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Phasic dopamine release from mid-brain dopaminergic neurons signals errors of reward prediction 10 

(RPE). If reward maximisation is to maintain homeostasis, then the value of primary rewards should 11 

be coupled to the homeostatic errors they remediate. This leads to the prediction that RPE signals 12 

should be configured as a function of homeostatic state and thus, diminish with the attenuation of 13 

homeostatic error. To test this hypothesis, we collected a large volume of functional MRI data from 14 

five human volunteers on four separate days. After fasting for 12 hours, subjects consumed preloads 15 

that differed in glucose concentration. Participants then underwent a Pavlovian cue-conditioning 16 

paradigm in which the colour of a fixation-cross was stochastically associated with the delivery of 17 

water or glucose via a gustometer. This design afforded computation of RPE separately for better- and 18 

worse-than expected outcomes during ascending and descending trajectories of physiological serum 19 

glucose fluctuations. In the parabrachial nuclei, variations in regional activity coding positive RPEs 20 

scaled positively with serum glucose for ascending and descending glucose levels. The ventral 21 

tegmental area and substantia nigra became more sensitive to negative RPEs when glucose levels 22 

were ascending.  Together, the results show that RPE signals in key brainstem structures are 23 

modulated by homeostatic trajectories of naturally occurring glycemic flux, revealing a tight interplay 24 

between homeostatic state and the neural encoding of primary reward in the human brain. 25 

 26 
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 28 

 29 

Introduction 30 

A basic assumption of many models of adaptive behavior, is that the value of primary rewards are 31 

modulated by their capacity to rectify future homeostatic deficits (Pompilio et al. 2006; Cabanac 1971). 32 

Compatible with this notion, deprivation-induced hypoglycaemia increases willingness to work for food 33 

in rats (Sclafani et al. 1970), in humans (Pelchat 2009), as well as the subjectively reported pleasure 34 

(Cabanac 1971). Catecholamine dopamine is a neurotransmitter that plays a key role in signalling 35 

reward (Haber & Knutson 2010) and is involved in behavioural reinforcement, learning and motivation 36 

(Berridge 2006; Schultz et al. 1997). Via meso-cortical and mesolimbic dopaminergic projections, 37 

synaptic dopamine release modulates the plasticity of cortico-striatal networks and hereby sculpts 38 

behavioural policies according to their reward contingencies (Haber & Knutson 2010; Schultz 2015). 39 

Patterns of phasic dopaminergic firing have been demonstrated to follow closely the principles of 40 

reinforcement learning, encoding the errors in the prediction of reward (O'Doherty et al. 2004; Schultz 41 

et al. 1997; Rangel et al. 2008; Tobler et al. 2005).  Reward prediction error (RPE) signals are 42 

commensurate with the economic construct of marginal utility, defined as the additional utility obtained 43 

through additional units of consumption, where utility is a subjective value inferred from choice 44 

(Stauffer et al. 2014; Schultz 2005; Schultz 2015).  45 

Although animals are motivated by a homeostatic deficit of thirst or hunger, homeostatic states are 46 

rarely considered as relevant modulators of dopaminergic signalling of reward prediction errors. In 47 

typical paradigms involving cumulative consumption, the homeostatic deficit gradually diminishes as the 48 

animal plays for consumption of water or sugar-containing juice.  Eventually, the animal rejects further 49 

play, presumably because the marginal utility of consumption diminished to a point of indifference. 50 

Interestingly, a recent electrophysiology study in rats, demonstrated that oral consumption of sodium 51 

solution causes phasic dopaminergic signals in the nucleus accumbens, that are modulated by sodium 52 

depletion (J. J. Cone et al. 2016).  53 
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There is now growing evidence for a multifaceted interface between dopamine mediated reward-54 

signalling and the systems underpinning energy homeostasis. Firstly, dopamine neurons in the ventral 55 

tegmental area (VTA) express a suite of receptors targeted by energy-reporting hormones ghrelin, 56 

insulin, amylin, leptin and Glucagon Like Peptide 1 (GLP-1, Ferrario et al. 2016; Palmiter 2007). This 57 

provides numerous degrees of freedom for flexibly interfacing between homeostatic state and reward 58 

signalling. Although hormonal modulations of phasic dopamine are yet to be fully scrutinised, there is 59 

emerging evidence that circulating factors do indeed modulate its magnitude. For instance, amylin, a 60 

hormone co-released with insulin, acts on the VTA to reduce phasic dopamine release in its mesolimbic 61 

projection sites (Mietlicki-Baase et al. 2015). In terms of neuronal input, there are many such 62 

opportunities for the appetitive control of dopamine mediated signalling.  63 

Appetitive control can be delineated into three interacting valuation systems (Sternson & Eiselt 2017). 64 

