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Abstract—Breast cancer remains the most common type of

cancer and the leading cause of cancer-induced mortality among
women with 2.4 million new cases diagnosed and 523,000
deaths per year. Historically, a diagnosis has been initially
performed using clinical screening followed by histopathological
analysis. Automated classification of cancers using histopatho-
logical images is a chciteallenging task of accurate detection of
tumor sub-types. This process could be facilitated by machine
learning approaches, which may be more reliable and economical
compared to conventional methods.
To prove this principle, we applied fine-tuned pre-trained deep
neural networks. To test the approach we first classify different
cancer types using 6,402 tissue micro-arrays (TMAs) training
samples. Our framework accurately detected on average 99.8%
of the four cancer types including breast, bladder, lung and
lymphoma using the ResNet V1 50 pre-trained model. Then,
for classification of breast cancer sub-types this approach was
applied to 7,909 images from the BreakHis database. In the
next step, ResNet V1 152 classified benign and malignant breast
cancers with an accuracy of 98.7%. In addition, ResNet V1 50
and ResNet V1 152 categorized either benign- (adenosis, fibroade-
noma, phyllodes tumor, and tubular adenoma) or malignant-
(ductal carcinoma, lobular carcinoma, mucinous carcinoma, and
papillary carcinoma) sub-types with 94.8% and 96.4% accuracy,
respectively. The confusion matrices revealed high sensitivity val-
ues of 1,0.995 and 0.993 for cancer types, as well as malignant-
and benign sub-types respectively. The areas under the curve
(AUC) scores were 0.996,0.973 and 0.996 for cancer types,
malignant and benign sub-types, respectively. Overall, our results
show negligible false negative (on average 3.7 samples) and false
positive (on average 2 samples) results among different models.
Availability: Source codes, guidelines and data sets are temporar-
ily available on google drive upon request before moving to a
permanent GitHub repository.

I. INTRODUCTION

Recent global cancer statistics reported that breast cancer is
still the most common cancer type and the leading cause of
cancer-induced mortality among women, worldwide, with 2.4
million new cases and 523,000 deaths per year [19].
Histopathological classification of breast carcinoma is typi-
cally based on the diversity of the morphological features of

the tumors, comprising 20 major tumor types and 18 minor
sub-types ([37]]). Approximately 70-80 percent of all breast
cancers belongs to either one of the two major histopatho-
logical classes, namely invasive ductal carcinoma (IDC) or
invasive lobular carcinoma (ILC) ([39]], [57]]). The IDC class
is divided into five different carcinoma sub-types including
tubular, medullary, papillary, mucinous and cribriform carci-
nomas, while benign types of breast cancer contains adenosis,
fibroadenoma, phyllodes tumor and tubular adenoma. More
importantly, identification of minor tumor sub-types known as
special tumor types provides clinically useful information to
determine an effective therapy. For instance, accurate diagnosis
of tubular and cribriform breast carcinoma can lead to employ-
ment of an appropriate treatment and increased overall survival
rate. ([57]], [12]). A wide range of clinical studies reported
lack of complete overlap between immunohistochemically
and molecular classification of breast cancer ([6]). However,
in 2011 St Gallen International Expert Consensus validated
application of immunohistochemistry for identification breast
cancer sub-types ([20]]). Because of the extensive hetero-
genecity in breast cancer, and limited predictive power of the
histopathological classification, a comprehensive approach for
accurate evaluation of cell morphological features is highly
required.

To maximize knowledge of cancer detection and interpreta-
tion, pathologists have to study large numbers of tumor tissue
slides. Additionally, quantification of different parameters (e.g.
mitotic counts, surface area and cell size) and evaluation of im-
munohistochemical molecular markers can be complicated and
time consuming. Manual inspection methods introduce three
inevitable types of error including statistical, distributional and
human errors in low magnification images. These problems
adversely affect the accuracy of the differential classification
in conventional cancer diagnosis. Therefore, an automated and
reproducible methodology could tackle the aforementioned
obstacles more effectively.

Computer-aided diagnosis (CAD) established methods for
robust assessment of medical image-based examination. In
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this regard, image processing introduced a promising strategy
to facilitate tumor grading and staging, while diminishing
unnecessary expenses. Conventional image processing and
machine learning techniques require extensive pre-processing,
segmentation and manual extraction of specific visual features
before classification. However, deep learning approaches have
exceeded human performance in visual tasks by utilization of
automated hierarchical feature extraction and classification by
multi layers, which could be applied for cancer diagnosis using
tumor tissue slides.

