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Abstract 20 

Biofilms are microbial collectives that occupy a diverse array of surfaces. The function and 21 
evolution of biofilms are strongly influenced by the spatial arrangement of different strains and 22 
species within them, but how spatiotemporal distributions of different genotypes in biofilm 23 
populations originate is still underexplored. Here, we study the origins of biofilm genetic structure 24 

by combining model development, numerical simulations, and microfluidic experiments using the 25 
human pathogen Vibrio cholerae. Using spatial correlation functions to quantify the differences 26 
between emergent cell lineage segregation patterns, we find that strong adhesion often, but not 27 
always, maximizes the size of clonal cell clusters on flat surfaces. Counterintuitively, our model 28 
predicts that, under some conditions, investing in adhesion can reduce rather than increase clonal 29 

group size. Our results emphasize that a complex interaction of fluid flow and cell adhesiveness 30 
can underlie emergent patterns of biofilm genetic structure. This structure, in turn, has an outsize 31 
influence on how biofilm-dwelling populations function and evolve.  32 

Author summary 33 

Biofilms are bacterial groups, often attached to surfaces, in which a broad variety of cooperative 34 
and competitive interactions typically occur. The spatial organization of different strains and 35 
species within biofilm communities strongly influences their global functioning, but little is known 36 

about how such structure arises. Combining experiments on V. cholerae and simulations of a 37 
cellular automaton, we show that the complex interaction between bacterial traits (cell adhesion) 38 

and environmental factors (fluid flow intensity) strongly influences the early origins of biofilm 39 
spatial structure. In most cases, we found that highly-adhesive strains form larger clusters than the 40 
weakly-adhesive ones. Against intuition, however, we also found the opposite outcome: weakly-41 

adhesive tend to form larger clusters than the highly adhesive ones when flows are weak or the 42 
population density of colonizing cells is high. 43 
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Introduction 45 

In addition to living as planktonic cells in liquid environments, bacteria often form dense 46 
conglomerates attached to surfaces, termed biofilms. Biofilms are one of the most widespread 47 
forms of life on Earth, and they are deeply embedded into global scale processes such as 48 
biogeochemical cycling [1]. They also play a central role in the interaction between bacteria and 49 

multicellular organisms, including humans, as biofilm production enhances antibiotic tolerance [2] 50 
and influences bacterial pathogenesis and microbiome functioning [3]. From a biotechnological 51 
point of view, biofilms are used to purify wastewater and to control catalysis reactions, including 52 
those involved with biofuels [4]. Biofilms are also the primary source of biological fouling in 53 
industrial settings [5]. 54 

Within a biofilm, cells are typically embedded in a matrix of extracellular polymeric 55 
substances (EPS) made of proteins, lipids, nucleic acids and polysaccharides [6]–[8]. The secretion 56 
of the matrix, together with other products such as digestive enzymes, nutrient chelators, and 57 

adhesins, provides biofilm-dwelling bacteria with increased metabolic versatility, tolerance to 58 
exogenous stress and resistance to fluid shear [9]–[15]. The functioning and evolutionary stability 59 
of behaviors that alter the local environment – including secretion phenotypes, which usually affect 60 

nearest-neighbors the most strongly – in turn depend on the spatial arrangement of secreting versus 61 
non-secreting strains and species (i.e., different genotypes) in a biofilm community [16]. For 62 

example, intra-strain cooperative behaviors are more likely to be evolutionarily stable when 63 
different cell lineages are segregated in space, with typical interaction distances between cells 64 
being strongly influenced by the diffusivity of secreted products, biofilm architecture, and 65 

environmental flow conditions [16]–[19]. Spatially constrained interaction is well known to be 66 
important in ecology broadly, and there are numerous examples of spatial structure influencing 67 

evolution in biofilm communities [20]–[22]. Thus, spatial structure in biofilms, once it arises, has 68 
a large impact on their form and function. The means by which biofilm strain and species structure 69 

originates in the first place, however, are less well understood. 70 
At the early stages of biofilm formation, planktonic cells encounter and transiently adhere 71 

to surfaces. Bacteria possess sophisticated mechanisms for deciding whether to remain in place, 72 

depending on substratum properties and environmental quality [23]–[26]. Having committed to 73 
biofilm formation, surface-residing cells secrete additional and diverse adhesion factors, including 74 