The first system generates a negative valence signal which involves activity of the Agouti-related peptide 65 

(AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC). Activity of ARCAgRP neurons reports 66 

on energy deficits, inhibits energy expenditure, and regulates glucose metabolism (e.g. Aponte et al. 67 

2011; Dietrich et al. 2015; Luquet et al. 2005; Cansell et al. 2012). ARC neurons that contain peptide 68 

products of pro-opiomelanocortin (POMC) form an opponent code compared with ARCAgRP neurons. The 69 

balance between the two neuronal ARC sub-populations putatively encodes the value of near-term 70 

energetic states, becoming rapidly modulated just prior to food consumption (Mandelblat-Cerf et al. 71 

2015). The second system codes positive valence signals and consists of circuits involving the lateral 72 

hypothalamus (LH). It is linked to positively reinforcing consummatory behaviours via its dopaminergic 73 

projections, assumed to trigger positive feedback to keep consumption going during feeding bouts. The 74 

third valuation system involves calcitonin gene-related protein (CGRP)-expressing neurons in the (PBN) 75 

that potently suppress eating when activated, but do not increase food intake when inhibited. PBNCGRP 76 

neurons are activated by signals associated with food intake, and they provide a signal of satiety that 77 

has negative valence when strongly activated (Campos et al. 2016). The PBN has been characterised as a 78 

hedonic hotspot, the modulation of which by either GABA or Benzodiazepines potently modulates 79 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 4, 2018. ; https://doi.org/10.1101/243006doi: bioRxiv preprint 

https://doi.org/10.1101/243006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

experienced reward (Söderpalm & Berridge 2000); ARCAgRP neurons GABA-ergically inhibit PBN neurons, 80 

thus stimuli predicting glucose consumption should inhibit ARCAgRP, releasing the PBN from inhibition 81 

(Qunli Wu et al. 2014). Further, hormones related to hunger and feeding (GLP-1 & leptin) modulate PBN 82 

activity and subsequent behaviour (e.g. Alhadeff, Baird, et al. 2014; Alhadeff, Hayes, et al. 2015). Of 83 

note, these three valuation systems all project to and modulate the dopaminergic neurons in the ventral 84 

tegmental area(VTADA). The interface between these hypothalamic-brainstem networks and the VTADA, 85 

is arguably the most important interface for mediating the dialogue between energy homeostasis and 86 

value computation.  87 

While most evidence for encoding of RPEs is obtained under homeostatic deprivation, the modulation of 88 

RPE signalling triggered by physiological fluctuations in glucose availability (glycemic flux) remains yet to 89 

be characterised in the human brain. This begs the questions, how are RPE signals modulated by these 90 

subcortical circuits that integrate, evaluate, and predict energy-homeostatic states? We hypothesize 91 

that glucose fluctuations above and below average levels of serum glucose, will down and up modulate 92 

RPE responses in regions of interest. To test these hypotheses, we acquired a large volume of fMRI data 93 

in five participants during a simple Pavlovian cue-conditioning task, while their serum glucose was 94 

systematically manipulated. 95 

  96 
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 97 

Methods 98 

Subjects. Five healthy, normal-weight subjects in the age range 23 to 29, participated in the study. 99 

Exclusion criteria were: 20 > BMI > 25; 18 > Age > 32 yrs; any metabolic or endocrine diseases or 100 

gastrointestinal disorder; any known medication that might interfere with the study; claustrophobia; 101 

and any metal implants or devices that could not be removed. Informed consent was obtained from all 102 

subjects as approved by the Regional Ethics Committee of Region Hovedstaden (protocol H-4-2013-100) 103 

and in accordance with the declaration of Helsinki.  104 

Experimental procedure. The experimental design constituted a single-blinded, randomised control trial, 105 

with repeated measures crossover-design. On four separate days, subjects fasted for a minimum of ten 106 

hours before testing. At the beginning of an experimental session, subjects ingested either a hi-glucose 107 