The first application of the image processing on analytical
pathology for cancer detection was introduced by True et al.
([53]), and showed the implication of morphological features
in diagnostic methods for malignant tumors. They used a
series of morphological features including area fraction, shape,
size and object counting to detect cell abnormalities. A large
body of evidences has been published concerning cancer
detection using various image processing and machine learning
techniques ([18], [L1], [29], [56], [61], [45]). Application of
these methods is limited due to manual feature extraction of
the features. Deep learning approach offers an automated, ac-
curate and sensitive method to feature extraction from medical
images.

In this regard, the Neighboring Ensemble Predictor (NEP)
coupled with Constrained Convolutional Neural Network (SC-
CNN) could lead to nucleus detection in colon cancer ([45]).
Moreover, AggNet system which is a combination of CNN and
additional crowd-sourcing layer, successfully detected mitosis
in breast cancer images ([1]). In agreement with this, four
deep learning network architectures including Googl.eNet,
AlexNet, VGG16 deep network ([58]) and ConvNet with
3, 4, and 6 layers ([13l]) were recently applied to identify
breast cancer. The best example of using automated CAD
system is a study conducted by Esteva and colleague on
skin cancer detection using Inception V3, which was done to
classify malignancy status ([18]]). In addition to these, studies
such as ([8]], [34]], [2], [33]]) also showed that deep learning
techniques are continuously being applicable to image-based
medical diagnosis and improve the performance compared to
traditional machine learning techniques.

Despite improvements in images analysis and interpretation,
numerous questions related to the reliability and sensitivity
of appropriate pathological diagnosis systems particularly for
breast cancer classification remained to be answered. In partic-
ular, there were no significant, comprehensive and promising
solutions for discrimination of breast cancer sub-types.

This study presents deep learning Inception and ResNet ar-
chitectures to discriminate microscopic cancerous imaging. We
demonstrate a highly accurate automatic framework for cancer
detection and classification of its sub-types. Our framework
also employs additional techniques for data augmentation and
advanced pre-processing.

II. APPROACH

In this study, we developed and introduced an accurate
and reliable computer-based techniques empowered with deep
learning approaches to classify cancer types and breast cancer

2
TABLE I

NUMBER OF IMAGES IN EACH CLASS
Classes Sub-classes Training | Testing
Cancers breast (1,670), bladder (1,870), 5,502 900
(6,402) lymphoma (1,560), lung (1,302)
Breast cancer (7,909) benign (2480), (5,429) 7,100 809
Malignant ductal-carcinoma (3,451), lobular-carcinoma (626), 4,879 550
(5,429) mucinous-carcinoma (792), papillary-carcinoma (560)
Malignant ductal-carcinoma (3,451), lobular-carcinoma (1,881), 8,394 1,000
Augmented (9,394) mucinous-carcinoma (2,379), papillary-carcinoma (1,683)
Benign adenosis(444), fibroadenoma (1,014), 2,220 260
(2,480) phyllodes-tumor (453), tubular-adenoma (569)
Benign adenosis (1,335), fibroadenoma (3,045), 6,652 800
Augmented (7,452) phyllodes-tumor (1,362), tubular-adenoma (1,710)

sub-types from histopathological images derived from Hema-
toxylin and eosin stain (H&E) and Immunohistochemistry
(IHC) slides.

Our framework contains five steps: a) Image acquisition and
conversion to JPEG/RGB channels. b) Data augmentation (sec-
tion [[II-C)). ¢) Deep learning pre-processing (section [[II-D). d)
Transfer learning and fine-tuning pre-trained models (section
[T-E). e) Hierarchical feature extraction and classification with
Inception and ResNet networks (sections [[II-F). All steps have
been illustrated in figure

III. MATERIALS AND METHODS
A. Data-sets

Data-sets were collected from two sources of cancer types
and breast cancer sub-types including Tissue Micro Array
(TMA) database ([23]) and BreaKHis (The Breast Cancer
Histopathological Images) ([48]). 6,402 TMA histopathologi-
cal images were applied across lung, breast, lymphoma, and
bladder cancer tissues. BreaKHis 7,909 pathological breast
cancer images (2,480 benign and 5,429 malignant images, each
with different magnification of 40X, 100X, 200X, and 400X)
from 82 patients were selected for sub-types classification.
Our data-set contained four distinct histological sub-types
of benign breast tumors: adenosis, fibroadenoma, phyllodes
tumor, and tubular adenona; as well as four malignant tumors:
ductal carcinoma, lobular carcinoma, mucinous carcinoma
and papillary carcinoma (Table [). It should be note that
approximately 85% of available data were randomly chosen
to construct the learning set. The remaining 15% of the data
were used for performance evaluation.