extracellular matrix material. These secretions, in combination with growth, death, and steric 75 
interactions between cells, strongly impact biofilm spatial organization [16], [27]–[30]. 76 
Environmental features, such as surface chemistry and fluid flow, are also key to biofilm 77 

development. In cases where flow influences cell surface motility, flow regime and environmental 78 
geometry can exert a dramatic effect on the spatial spread of surface-bound bacteria [31], [32]. 79 
Fluid flow is also likely to play a key role in the deposition and spatial arrangement of different 80 
strains and species within biofilms [15], [33]–[35]. In spite of its putative importance, we have a 81 

limited understanding of how flow, surface colonization processes, and cell adhesion interact to 82 
influence the spatial strain structure of nascent bacterial communities. Targeting this knowledge 83 
gap is the primary goal of the present study. 84 

We performed experiments with matrix-producing or non-producing strains of the model 85 
biofilm-forming bacterium Vibrio cholerae, the causative agent of pandemic cholera in humans. 86 

We aimed to use a simplified, ecologically neutral scenario, in which mixed strains are genetically 87 
identical except for fluorescent labels, to provide a first step towards understanding how key 88 
environmental features interact with cell adhesion and population density to control the initial 89 
distribution of cell lineages on a surface [36], [37]. Based on these experiments, we developed a 90 
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cellular automaton, with which we considered different scenarios that included varying flow 91 

strengths, densities of founder cells, and variable cell adhesiveness. Our study of surface 92 

occupation patterns motivated the use of spatial correlation functions as a quantitative method to 93 
characterize the contribution of adhesiveness and flow regime on the origins of clonal clustering 94 
spatial structure. The results, although obtained for V. cholerae, will more generally improve our 95 
understanding of the patterns with which microbes colonize abiotic and biotic surfaces. These 96 
initial patterns of surface occupation are key to the longer-term biofilm architectures that endure 97 

to impact bacterial ecology, evolution, and pathogenesis. 98 

 99 

Results 100 

Surface colonization experiments  101 
To isolate the influences of adhesiveness, flow, and population density on surface colonization 102 

regimes, we used strains of V. cholerae without flagella that either produce extracellular matrix 103 
constitutively, or not at all [38]. As V. cholerae does not use gliding or twitching motility to roam 104 

on glass surfaces after attachment [39], differences in surface occupation by our strains could be 105 
specifically attributed to their difference in matrix production. Individual cells of Vibrio cholerae 106 

are capable of attaching to surfaces in the absence of extracellular matrix secretion, but matrix 107 
production augments surface and cell-cell adhesion, and is essential for producing three-108 

dimensional biofilm structures. The direct contribution of matrix production to biomass 109 
accumulation in biofilms, relative to loss of cells into the passing flow, has been demonstrated in 110 
our previous work [38], [40]. Cell motility in the planktonic phase, which influences surface 111 

exploration [39], [41]–[45], is not included here and will be the focus of future work.  112 
For each strain (matrix-producing, and non-producing), a red- and blue-fluorescent version 113 

was constructed by engineering fluorescent protein expression constructs on the chromosome. 114 

Founder cells were inoculated in polydimethylsiloxane (PDMS) microfluidic chambers as 1:1 co-115 

cultures of the blue and red variants of the matrix-producing strain, or, in separate experiments, 116 
blue and red variants of the matrix non-producing strain. Flow rate was maintained at 0.1 μL/min 117 

through chambers measuring 500 μm wide, 100 μm tall, and 7000 μm long. Bacteria within a 118 
growth chamber were thus identical regarding the production of matrix, differing only in their 119 
color. Nutrients were continuously provided in the inflow. We focused on the early stages of 120 

biofilm growth before large 3D structures could form; thus, growth was limited by the availability 121 
of space on the surface, and not by the access to nutrients in the influent medium. It is important 122 

to note that, even in these early phases of biofilm growth (once cell clusters reach 4-8 bacteria), 123 
cells capable of producing matrix will have begun to do so [46].  124 

Experiments were stopped when the biofilm population fully occupied the basal surface, 125 
as judged by eye. The data generated by our experiments consisted of 2D surface occupation 126 
patterns composed by clusters of different lineages that express either the blue or the red 127 

fluorescent tag (Fig 1). Surface occupation was captured by fluorescence microscopy. Images were 128 
acquired in the largest viewing fields allowed by our microscope constraints, measuring 60 μm x 129 