(75 g, 300 kcal) or lo-glucose preload (10 g, 40 kcal) diluted to 100 ml with a 0-kcal lemon juice masking 108 

the taste of the glucose. Both preloads were anecdotally reported by independent samplers to be highly 109 

palatable.  110 

Experimental task. After consuming the preload, participants engaged in a simple pavlovian cue-111 

conditioning task. The colour of the fixation cross cued both the onset of each trial (Cueonset), as well as 112 

stochastically predicting glucose delivery (Fig. 1a), with one colour signalling a high probability of 113 

glucose delivery (Cuehigh), and another signalling a low probability (Cuelow). 10-15 seconds after delivery 114 

of oral stimulus, a purple cross signalled that subjects were allowed to swallow. All probabilities and 115 

contingencies were implicitly revealed only through experience in the scanner, and all were stationary 116 

over all test days. The mapping between colour and outcome probabilities was counterbalanced across 117 

subjects, while mapping was stationary within and between sessions. Participants went through ~82 118 

trials [82 ± 1.5 SEM] each day giving ~328 trials per subject. Serum glucose measurements were attained 119 

immediately before and 20 minutes after ingestion, using a Contour® Next glucose meter (Fig. 1b). As 120 

expected, prior to ingestion (t0) there was no significant difference between hi- or lo-glucose days [4.6 ± 121 
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0.4 SEM], whereas twenty minutes after ingestion (t20) there was [lo-glucose mean = 4.8, hi-glucose 122 

mean = 6.9]. 123 

Scanning procedure.  Task related changes in regional brain activity were mapped with blood oxygen 124 

dependent (BOLD) MRI immediately after the second glucose measurement (t20). Functional MRI 125 

measurements were performed with a 3T Philips Achieva and a 32 channel receive head coil using a 126 

gradient echo T2* weighted echo-planar image (EPI) sequence with a repetition time of 2526 ms, and a 127 

flip-angle of 80°. Each volume consisted of 40 axial slices of 3 mm thickness and 3 mm in-plane 128 

resolution (220 x 220 mm). The axial field-of-view was 120 mm covering the whole brain, cutting off the 129 

medulla oblongata partially. During each session, 800 EPI volumes were acquired, resulting in 3200 EPI 130 

volumes per subject. Further, an anatomical T1-weighted image was recorded for each subject. 131 

Respiration and heart rate were measured to assess and model possible artefacts. Liquid tastants were 132 

contained in two 50 ml syringes, one containing water-only (water hence) the other containing glucose 133 

and water (glucose hence) solutions, attached to two programmable syringe pumps (AL1000-220, World 134 

Precision Instruments Ltd, Stevenage, UK), controlled by the stimulus paradigm script. The liquid was 135 

delivered orally via two separate 5m long 3mm wide silicone tubes. Each tube was attached to a 136 

gustatory manifold specifically built for the Philips head-coil (John B. Pierce Laboratory, Yale University). 137 

Visual stimuli were presented on a screen positioned 30 cm away from the scanner.  138 

Pre-processing. Pre-processing and image analysis were done using SPM12 software (Statistical 139 

Parametric Mapping, Wellcome Department of Imaging Neuroscience, Institute of Neurology, London, 140 

UK). To correct for motion, EPI scans were realigned to their mean using a two-step procedure and co-141 

registered to the T1 weighted anatomical image through a unified segmentation procedure (Ashburner 142 

& Friston 2005). The realigned images were spatially normalised to the standard ICBM space template of 143 

European brains (Mazziotta et al. 1995), with a resampled voxel size of 3 mm. 144 

Modelling RPEs. At the first level, a general linear model (GLM) was set up to model cue and outcome 145 

related brain activity. We specified separate regressors which modelled the onset of Cueonset, Cuehigh and 146 

Cuelow as well as outcome onsets for Outcomegluc & Outcomewater. Fig. 2a illustrates how the expectation 147 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 4, 2018. ; https://doi.org/10.1101/243006doi: bioRxiv preprint 

https://doi.org/10.1101/243006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

value of glucose volume delivered evolves over time as a function of the cues observed. We specified 148 