B. Color-map Selection

In this work, we used RGB color-map to preserve tissue
structures and different features of histophatological images.

C. Data Augmentation

Data augmentation is essential step to have enough diverse
samples and learn a deep network from the images. Several
studies investigated the role of data augmentation in deep
learning ([44]], [S9], [16]]). We considered data augmentation
for breast cancer sub-types due to difference in the num-
ber of images among different sub-type classes. Technically,
data augmentation was accomplished on data acquired from
Augmentor Python library ([S] see supplementary material)
and included random resizing, rotating, cropping, and flipping
methods (Figure [2).
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Fig. 1. Study work-flow; Data gathering, Image capturing, and Deep learning approaches using per-trained models. Data gathering included captured image
from two individual TMA and BreakHis sources saved in JPEG format. Preprocessing is the next step followed by deep learning techniques to extract unique

presentation for each separated cancer input.

Flip

Resize

Fig. 2. Data augmentation techniques including rotating, cropping, flipping,
resizing. Augmentor ([3]) rotated input image into 90 and 270 degrees.
Then, image flipped top-bottom to right with 0.8 probability. Next image
was cropped with probability of 1 and percentage area of 0.5. Finally, input
image was resized with width=120 and height=120

D. Pre-Processing Steps

Color map selection and data augmentation were followed
by pre-processing steps as a preliminary recommended phase
to prepare data for further feature extraction and analysis.

Previous studies proposed different pre-processing methods
because of the nature of their data ([38]], [10], [33], [32], [31]]).
This work proposed a series of calculation, divided into five
steps. The first step focused on JPEG file decoder, followed by
TFRecord ([21]]) format conversion based on Protocol Buffers
(171, [22], [52])). In third step, TFRecords were normalized to
[0, 1]. Afterwards, whole image bounding box were re-sized to
299 x 299 x 3 or 224 x 224 x 3 according to the recommended
model image size for Inception and ResNet architectures ([50],
[49], [26]). Finally, as Inception and ResNet pre-processing,
input training images were randomly flipped left to right
horizontally and then cropped to create image summaries to
display the different transformations on images. In order to

improve power of learning and to make the network invariant
to aspects of the image that do not affect the label, color
distortion with permutation of four hue, brightness, saturation
and contrast adjustment operations were applied. On the other
hand, in the evaluation step, all images were normalized,
cropped and re-sized to specific height and width (Figure [3).

E. Transfer Learning

Transfer learning is defined as exporting knowledge from
previously learned source to a target task ([14], [62], [24],
[3]). Learning from clinical images from scratch is often
not the most practical strategy due to its computational cost,
convergence problem ([51]]), and insufficient number of high-
quality labeled samples. A growing body of experiments have
investigated pre-trained models in the presence of limited
learning samples ([63], [13], [43]).

Pre-trained ConvNets alongside fine-tuning and transfer
learning lead to faster convergence and outperform training
from scratch ([54], [51], [6Q]). Our target data-set (with 6402
cancer type and 7909 breast cancer sub-types histopathological
images) is obviously smaller than the used reference data-set
(ImageNet; training data with 1.2M ([53])).

