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Abstract 
 
Unrelated Donor selection for a Hematopoietic Stem Cell Transplant is a complex multi-stage 
process. Choosing the most suitable donor from a list of Human Leukocyte Antigen (HLA) 
matched donors can be challenging to even the most experienced physicians and search 
coordinators. The process involves experts sifting through potentially thousands of genetically 
compatible donors based on multiple factors. We propose a Machine Learning approach to donor 
selection based on historical searches performed and selections made for these searches. We 
describe the process of building a computational model to mimic the donor selection decision 
process and show benefits of using the proposed model in this study. 
 
 

I. Introduction 
 
An Unrelated Donor (URD) search for Hematopoietic Stem Cell Transplant (HSCT) is initiated 
when patients are unable to find a match within their families. Studies have shown that 70% of 
the patients needing HSCTs have to rely on URDs or Cord-Blood Units (CBUs) (Gragert, et al. 
2014). Volunteer donor registries and cord blood banks across the globe facilitate URD and CBU 
searches for such patients. Advances in HLA matching algorithms, therapeutic protocols, and 
large and diverse registries have resulted in increased number of HSCTs being preferred to treat 
patients (Copelan 2006). HLA compatibility between patient and URDs (and CBUs) is 
established by HLA matching algorithms (Bochtler et al. 2016). For URDs, a donor should 
match at least 8 of the 10 alleles at HLA-A, B, C, DQB1, DRB1 to be considered viable. A donor 
who match at all 10 alleles is the most preferred. After a list of suitable donors have been 
identified by matching algorithms, a physician or a search expert selects a short list of donors 
who are likely to provide the most optimal post-transplant outcome. This selection process is 
based on donors’ secondary characteristics (Spellman et al. 2012).  
 
Optimizing clinically relevant criteria in the donor selection process for a stem cell transplant 
provides the best post-transplant outcomes. Depending on the HLA type of the patient the search 
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process might involve selecting 3-5 donors for Confirmatory Typing (CT)1 from a long list of 
HLA matched URDs. Donor selection, subsequent to HLA matching, involves sifting through a 
long listing of URDs based on non-genetic factors.  
 
Donor search and display systems, such as TraxisTM developed the National Marrow Donor 
Program (NMDP), are used to identify donors who are likely to provide the best post-transplant 
outcome. Donor characteristics that are identified by medical studies to provide favorable 
transplant outcomes are displayed in TraxisTM for the search experts to make an informed 
decision.  A URD search for a patient with a common HLA, at NMDP, can potentially have tens 
of thousands of matched donors. Making a choice between identically matched donors can be an 
extremely long and difficult process and is done while the patient is under critical care. The 
selection process is based on evaluating multiple donor secondary characteristics (Spellman et al. 
2012). The selection is also dependent on considerations of donor availability and Transplant 
Center (TC) experience with a Donor Center (DC), which cannot be measured and captured. A 
computational model that can help ease this selection process by quantitatively identifying 
donors with more preferable secondary characteristics based on past searches (Shouval et al. 
2014). In this study, we develop a Machine Learning model that can mimic the donor selection 
process. Using a trained model, we can assign a Selection Score to every HLA matched donor for 
a patient to indicate favorability of secondary characteristics. Such a score will reduce the 
comparative multivariate decision process to a decision based on a single score that combines all 
the relevant donor features. It can be of particular assistance to physicians and TCs which lack 
the expertise and man-power to make such a critical decision (Irene et al. 2017). 
 
Machine learning algorithms are being used in a variety of applications ranging from self-driving 
cars to financial forecasting. Computational models can be trained to mimic a specific human 
decision process, based on historical data without having to explicitly define and program the 
association between inputs and outputs. These trained models can then be used to predict the 
possible outcome of a future data instance. Figure 1a describe the decision process for donor 
selection and the modelling goal. In Figure 1b we show the proposed change to the process using 
a trained machine learning model. Based on historical searches and corresponding donor 
selections made we can train a computational model that imitates the donor selection process. 
The proposed model can make suggestions to the search experts to help in making the selection 
faster.  
 

