the left. The species analyzed in each row is
614	indicated at the right. Names of families are noted on the top of each panel. L1 copy number is
615	plotted by percent divergence from the corresponding subfamily consensus in 1% windows. The
616	age of each family is approximated by the peak of the distribution. L1 copy numbers are
617	normalized as copies per three Gbp of MiSeq sequence which approximates the copy number per
618	haploid genome. Panel A shows the shared families and panel B shows the Sigmodon-specific
619	families.
620	Figure 4. Comparison of L1 and B1 families spanning their extinction. Panel A
621	presents L1 families S5, OS1 and OS2 arranged in a chronological order with the youngest
622	families on the left, and panel B presents B1 families OS1 and OSP1. The species analyzed in
623	each row is indicated at the right. Names of families are noted at the top. Copy number of L1
624	OS2 is comparable in O. palustris and S. hispidus, but more OS1 copies were detected in O.
625	palustris. Subsequently, there was a new wave of L1 retrotransposition in S. hispidus (family
626	S5), but no younger waves of L1 retrotransposition events were identified in O. palustris. B1
627	OS1 corresponds to L1 OS2 in terms of age.

History of LINE and SINE extinction

628	Figure 5. The age distribution of B1 families. B1 families in each row are arranged in
629	chronological order with the youngest families on the left. The species analyzed in each row is
630	indicated at the right. Names of families are noted on the top of each panel. B1 copy number is
631	plotted by percent divergence from the corresponding subfamily consensus in 1% windows. The
632	age of each family is approximated by the peak of the distribution. B1 copy numbers are
633	normalized as copies per three Gbp of MiSeq sequence which approximates the copy number per
634	haploid genome.
635	
636	Supporting information
637	Figure S1. The maximum likelihood phylogeny of detected L1 subfamilies.
638	Reconstructed O. palustris and S. hispidus L1s, labeled 'seed', and P. maniculatus subfamilies 5
639	and 6 are included as markers. The tree was reconstructed using PhyML [76] with the GTR+I+G
640	model and 100 bootstrap replicates. Bootstrap values $> 80\%$ are shown.
641	Figure S2. The age distribution of all detected L1 and B1 sequences. Ages of
642	sequences are approximated by their percent divergence from the corresponding subfamily
643	consensus sequences and plotted in 1% windows. Species and retrotransposon names are
644	indicated at the top of each panel.
645	Table S1. The statistics and designation of L1 subfamilies and families. "Ory" stands
646	for O. palustris and "Sig" stands for S. hispidus. "Peak" indicates the peak of the L1 divergence
647	distribution of the subfamily or family identified by kernel smoothing. Copy numbers are
648	normalized as copies per three Gbp of MiSeq sequence used for the search, which approximates
649	the copy number per haploid genome. Designation of families is only shown after the first
650	subfamily that belongs to it; all subsequent subfamilies belong to this family until the

History of LINE and SINE extinction

651	demarcation of the next family. Characters in family names: "S" represents S. hispidus-specific,
652	"OS" for shared by O. palustris and S. hispidus and "OSP" for shared by O. palustris, S. hispidus
653	and P. maniculatus. Numbers in the family names reflect their ages among the family group
654	with "1" being the youngest. Copy numbers of families are rounded sums of subfamily copy
655	numbers per three Gbp of sequences and, thus, are occasionally off by one.
656	Table S2. The statistics and designation of B1 subfamilies and families. "Ory" stands
657	for O. palustris and "Sig" stands for S. hispidus. "Peak" indicates the peak of the B1 divergence
658	distribution of the subfamily or family identified by kernel smoothing. Copy numbers are
659	normalized by per three Gbp of MiSeq sequence used for the search. Designation of families is
660	only shown after the first subfamily that belongs to it; all subsequent subfamilies belong to this
661	family until the demarcation of the next family. Characters in family names: "OS" represents
662	families shared by O. palustris and S. hispidus and "OSP" for families shared by O. palustris, S.
663	hispidus and P. maniculatus. Numbers in the family names reflect their ages within the family
664	group with "1" being the youngest. Copy numbers of families are rounded sums of subfamily
665	copy numbers per three Gbp of sequences.
666	

Percent divergence from consensus