RPE contrasts which were formulated by linear combinations of regressors, weighted as a function of 149 

the RPE values from the temporal-difference learning algorithm (Sutton & Barto 1998). As subjects learn 150 

the contingencies between visual stimuli (colour crosses) and outcome (juice or water) the RPE converge 151 

to the expected (average) value of the glucose content. This is conditioned on the cues that have been 152 

experienced and is illustrated in Fig. 2b. In this paradigm, there was no behaviour to fit a learning rate 153 

parameter to, so the steady-state values of the RPE was used instead. In effect, this assumes that the 154 

subjects learned the contingencies from the beginning. The effect of serum glucose on RPE was 155 

modelled by multiplying the resulting RPE by subject specific demeaned serum glucose (state hence), 156 

linearly interpolated between out-of-scan measurements. We specified the following contrasts of 157 

interest: RPEpos , RPEneg with their state-weighted counterparts RPEpos*state , RPEneg*state computed as first 158 

order parametric modulators.  159 

fMRI analysis. After model specification, the sessions were concatenated using the function 160 

spm_fmri_concatenation (SPM 12) for each subject and a standard first-level fixed effects models was 161 

run over all subjects. All variables of interest were convolved with the canonical hemodynamic response 162 

function and fitted to the data using the specified GLM. The temporal evolution of cues and outcomes 163 

were modelled as separate conditions, each with state as parametric modulators. Regressors of no 164 

interest included a discrete cosine transform based 1/128 Hz cut-off frequency high-pass filter, rigid 165 

body realignment parameters using a 24 parameter Volterra expansion (Friston et al. 1996) and 166 

physiological noise from heart rate and respiration using the RETROICOR method {Glover:2000wy}. We 167 

specified the striatum (caudate, putamen and nucleus accumbens), brainstem (pons, ventral tegmental 168 

area and substantia nigra) and hypothalamus as Regions of interest (ROI). These ROIs were determined 169 

on basis of the literature describing dopamine projections from midbrain to the striatum and its role in 170 

regulating behaviour as a function of reward. The pons was selected to accommodate the literature 171 

described above, which sets certain nuclei within the pons as important homeostatic modulators. All 172 

ROI were defined with the WFU pick atlas (Lancaster et al. 2000; Lancaster et al. 1997). All initial first-173 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 4, 2018. ; https://doi.org/10.1101/243006doi: bioRxiv preprint 

https://doi.org/10.1101/243006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

level analysis was performed as whole-brain uncorrected at p < 0.001. Significant clusters in regions of 174 

interest (ROI) are all reported as small-volume corrected with a family-wise threshold of p < 0.05 at 175 

cluster level (abbreviated SVC FWE), unless otherwise stated.  176 

177 
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Results  178 

Cue induced brain activity. The “trial onset” cue signalled the expected value of glucose reward for the 179 

whole trial (Stauffer et al. 2014) and triggered an increase in  activity in VTA bilaterally  (Fig. 3a). Cue-180 

induced VTA activation is consistent with existing evidence of VTA signalling RPE (e.g. D'Ardenne et al. 181 

2008; Page et al. 2011; Eshel et al. 2016). The onset cue also led to deactivation of postcentral gyrus 182 

(primary somatosensory cortex), mediodorsal thalamus, and likewise in the striatum [whole brain, 183 

uncorrected p < 0.001] (not shown). In several brain regions, regional task-related activity changed in 184 

proportion with the magnitude of positive-going  (i.e. better-than-expected) RPEs or negative-going (i.e. 185 

worse-than-expected) RPEs. Task related activity scaling with the RPEpos , formalized as an RPE-weighted 186 

linear combination of Cuetrial, Cuehigh, and Outcomegluc, was found in left lateral caudate nucleus  (Fig. 187 

3b). Conversely, task related activity reflecting RPEneg, formalized an RPE-weighted linear combination of 188 

Cuelow and Outcomewater, was located in the caudate nucleus bilaterally Fig. 3c), the medial dorsal 189 

thalamic nucleus, and insula.   190 

Modulation of task-related brain activity by homeostatic glycemic state.  We were interested to 191 

identify changes in RPE processing over time as serum glucose either ascended or descended. A bilateral 192 

cluster, including the parabrachial nuclei (PBN), showed a modulation of the regional neural responses 193 

to positive RPEs by the glycemic state dynamics (Fig 4a).  Higher levels of serum glucose amplified the 194 

response to RPEpos in the PBN region (Fig. 4b).  The main effect of RPEneg*state, which models the 195 

interaction between RPEneg and state, did not yield any significant results in any ROI, or in exploratory 196 

analyses using uncorrected thresholds, in positive or negative contrasts. When considering both 197 

ascending and descending serum glucose fluctuations together, there was no detectable region where 198 

the RPEneg signal was either positively or negatively modulated by serum glucose. Brain responses to the 199 