                                                       
1
 Members on the registry have ambiguous typing information. A probability is assigned to possible genotypes 

a member can potentially have. Confirmatory Typing is performed to resolve the ambiguity and confirm the 
member’s genotype.  
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(a) 

(b) 
Figure 1: (a) Block diagram of the donor selection process. This study focuses entirely on modelling the selection
decision process after HLA matching has been determined based on genetic population match probabilities. (b) This
is the proposed system. The black box model will be used to score the list of HLA matched donors based on their
secondary characteristics. The black box model can be integrated into the donor search system. 
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II. Data and Methods 
 
We have identified donor searches facilitated by the NMDP over a 3-month period (May 15, 
2016 to Aug 9, 2016) for modelling. When a recipient and donor are fully marched (10/10 allele 
match), the considerations for donor selection are entirely based on non-genetic factors. For 
partially matched donors (8/10 and 9/10), number of mismatches and location of mismatch are 
factored into the selection. There are a number of studies that have separately identified effects 
of mismatched allele on the outcome of the transplant (Kanda et al. 2015) (Schetelig et al. 2008). 
A donor with more suitable mismatch locus is preferred over other donors (Nowak 2008). This 
translates to different selection criteria for fully matched and partially matched donors. Hence, 
these two scenarios need to be modelled separately. To facilitate this modelling aim, we identify 
all data that was presented in TraxisTM at the time a search was performed. This includes 
recipient-donor pair specific HLA matching information and donors’ non-genetic factors. 
HapLogicSM, the HLA matching algorithm developed by the NMDP, estimates an overall match 
probability as well as match probabilities at the individual allele level (Dehn et al. 2016). For 
partially matched donors at least 1 allele mismatch has been unambiguously identified. We 
collect the overall match probabilities (at 10/10, 9/10, and 8/10 match grades) and the mismatch 
locus information where applicable. This entire set of collected information is referred to as the 
secondary characteristics in this study. The ambiguity in donor HLA is resolved by high 
resolution typing during Confirmatory Typing.  
 
 In consultation with search experts at the NMDP we have identified donor characteristics that 
are important for the decision process. These are listed in Table 1 along with a description of any 
processing performed on these characteristics before modeling. Notice that several donor 
characteristics are missing in the database. This is due to either donors not sharing the complete 
information with NMDP when they were recruited or the information not being entered in the 
database.  
 
Table 1: Donor Characteristics that are considered important to the donor selection process. 

Donor 
Characteristics 

Significance Considerations for Modelling 

Donor’s Age Younger donors are preferred over older 
donors (Kollman et al. 2016). 

Information was available for 
100% of the donors. Information 
was scaled on a [0,1] range 
before modelling 

Number of matched 
alleles 

At least 8 of the 10 alleles must be 
matched. 10/10 matche is preferred over 
9/10, which is preferred over 8/10 
(Petersdorf et al. 2007).   

This was only considered for 
modelling partially matched 
donor selections. A one-hot 
encoded variable was used to 
indicate match at 8,9, or 10 /10 
match levels. 
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Match Probability Assigned by HapLogicSM (Dehn et al. 
2016) for every donor, in the range 1% - 
99% for each level of match (i.e., 8/10, 
9/10, or 10/10 level). A donor with higher 
match probability is preferred. Match 
probability at 10/10, 9/10 and 8/10 level 
are used appropriately.  

HapLogicSM assigned match 
probabilities are retained as in. 
For fully matched modelling 
only 10/10 match probability is 
used. 8/10 and 9/10 match 
probabilities were considered 
for modelling partially matched 
donor selections. Variables were 
scaled on a [0,1] range. 

Donor’s Blood type 
and Rh Factor 

When possible a match between recipient 
and donor’s blood group and Rh factor is 
preferred (Worel 2016; Kollman et al. 
2016). 

This information was missing 
for about 24% of the donors in 
the dataset collected. Data 
values were altered to indicate if 
the information was present or 
absent at the time decision was 
made. Two variables were used 
to indicate Blood group and Rh 
type separately.  

Donor’s Gender Male donors are favored (Spellman et al. 
2012) 

Encoded to a binary variable to 
indicate Male or Female. 
Complete information was 
available. 