Therefore, we initialized weight of different layers of our
proposed network by using ImageNet Inception and ResNet
pre-trained models. Then, we employed last layer fine-tuning
on cancer images data set. Therefore, the ImageNet pre-trained
weights were preserved while the last fully connected layer
was updated continuously. Since, the cancer data-sets analyzed
here are large and very different from ImageNet, the full layer
fine-tuning was applied to compare accurately classification of
cancers with the last layer fine tuning([33])) (Table S1)
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F. Inception and ResNet Architectures

Among various deep learning methods, we considered In-
ceptions and ResNet architectures. It is well understood that
Inception models migrated from fully- to sparsely-connected
architectures. In order to add more non-linearity capability,
Inception module technically included 1 x 1 factorized convo-
lutional neural networks followed by the rectified linear unit
(ReLU). Also, a 3 x 3 convolutional layer was employed. Aux-
iliary logits with a combination of average pool, convolutional
1 x 1, fully connected, and softmax activation was applied
to preserve the low-level detail features and tackle vanishing
gradient problem in last layers. ResNet permanently utilized
shortcut connections between shallow and deep networks to
control and adjust training error rate ([49]).

This study examined different frameworks of Inception (V1,
V2, V3, and V4) and ResNet (V1 50, V1 101, and V1
152) ([50], [49], [26]) on cancer digital images. Furthermore,
RMSProp adaptive learning rate ([27]], [42]]) was applied with
start- (0.001), decay- (0.9), and end-points (0.0001) settings.
Because of insufficient number of available histopathological
cancer images (section compared to numerous model
parameters (up to 5 million in Inception and 10 million in
ResNet), dropout regularization and batch normalization ([28]])
were applied with batch sizes of 32 in training and 100 in
evaluation steps.

G. Computerized System Configuration

Deep learning training with extreme number of network
parameters, computational tasks and large data-sets was sig-
nificantly accelerated by a single computing platform with
following specifications: model: HP DL380 G9, CPU: 2x ES5-
2690v4 (35 MB L3 Cache, 2.6 GHz, 14C), RAM: 64 GB (8
x8 GB) RAM DDR4 2133 MHz, HDD: 146 GB HDD 7.2k,
GPU: ASUS GeForce GTX 1080, 1733 MHz, 2560 CUDA
Cores, 8GB GDDRS with CentOS 7.2 64-bit operating system
and Python 3.5.3. In addition, The GPU-enabled version of
TensorFlow required CUDA 8.0 Toolkit and cuDNN v5.1
([36l, [21]). All GPU necessary settings and details were
obtained from TensorFlow and TFslim documentations and
NVIDIA GPUs support ([211])).

IV. RESULTS

The results were divided into following parts. a) Cancer
types classification. b) Cancers were categorized as malignant
and benign types. c) Malignant and benign samples were
classified into their related four sub-types (sub-section [[II-A).

Several standard performance terms such as true positive
(TP), false positive (FP), true negative (TN), false negative
(FN), accuracy (ACC), precision (P), AUC and sensitivity (S)
were isolated from the confusion matrix ([46]).

A. Classification of Cancer Types

A 4 x 4 confusion matrix was used to represent prediction
results of the set of four cancer pathological samples (sub-
section [[IIZA). The matrices were built on four rows and four
columns: breast, lung, bladder, and lymphoma representing the

TABLE II
FINE-TUNING THE LAST LAYER FOR DIFFERENT MODELS IN CANCER TYPE
CLASSIFICATION

Model name Epochs ACC | TP | TN | FP | FN P AUC S
Inception V1 3,000 0917 | 580 [ 252 | 14 54 10976 0.917 | 0914
Inception V2 3,000 0.848 | 516 [ 252 | 14 | 118 | 0.973 | 0.874 | 0.813
Inception V3 3,000 0.884 | 568 | 244 | 22 66 | 0962 | 0.869 | 0.895
Inception V4 3,000 0.871 | 542 [ 258 8 92 10985 [ 0.905 | 0.854
ResNet V1 50 3,000 0.993 | 630 [ 266 0 4 1 0.996 | 0.993
ResNet V1 101 3,000 0.995 | 625 | 272 1 1 0.998 | 0.994 | 0.998
ResNet V1 152 3,000 0.992 | 623 | 272 1 4 0.998 0.993 | 0.993
TABLE III
FINE-TUNING ALL LAYERS FOR DIFFERENT MODELS IN CANCER TYPE
CLASSIFICATION
Model name Epochs ACC | TP | TN | FP | FN P AUC S
Inception V1 2,000 0.793 | 531 | 254 1 114 | 0.998 0.91 0.823
Inception V1 3,000 0.971 | 624 | 258 8 10 0.987 0.98 0.984
Inception V2 2,000 0.86 621 [ 172 ] 100 7 0.861 0.753 | 0.988
Inception V2 3,000 0.935 | 630 | 232 | 34 4 0.948 0.972 | 0.993
Inception V3 2,000 0.65 628 17 | 255 0 0.7118 | 0.753 1
Inception V3 3,000 0.764 | 632 | 88 178 2 0.78 0.842 ] 0.996
Inception V4 2,000 0.851 | 618 | 172 | 94 16 0.867 0.86 0.974
Inception V4 3,000 0.877 | 633 | 159 | 108 0 0.854 0.855 1
ResNet V1 50 2,000 0.988 | 627 | 263 10 0 0.984 | 0.981 1
ResNet V1 50 3,000 0998 | 627 [ 272 1 0 0.998 0.996 1
ResNet V1 101 2,000 0.983 | 616 | 273 0 11 1 0.991 | 0.982
ResNet V1 101 3,000 0.996 | 626 | 273 0 1 1 0.999 | 0.998
ResNet V1 152 2,000 0.992 623 | 272 1 4 0.998 0.993 | 0.993
ResNet V1 152 3,000 0.996 626 | 273 0 1 1 0.999 | 0.998