“onset cue” were also not altered by glycemic state dynamics. 200 

We also tested for state-dependent modulatory effects on RPE processing which depends on whether 201 

serum glucose was ascending (Fig. 1b, left) or descending (Fig. 1b, right) over time. This yields four 202 

different contrasts (ascending vs. descending over RPEpos*state and RPEpos*state) that are directly relevant 203 
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to glucose state. Subtracting descending trajectories from ascending and vice versa, revealed no 204 

significant activity changes for RPEpos*state [whole brain, uncorrected]. The same comparisons for 205 

RPEneg*state did reveal significant effects in VTA and substantia nigra for ascending trajectories relative to 206 

descending trajectories (Fig. 5a). This result shows a relative amplification of the RPEneg*state signal as 207 

glucose state increases.  In instances where reward was lower-than-expected (thus yielding negative 208 

RPE), the glucose state modulated the RPEneg signal in VTA and SN more so when glucose levels were 209 

ascending than descending.  210 

211 
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Discussion 212 

 We studied five individuals repeatedly with fMRI under increasing or decreasing levels of glucose, while 213 

participants performed a simple cue-conditioning task involving the probabilistic delivery of glucose or 214 

water in a single trial. Reward prediction error signalling in the parabrachial nuclei scaled positively with 215 

serum glucose levels during ascending and descending glycemic trajectories. The VTA and SN became 216 

more sensitive to negative RPEs for ascending compared to descending glycemic trajectories. We begin 217 

by discussing the interpretation of these state-modulated RPE effects, before considering other effects, 218 

and the limitations inherent under this paradigm.  219 

In rodent models, the PBN acts as a 2nd order relay of inputs from the nucleus tractus solitarius, and is 220 

critical in the control of energy homeostasis via its projections to amygdala (Norgren 1978; Loewy 1998), 221 

VTA (Miller et al. 2011), hypothalamus (Norgren 1976; Loewy 1998) and the nucleus accumbens (Li et al. 222 

2012). Subnuclei of the PBN are targeted by descending projections from several nuclei implicated in 223 

energy homeostasis, including hypothalamus, amygdala, and the bed nucleus of the stria terminalis 224 

(Zhang et al. 2011; Loewy 1998). The PBN is known to be a potent site of reward modulation and 225 

subsequent behaviour in rodents.  Microinjection of benzodiazepines (Söderpalm & Berridge 2000; Qi 226 

Wu et al. 2009; De Oliveira et al. 2011), endocannabinoids (DiPatrizio & Simansky 2008), opioids (Wilson 227 

et al. 2003; Chaijale et al. 2013) and melanocortin agonists (Skibicka & Grill 2009) into the PBN, all evoke 228 

hyperphagia s.  To the best of our knowledge, the involvement of PBN in context of hedonics and 229 

reward signalling in the human brain remains yet to be charted. Here we provide novel evidence that 230 

PBN activity generates a gluco-sensory scaled positive RPE signal which is time-locked to both the 231 

sensory cues predicting glucose, as well as glucose outcomes. 232 

Unlike the state modulation of serum glucose trajectories on the RPEpos signal, we found no general 233 

state modulation of RPEneg signalling, expressed during ascending and descending glycemic trajectories. 234 

Here the modulatory effect of the glycemic trajectory depended on whether glucose trajectories were 235 

ascending or descending.  Regional activity scaling with RPEneg, the VTA and SN showed significantly 236 

higher state modulation effects during ascending vs. descending glycemic paths. In our experiment, the 237 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 4, 2018. ; https://doi.org/10.1101/243006doi: bioRxiv preprint 

https://doi.org/10.1101/243006
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

ascending glucose trajectory resulted from a low-glucose preload with the subsequent increase over 238 

time likely occurring by virtue of the continual ingestion of glucose throughout the paradigm (Fig. 1b). In 239 

the ascending condition, the neural response to RPEneg is attenuated at lower levels of serum glucose, 240 

while it becomes amplified by the transition to higher serum glucose. Given that dopaminergic neurons 241 

of the VTA and SN are directly inhibited by insulin (Palmiter 2007), it is likely that the insulin release 242 

following hi-glucose preload was highest at the start of the paradigm, decreasing over time, and thus 243 

resulting in a gradual decrease in inhibition. The difference in RPEneg in its state modulation between 244 

ascending and descending may therefore be attributed to differential dynamics of insulin secretion (see 245 