Donor’s Race Donors’ Race is listed in TraxisTM (Dehn 
et al. 2016) as belonging to one of the 
following broad categories:  

• African American (AFA) 

• Asian/ Pacific Islander (API) 
• Caucasian (CAU) 
• Declined to Answer (DEC) 
• Hispanics (HIS) 
• Multi-Group (MLT) 

• Native American Indian (NAM) 
• Other Group (OTH) 
• Unknown (UNK) 

The categorical variable 
representing donor race was 
dummy encoded, with each 
category represented using an 
indicator variable. Groups DEC, 
MLT, OTH were merged with 
UNK category to account for 
data sparsity. Information was 
available for all donors.  

Donor’s Weight This information is used to estimate the 
volume of stem cells that can be harvested 
from the donor, and if the donor can meet 
the requirements for the recipient. 

This information was only 
present for 3.43% of the donors. 
We use a binary indicator to 
represent if the information was 
present or absent when the 
selection was made. 

Donor’s CMV report CMV-seropositive or seronegative donors 
are preferred for CMV-seropositive and 
seronegative recipients, respectively 

11.97% donors had CMV 
screening results. We binary 
encode the information as 
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(Boeckh and Nichols 2004) present or absent (binary). 
Low/high Resolution 
Typing 

High resolution typing indicates a stronger 
accuracy in march probabilities 

Information was retained as a 
binary variable indicating high 
or low-resolution typing. 

DPB1 Permissivity A DPB1 permissive is preferred in 
addition to a 10-allele match. DPB1 match 
or a permissive mismatch is considered to 
be equally preferable  (Fleischhauer et al. 
2012; Shaw et al. 2014) 

Information encoded in a binary 
variable to indicate match 
(permissive mismatch or a 
complete match) or not.  

Donor Chosen Information is collected to identify which 
of the matched donors is chosen to be 
asked for confirmatory typing. 

Used as the target variable. A 
binary variable to indicate if a 
donor was chosen for the 
searched recipient or not.  

 
In addition to the variables listed in Table 1, we also collected Donor ID, Recipient ID, and 
Transplant Center ID for measuring model performance. These IDs are unique identifiers 
assigned by the NMDP for internal identification and communication. There are a few other 
factors, such as the previous pregnancy indicator for female donors, which did not have enough 
representation in the registry to be effectively modelled. Such factors have been ignored from 
consideration for this analysis.  
 
For the specified 3-month period, NMDP facilitated a total of 2,138 donor searches. Among 
these (i) 1,439 searches had all their donor sections at the 10/10 level and (ii) 699 searches had at 
least 1 donor selected who was partially matched. For modeling case (i), we remove all partially 
(8/10, 9/10) matched donors since these were not considered during modelling. Donors who are 
at least 1% match at the 10/10 level are retained. In case (ii), we retain complete search results to 
model. These 2,138 donor searches resulted in a total of 8486 selections. That is an average of 4 
selections per recipient. After data pruning, we have 1.5 million donor-recipient pairs for case (i) 
with 689k unique donors and 0.9 million donor-recipient pairs for case (ii) with 863k unique 
donors in the entire set. The difference in number of unique donors for the two cases is due to the 
heavy tailed distributions in HLA alleles as observed in (Slater et al. 2015).  Two separate 
models are trained from these two sets of data. Table 2 has raw counts of chosen donors broken 
by key donor characteristics. This indicates selection preferences. For example, 61% of all 
chosen donors were male. We can also notice there is a definite preference for younger donors. 
60% of all chosen donors were younger than 32 years of age, and only 7% of chosen donors 
were older than 50 years. Similarly, preferences can be inferred from Donor-Recipient HLA 
match data. Race is usually considered a difficult feature to determine (Hollenbach et al. 2015).  
Self-identified race information is often incorrect and do not correspond with genetic 
measurements. Machine Learning models do not require users to explicitly define these 
relationships.  
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Table 2: Raw count of chosen donors by various donor characteristics. This gives some indication of what the 
preference is. We see younger and male donors are preferred . 