known cancer classes. Statistical performance measurement
of each cancer type and different deep learning frameworks
(section were summarized in Tables [[ and The
result indicated that ResNet V1 50 and fine-tuning all layers
classified 99.8% of known cancer types. While this rate de-
creased to 99.6% for ResNet V1 101/152 fine-tuning all layers
with 3,000 epochs (Table . ResNet V1 101 with 3,000
epochs and fine-tuning last layer had an accuracy rate of 99.5%
(Table [ll). The ResNet models showed significantly increased
accuracy for four cancer type classification compared to the all
Inception structures, whereas Inception V1 with 3,000 epochs
and fine-tuning all layer showed 97.1% accuracy at best.
Additionally, there was an obvious difference in false positive
values between Inception structures and ResNets. Furthermore,
on average less false positive results were obtained by the
ResNet (0.3) in comparison to the Inception models (82)
with 3,000 epochs (Table [[lI). The Cohens unweighted kappa
coefficient statistic ([40]) of the Inception V1, V2, V3 and V4
fine-tuning all layers with 3,000 epochs were 0.94,0.94, 0.82
and 0.84 respectively,while those of the ResNet models were
above 0.97. The Inception networks were able to correctly
identify four types of cancer with an accuracy ranging between
76.4% and 97.1%, compared to the ResNet networks with
ranging between 98.3% and 99.8% (Table 3,000 epochs).

B. Malignant and Benign Breast Cancer

The breast cancer data (section and Table [[) were
categorized into malignant and benign groups. Using an 90%
training set and 10% test set,the ResNet V1 101 fine-tuning
all layers, correctly classified malignant and benign cancer
types with 98.4% confidence (Table . This performance
for ResNet V1 50 with fine-tuning all layers and ResNet V1
101 with fine-tuning the last layer decreased to 97.8% and
94.1% respectively (Tables S2 and [IV).

Inception V2 with fine-tuning all layers, indicated the
maximum accuracy (94.1%) among the Inception architectures
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Fig. 3. From top to bottom: histopathological images from four cancer types were used as input data. Preprocessing techniques were applied to extract precise
learned features. Accuracy of Inception V1 to V4 classification was presented as bar plots

TABLE IV
FINE-TUNING ALL LAYERS FOR DIFFERENT MODELS IN BREAST CANCER
CLASSIFICATION

Model name Epochs ACC | TP | TN FN P AUC S

Inception V1 3,000 0.936 | 553 | 290 48 | 0983 | 0.945 0.92
I ion V2 3,000 0.941 | 593 | 254 0.929 | 0.918 | 0.986
Inception V3 3,000 0.822 | 500 | 294 101 0.99 0.907 | 0.831
Inception V4 3,000 0.777 | 403 | 297 198 [ 0.995 [ 0.831 0.67

ResNet V1 50
ResNet V1 101
ResNet V1 152

3,000
3,000
3,000

0.978 | 591 | 290
0.984 | 594 | 292
0.987 [ 593 | 296

10 [ 0.985
7 0.988
8 0.994

0.976
0.982
0.988

0.983
0.988
0.986

0 R P P P P
o

(Table [IV). Moreover, the results showed on average less false
positive in the ResNet (6.3) compared to the Inception models
(15.25) (Table [IV).