(Sun et al. 2014), though other hormones such as ghrelin (Malik et al. 2008; Kroemer et al. 2013; Sun et 246 

al. 2014) or leptin (Domingos et al. 2011; Figlewicz et al. 2003; Fulton 2000; Alhadeff, Hayes, et al. 2014; 247 

Takahashi & R. D. Cone 2005) may play a role. 248 

Our finding that the VTA and SN responses are linked to RPEneg may appear counterintuitive, given that 249 

these midbrain regions are typically associated with BOLD responses signalling positive-going RPEs. This 250 

is assumed to be by virtue of the fact that a greater range of firing rates can be devoted to the better-251 

than-expected range, signalled by above baseline firing. This is contrasted to the worse-than-expected 252 

range, which can only be signalled by a decrease from an already low baseline frequency. It is 253 

conceivable that what we are asserting as being RPEneg  is in fact a positive RPE resulting from the 254 

gradual avoidance of glucose, which increases in magnitude with increasing levels of serum glucose as 255 

reported in humans (Cabanac 1971) and rats (Berridge 1991). Thus, as the experimental paradigm 256 

continues, especially under the conditions of glucose preload, serum glucose increases, and this may 257 

change the valence of the outcome, switching the affective connotation of glucose from palatable to 258 

aversive. 259 

As detailed in the introduction, little is known about the principles how the interface between 260 

dopaminergic RPE signalling and energy homeostasis is implemented in the human brain. While there 261 

are many means by which circulating factors can modulate activity in the VTA and SN, the mechanisms 262 

by which this is mediated cannot be revealed without wider hormonal assays. Contemporaneous 263 
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hormonal sampling, as well as continuous glucose monitoring in the scanner will prove an important 264 

step in revealing these hidden mediating factors.  265 

From a theoretical perspective, results as presented here could be predicted by any model that invokes 266 

the notion of RPEs in service of homeostatic regulation. For example, models inspired by optimal control 267 

theory such as Homeostatic Reinforcement Learning ((Keramati & Gutkin 2014) or MOTIVATOR theory 268 

(Dranias et al. 2008). Alternatively, under the theory of Active Inference, phasic dopamine is recast as 269 

encoding updates to the precision assigned to the behavioral policies that lead to desired outcomes, 270 

that (in this context) remediate long-run homeostatic error (Schwartenbeck et al. 2015). 271 

There are several technical limitations that should be noted in discussing this experiment. Though 272 

relatively high volumes of functional data (150 minutes per subject) were acquired in each subject, the 273 

total number of subjects was low. Future work will expand this paradigm with a larger group of to afford 274 

random effects modelling, and thus generalisation to the population sampled from. In contrast to our 275 

hypotheses, we found no modulatory effect of hypothalamic nuclei on RPE signalling. We would like to 276 

stress that the current imaging protocols and field-strength (3T) were not optimal to dissociate neural 277 

activity in the hypothalamic nuclei. Due to the proximity of air sinuses adjacent to the hypothalamus and 278 

the effective resolution available, the present study most likely had insufficient sensitivity to capture 279 

activity in hypothalamic regions of interest. Future work at higher field strengths (7T) may overcome 280 

these limitations. Finally, the cue-conditioning employed in this study was passive. Hence, subjects 281 

produced no overt choice behaviour against which to fit learning rate parameters for the RPE model, 282 

instead we relied on the asymptote values for the RPE signals. The problem of modelling RPEs in the 283 

absence of choice behaviour, motivates fitting learning rate parameters directly to brain data, a 284 

computational imaging approach that future work will exploit (Meder et al. 2017) 285 

In conclusion, we exploited a simple paradigm, capable of eliciting RPEs under differential glycemic 286 

trajectories, to identify brain stem structures that show a modulation of RPE signalling dependning on 287 

the glycemic homeostatic state. We found that the PBN signals a positive-going reward prediction that is 288 

subject to systematic modulation by serum glucose. In the VTA and SN, negative-going RPEs were 289 
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modulated by serum glucose trajectories, but in a way that was specific to an ascending glycemic slope. 290 