Donor Broad Race Groups 
  

Donor Gender 

AFA 499 
   

Female 3279 
API 534 

   
Male 5207 

CAU 4299 
     

DEC 26 
     

HIS 767 
   

Donor Age 

MLT 480 
   

<= 32 5155 
NAM 57 

   
[33-50] 2717 

OTH 21 
   

> 50 614 
UNK 1803 

     
       

Donor-Recipient HLA Match Count 
   

 
Mismatched Location 

   
 Total A B C DQB1 DRB1  

10 on 10 6410 - - - - -  

9 on 10 
 

2000 1108 458 90 136 208 ⇐ 1st Mismatch 

8 on 10 76 37 7 1 5 26 ⇐ 1st Mismatch 

  0 11 13 49 3 ⇐ 2nd Mismatch 

 

 
 
Donor selection indicator is used to identify which donor was chosen to be the best match for a 
patient. That is, using the physicians’ choice indicator donors in the set were labelled as chosen 
or not chosen. This labelling process allows us to formalize the learning problem under a binary 
classification setting (Cherkassky 2013). Binary classification is when data instances (donors, in 
our case) are to be classified into one of two groups (or classes). Characteristics as listed in Table 
1 are used to form a feature vector for each donor. A binary classifier is trained to identify a 
mathematical relation that will map donors to either of the two classes as above. A label (chose 
or not chosen) is then assigned to every donor based on their representative feature vector. 
Several models were trained and their accuracies were measured on an independent test set (out 
of sample data). SVMs were finally chosen based on their accuracy and computational run-time. 
For a thorough discussion on SVM please refer to (Burges 1998; Vapnik 2000; Cherkassky and 
Mulier 2007).  
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Figure 2: An illustrative example of a SVM hyperplane. Green circles form the +1 class and the red squares belong
to -1 class. The markers on each side with blackened boundaries are called Support Vectors. The blue triangle is a
new point that needs a class assignment. Based on its location with respect to the plane, it will be assigned to the +1
class. The margins on either side will be equidistant from the separating hyperplane. 

 
SVM is a very popular learning algorithm that has been used successfully for a variety of
applications, including biomedical studies. (Furey et al. 2000) shows use of SVM for classifying
cancer tissue samples from multiple microarray datasets. In  (Y.-D. Zhang et al. 2015) SVM is
used to predict recurrence of prostate cancer biochemical based on MR imaging and
clinicopathology datasets. (H. Zhang et al. 2012) uses SVM to identify genes to improve cancer
classification. (Verplancke et al. 2008) shows an application for SVM in hematological studies,
where the goal is to predict mortality in critically ill patients. In comparative studies SVM
performs as well or better than popular algorithms (Caruana and Niculescu-Mizil 2006). 
 
For our problem, we also have a heavily class-imbalanced dataset. A dataset is imbalanced when
number of samples in one class outnumber the number of instances in the other class. In our
dataset, for every donor that is chosen about 300 donors remain not chosen. Modelling this huge
discrepancy in classes poses challenges. Data classification techniques use a parameter called
misclassification costs that inform the classifier how one type of error is penalized over the other,
i.e., cost of making a false-positive versus cost of making a false-negative. These costs are
completely dependent on the application and are supplied to the learning algorithm apriori
(before modelling is performed). However, it is difficult to estimate the cost of making a mistake
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since we are dealing with patients’ care. We use ratio of classes as the misclassification cost. 
Data is separated into two sets: training set and testing set. Training data is used for model 
selection and test data is used for model evaluation. We use data from a total of 592 searches for 
model training. General experimental setup is as followed in (Sivasankaran et al. 2016), which 
has more detailed considerations of problem formalization, misclassification costs, multiple 
performance measurements, and model selection criteria used in this modelling effort. A number 
of publicly available packages have SVM implementation.  An R Package called ‘LiblineaR’ 
(Fan et al. 2008) was used. Further analysis shown in the following section is only based on out-
of-sample data (test data) from 1546 searches.  
 
 

III. Results and Discussion 
 
SVM classifiers are typically used to assign a predicted label to new data instances. Use of hard 
label assignment will lead to donors being labelled chosen or not chosen. The end goal of this 
modelling is to be able to suggest donors most likely to be asked to donate with a higher score. 
Hard label assignment will not help us with this goal. SVMs use something called projection 
distance to make the hard label assignments. These distances are assigned based on the distance 
between a data instance and the learned separating hyperplane as shown in Figure 2. This 
distance can be used to assign a real valued score to matched donors instead of class labels.  
 