C. Breast Cancer Sub-types Classification

In order to create a framework for approval classification
capability, we considered wide varieties of similar and com-
plex histopathological images related to different sub-types of
breast cancer. Since the benign and malignant groups were
well separated from each other (section m), further, we
assessed pre-trained Inception and ResNet models to classify
benign and malignant related sub-types. According to our
results, the accuracy of analysis for benign sub-types resulted
to classification of adenosis, fibroadenoma, phyllodes-tumor,
and tubular-adenoma (Tables S3 and [V).

In case of malignant classification, accuracy analysis for
associated sub-types (on test sets) resulted in 96.4%, and
94.6% for ResNet V1 152 and ResNet V1 50 with fine-tuning
all layers respectively (Table [VII). Moreover, an accuracy rate
of 90% for ResNet V1 152 with fine-tuning the last layer is
also acceptable (Table [VI).

As represented in (Table [VII), the ResNet networks output
illustrated significantly higher level of accuracy than other
Inception structures in which Inception V1 with 3,000 epochs
and fine-tuning all layers showed 86.6% marked as less
accurate method in terms of malignant cancer sub-types classi-
fication. Additionally, there has been an obvious difference in
false positive values between Inception structures and ResNets
with average of 0.75 and 0.33, respectively (Table [VII).

A 4 x 4 confusion matrix was used to represent differ-
ent possibilities of the set of instances. The matrices repre-
sented distribution of the ductal-carcinoma, lobular-carcinoma,
mucinous-carcinoma, papillary-carcinoma in different classes.
It was well evidenced that increases in the number of epochs
could improve the accuracy of classification. Our findings
(Tables [V] and [VII) suggest that ResNet with higher epochs
was highly accurate (for example; 96.5% and 98.5% ResNet
101 with 6,000 epochs) for classification of specific sub-types
of breast cancer (Figure [).

TABLE V
FINE-TUNING ALL LAYERS FOR DIFFERENT MODELS IN AUGMENTED
BENIGN DATA.

Model name
Inception V1
Inception V2

Epochs ACC | TP | TN | FP | FN P AUC S
3,000 0.696 | 660 | 88 48 4 0.932 | 0.779 | 0.993
3,000 0.723 | 660 | 95 41 4 0.941 | 0.875 | 0.993

Inception V3 3,000 0.512 638 44 92 26 0.873 0.629 0.96
Inception V4 3,000 0.54 651 53 83 13 0.886 0.404 0.98
ResNet VI 50 3,000 0.948 | 661 | 132 [ 4 3 0.993 [ 0973 | 0.995
ResNet V1 101 3,000 0.933 | 658 | 132 4 6 0.993 | 0.971 0.99
ResNet V1 152 3,000 0.945 662 | 129 7 2 0.989 0.98 | 0.996
ResNet V1 101 6,000 0.965 | 659 [ 134 [ 2 5 0.996 | 0.992 | 0.992
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Fig. 4. From top to bottom: histopathological images from four cancer types were used as input data. Preprocessing techniques were applied to extract precise
learned features. Accuracy of Inception V1 to V4 classification was presented as bar plots

TABLE VI
FINE-TUNING THE LAST LAYER FOR DIFFERENT MODELS IN AUGMENTED
MALIGNANT DATA

Model name Epochs ACC | TP | TN | FP | FN P AUC S

Inception V1 3,000 0.794 | 631 | 366 1 2 0.998 | 0.997 | 0.996
Inception V2 3,000 0.647 | 456 | 366 1 177 | 0997 | 0.857 0.72
Inception V3 3,000 0.74 632 | 365 2 1 0.996 | 0.995 | 0.998
Inception V4 3,000 0.745 | 624 | 362 5 9 0.992 | 0981 | 0.985
ResNet V1 50 3,000 0.893 | 632 | 367 0 18 1 0.999 | 0.998
ResNet V1 101 3,000 0.872 | 630 | 367 0 3 1 0.997 | 0.995
ResNet V1 152 3,000 0.9 627 | 367 1 5 0.998 0.995 | 0.992