Together the results show that RPE signals in key brainstem structures are modulated by homeostatic 291 

trajectories inherent in naturally occurring glycemic flux, revealing a tight interplay between 292 

homeostatic state and the neural processing of primary reward in the human brain. 293 
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 306 
Figure 1 | Experimental design and glucose trajectories. a, At Cueonset participants are presented with a neutrally coloured fixation 307 
cross (grey) for 1-3s after which either Cuehigh (here illustrated as blue cross) or Cuelow (brown cross) is presented with 0.5 probability each. 308 
Each cue signalled either high probability (0.8) of glucose delivery (0.4 ml) and low probability (0.2) of water delivery (0.4 ml), or the 309 
converse probabilities, respectively. A fixed duration after presentation of either cue (2.5 seconds), the liquid stimuli was delivered over 2.5 310 
seconds. This was followed by 10-15s jitter and a cue for swallowing (purple) that lasted for 5s. after which a new trial initiated with the 311 
onset of the neutral cross. b, Plot of measured serum glucose (y-axis) over each session (x-axis) that lasted approximately 65 minutes. Left 312 
shows the lo-glucose preload sessions, while right shows hi-glucose preload sessions. The grey shading indicates the duration of the fMRI 313 
acquisition of a single session.  314 

 315 
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 316 

 317 

Figure 2 | Expectations and fitted responses for reward prediction. a, Line graph depicts the objective reward expectations, 318 
expressed as the expected value in ml glucose, and the perturbation of these expectations under the onset of the experimental cues and 319 
outcomes. The dashed transparent lines illustrate when cues signalled high (or low) outcomes truthfully (blue high, orange low). The solid 320 
line illustrates when cues where paired with low-probability outcomes (green for high to low & purple from low to high). Note that reward 321 
expectations are updated three times: 1) at the onset of the Cuetrial, 2) at the onset of Cuehigh or Cuelow, and 3) at the onset of Outcomegluc. 322 
or Outcomewater. b, Illustrates simulated BOLD responses to RPE signals resulting from the updated reward expectations shown in Fig. 2a, 323 
generated by convolving the canonical hemodynamic response function with the RPE stick functions evoked by changes to the reward 324 
expectations with 𝛃 = 𝟏. 325 

 326 

 327 
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 328 

Figure 3 | Statistical parametric maps of main effects of trial onset and RPE and fitted response. a, Main effect of trial onset 329 
cue, which reflects an RPE following the mean reward expectation for the whole trial, revealed activity in VTA bilaterally (𝛽 = 2.77) (R: [4 -330 
17 -20] and L: [-8 -17 -20], FWE SVC). Further this revealed deactivation of precentral gyrus (primary somatosensory cortex), mediodorsal 331 
thalamus, and striatum (FWE whole brain, not shown). b, The main effect of RPEpos revealed activity in left lateral caudate [𝛽 = 1.21; 332 
coordinates -8 4 7; FWE SVC]. c, The main effect of RPEneg revealed bilateral activity in caudate (L: -11 -2 13; R: 10 7 1;  𝛽 = 12.2] medial 333 
dorsal thalamic nucleus [7, -2, 22], and lateral insula [43, -2, -17] (all FWE). All fitted responses were generated by convolving the canonical 334 
hemodynamic response function with the RPE stick function multiplied by their respective beta-values extracted from the local maxima of 335 
the ROI.  336 

 337 
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 338 
 339 

Figure 4 | Statistical parametric maps of RPEpos*state and fitted responses over varying glucose state. a, The main effect of 340 
RPEpos*state revealed bilateral activity in the PBN [-2 -29 -26; FWE SVC]. b, Fitted response (𝛽 = 1.66) of the local maxima of PBN cluster (7 341 
voxels) to the four possible trajectories that RPEpos*state, yield (see Fig. 2b) modulated by serum glucose state. The furthest trajectory on the 342 
y-axis are all four trajectories superimposed on to each other and is the signal which statistics is shown above in Fig. 2a.  343 
 344 
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 345 
Figure 5 | Statistical parametric maps of RPEneg*state subtracted for increasing minus decreasing. a)  Negative reward prediction 346 
error RPEneg*state revealed glucose modulated activity in SN [12, -22, -10] and VTA [0, -15, -6] when subtracting the effect of descending 347 
from the ascending glucose state [FWE SVC]. b) Fitted response (𝛽 = 0.34) of the local maxima of cluster [7, -11, 8; 52 voxels] to the three 348 
possible trajectories that RPEneg*state yield modulated by serum glucose state. Onsets are not at zero because the negative trajectories do 349 
not envelop the trial mean which has a positive expectation.  350 
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