To effectively assist the decision process, donors who are more likely to be chosen should be 
assigned a higher score than other donors in the list, i.e., donors with favorable secondary 
characteristics should receive higher scores than the donors with less favorable characteristics. 
The proposed SVM model is trained on past donor selections. Figure 3 shows the described 
sorting method for a hypothetical donor search. A list of HLA compatible donors as identified by 
the matching algorithm are assigned a score based on their secondary characteristics. This score 
is then used to sort the donors for the donor display system. This may help TCs to make 
decisions faster by quantitatively defining favorability of donors’ secondary characteristics. 
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Figure 3: Donor sorting based on SVM model. Once the donors are identified to be a match for a patient's HLA type
from the registry, the donor's secondary characteristics are fed to the trained SVM model to obtain a score for each
donor. The donors are then sorted in ascending order based on the score. 

 
Search Presentation: Using SVM projection distances, a graphical representation of the high
dimensional data can be produced using a novel technique called Histogram of Projections
(Cherkassky 2013) for each patient as shown in Figure 4. This representation provides the users
with an ability to view the multi-variate high dimensional donor data on a simple histogram. This
will help hugely narrow down the number of donors that need to be considered to make the
decision. Figure 4a and 4b show the histograms of projections for real patients with 415 and 456
matched donors respectively, that were not used for training the model. Using the histogram of
projections, can restrict the search size from the entire list to a handful of donors with positive
scores. In Figure 4a, a small portion of the donors have really high scores, indicating donors with
really favorable characteristics. In Figure 4b, donor scores are clustered, indicating donors have
similar secondary characteristics. Here too, search field can be limited only to donors with
positive scores. This representation can be easily integrated to the donor display system. Donors
with scores higher than +1 will have extremely favorable characteristics, and similarly, and
donors with scores less than -1 will have unfavorable characteristics. We notice that in most
searches only a small percentage of matched donors were assigned positive scores.  
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(a) 

 
(b) 
Figure 4: (a) Histogram of Projections for a search with 415 matched donors. A small portion of donors have a very 
high score. (b) histogram of Projections for a search with 456 donors, with a more clustered score.  
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After data cleaning as described in Section 2, the maximum number of matched donors for a 
search was 44,646. Looking for the best donor for this patient would have been extremely time 
consuming. Donor search experience can be improved using the modelled score. Figure 3 shows 
how SVM model can be used to sort donors. Matched donors are assigned a rank based on 
decreasing model score – donor with the highest score gets rank 1, donor with the second highest 
score gets rank 2, and so on. We analyze ranks of chosen donors (per patient) based on the 
proposed sorting method. Figure 5 has the cumulative distribution of the maximum rank 
(position of donors in the sorted list) of chosen donors. 75% of all the searches had all their 
chosen donors ranked within a position of 45.  
 

 

Figure 5: Cumulative distribution of highest rank of chosen donors. The graph is truncated on the x-axis for 
presentation. 

 
Transplant Center Monitoring: Donor selection requires dedicated staff with expertise and 
knowledge of selection protocols and is a time-consuming process. The current modelling effort 
provides a direct method to quantify the search efficiency. Model assigned scores can be used to 
analyze donor selection behavior of TCs and provide feedback when it is noticed suboptimal 
choices are made repeatedly. Figure 6 shows a hypothetical behaviour for two Transplant 
Centers. An optimal selection is when most of TC’s selected donors have a positive selection 
score. Not all selected donors will have a positive selection score. This happens when a choice 
has to made between donors with equally unfavorable secondary characteristics. Inconsistent 
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donor selection practice will also lead to donors with unfavorable secondary characteristics being
chosen over donors with more favorable characteristics. A similar density plot can be estimated
for donor selections made by each TC and analyze selection behaviour.  
 

Figure 6: Selection Score densities for Optimal and Not Optimal choices 

 
 

IV. Conclusion 
 
Donor searches are often performed when patients are under critical care. Having to choose
between identically matched donors can be a huge burden on physicians and search experts. We
have shown that use of Machine Learning can alleviate some of this pain and help make
decisions faster. The trained model provides a quantitative way to compare and choose donors
and the decision can be reduced to a single variable. This will help in making choices faster and
complete transplants quickly. Further analysis of variable weights has shown that they
correspond to how decisions are made in practice. Incorporating the model information into
donor display systems can help streamline the URD search process and improve efficiencies.
Time to transplant is an important concern for both TCs and Donor Registries (Dehn et al. 2016).
The proposed model promises to reduce time spent on reviewing search results to make the most
suitable choice. 
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