TABLE VII
FINE-TUNING ALL LAYERS FOR DIFFERENT MODELS IN AUGMENTED
MALIGNANT DATA

Model name Epochs ACC | TP | TN | FP | FN P AUC S
Inception V1 3,000 0.866 | 631 [ 368 0 1 1 0.999 | 0.998
Inception V2 3,000 0.565 | 283 [ 366 1 350 | 0.996 | 0.721 | 0.447
Inception V3 3,000 0.739 | 633 | 367 0 0 1 1 1
Inception V4 3,000 0.799 | 634 | 364 2 0 0.996 | 0.999 1
ResNet V1 50 3,000 0.946 | 624 | 367 1 8 0.998 | 0.993 | 0.987
ResNet V1 101 3,000 0.844 | 529 | 367 0 104 1 0.917 | 0.835
ResNet V1 152 3,000 0.964 629 | 367 0 4 1 0.996 | 0.993
ResNet V1 101 6,000 0.985 | 633 [ 367 0 0 1 1 1

V. DISCUSSION

Breast cancer multi-classification aim to identify sub-classes
of breast cancer (adenosis, fibroadenoma, phyllodes tumor,
tubular adenoma, ductal carcinoma, lobular carcinoma, mu-
cinous carcinoma, and papillary carcinoma) among samples
found in broad variability of resolution image appearances,
high coherency of cancerous cells, and extensive inhomogene-
ity of color distribution. This work examined data gathered
from TMA and BreaKHis data-sets (see section[[II) to classify
cancer types and breast sub-types. Previous studies ([30], [47],
[48]) focused on binary benign-malignant classification and
did not perform further quantitative assessment. In this work,
we introduced automated breast cancer multi-classification
methods. We suggested a generic CAD framework based on
deep networks for learning histopathology images to avoid
hand-crafted pathological features. In this study, we compared

the performance of Inception and ResNet deep learning models
using transfer learning strategy on several large image data-
sets. We found that deep ResNet models were more sensitive
and reliable than Inception in all tested cancer data-sets.
We combined different magnification including 40X, 100X,
200X and 400X to generate comprehensive, independent and
scalable system while a large number of previous studies
employed single magnification level ([7], [30]). Several other
studies ([7], (23], [48]], [4]) also investigated multiple mag-
nifications of medical images. However, these approaches
examined different classifiers for each magnification level and
also had medical laboratory limitations to capture required
multiple magnification to gather image training samples.

In recent comparative studies, ([48], [30], [7]), conven-
tional machine learning (SVM, KNN, QDA, ASSVM, SSVM-
SCAD, etc) along with hand-crafted feature extraction were
used. The results were evaluated at various magnifications
(i.e. 40X, 100X, 200X and 400X). To data, the benign and
malignant classification had significantly high accuracy rates
ranging from 90 to 93%. In addition, to classify benign and
malignant, AlexNet deep learning approach with numerous
learning parameters resulted in an accuracy rate of 90% ([47]).
Moreover, Han and colleagues (Han et al., 2017), reported a
deep learning-based multi classification of breast cancer with
an average accuracy rate of the 93.2%.

In conclusion, the  ResNet  frameworks with
99.8%, 98.7%, 94.8%, and 96.4% accuracy for four cancer
types, two main breast cancer types, benign and malignant
related sub-types and trivial false positive average values
(0.3 out of 900 for four cancer types, 6.3 out of 809 for
all breast cancer, 5 out of 800 for benign and 0.3 out of
1000 for malignant) were able to examine histopathological
images obtained by different imaging devices with different
magnification levels. This multi-classification system relieves
the pathologists and medical experts workloads regarding
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to analyze and interpretation of the histopathological slides
for assisting the doctors to choose more efficient therapeutic
approaches.

VI. CONCLUSION AND FUTURE WORK

Using deep learning ResNet approach with specific settings
for cancer detection is an effective and reliable strategy com-
pared to the conventional approaches. This work concentrated
on the application of the proposed frameworks to cancer sub-
types detection. In this research, various Inception and ResNet
deep learning classifications are presented and the use of these
theories is outlined. The findings are expected to be more
comprehensively evaluated and discussed by future works
considering different deep learning semantic segmentation
algorithms (i.e., U-net: convolutional networks for biomedical
image segmentation ([41]) and DeepLab v3 ([9])). The em-
pirical findings of this study provided a better understanding
of deep learning in medical applications. The framework
principals could extend in the field of pathological analysis
and computer-assisted diagnosis using medical images.
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