60 μm (923 x 923 pixels), with 60 such viewing fields comprising an entire chamber. Note that, 130 
since the snapshots analyzed in the experiments correspond to tiles within a larger total area in the 131 
growth channel, there can be exchange of cells across tiles through detachment and re-attachment 132 
of individuals. See Materials and Methods for a more detailed description of our experimental 133 
approaches and strain engineering, and S1 Fig.a for a schematic representation of the experimental 134 
procedure. 135 
 136 
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 137 
Fig. 1. Experimental colonization patterns. Snapshots of one field of view at confluence for 138 
both matrix-producing (bottom) and non-producing (top) strains at low (left) and high (right) 139 

initial cell densities. The inset of each panel shows the initial distribution of founder cells. Initial 140 

densities: a) 0.01 cells/μm2, b) 0.162 cells/μm2, c) 0.012 cells/μm2, d) 0.113 cells/μm2. 141 
 142 

Modelling framework 143 

To explore the mechanisms underlying the experimental results, and to extend our predictions to 144 

a broader set of environmental flow conditions and cell adhesion strengths, we developed a 145 
probabilistic cellular automaton capturing the essential features of the experimental system. In our 146 

model, we consider two strains with identical non-dimensional cell adhesiveness, σ, and initial 147 

density of colonizing cells,  that compete for the occupation of empty space on a discrete two-148 

dimensional lattice. The density of founder cells is defined by the fraction of initially occupied 149 
lattice squares. In the absence of extensive surface motility, adhesiveness varies inversely with the 150 
probability that a cell detaches from the surface. This may occur either because of shoving between 151 

cells or because of flow, which detaches cells and relocates them downstream. We will use here a 152 
real number in [0,1] to represent adhesiveness, with σ = 1 indicating strong adhesion and σ = 0 153 
weak adhesion. The only difference between strains within a given experiment is therefore a binary 154 

variable for the cell color, c, which is later used to analyze the arrangement of different cell 155 

lineages. 156 

The dynamics of the model has two main ingredients: (i) birth and (ii) flow-induced cell 157 
detachment and relocation. We assume that these two processes are stochastic and independent 158 
(S1 Fig b,c). Time is discretized in short intervals of fixed length dt; within each time step, a 159 
random cell reproduces (i.e. divides) with probability pb, and another random cell may be detached 160 
and eventually relocated with probability pd. The detachment probability depends on cell 161 

adhesiveness and flow intensity, whereas cell transport, both in the direction of the flow and 162 
transversely to it, is entirely determined by flow intensity, f, which we define using a normalized 163 
non-dimensional parameter that takes values in [0,1]. The flow structure in our microfluidic 164 
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devices is laminar, so we assume that flow intensity fixes the maximum distance that cells may be 165 

transported downstream. f = 1 represents intense flows under which cells can be transported a 166 

maximum distance equal to lattice length, and f = 0 represents no flow and therefore no cell 167 
detachment and transport. Cell transport in the direction transverse to the flow is bounded by the 168 
distance traveled downstream (see Materials and Methods). Since surface colonization occurs over 169 
short time scales and resources are continuously supplied by the inflowing nutrient medium, we 170 
do not include cell death in the model. In our experiments cells can in principle detach from one 171 

viewing field and re-attach in another viewing field downstream; we implement this possibility in 172 
our simulations using periodic boundary conditions. Cells that exit the system through one of the 173 
borders due to long-range relocation re-enter through the opposite side, which is equivalent to cell 174 
relocations originating upstream and balances out the anisotropic effects introduced by the 175 
presence of a directional flow. 176 

Finally, each run of the model was stopped when 95% of the positions of the lattice were 177 

occupied, which avoids the high number of shoves that occur when surface coverage is nearly 178 
complete and which have a negligible effect on the final coverage pattern. This condition is similar 179 

to that used in terminating the experimental runs, which were stopped when the bottom surface of 180 

the chamber was nearly completely covered by cells. See Materials and Methods for further details 181 
on the modeling approach. 182 
 183 

Experimental output and model validation. 184 
To characterize the patterns of bacterial surface occupation obtained experimentally (Fig 1), we 185 

measured their clonal correlation lengths, ξ, and studied their dependence on the initial population 186 
density. The correlation length is obtained from the spatial autocorrelation function, C(r), which 187 
provides a measure of the order in spatially-extended systems by quantifying how its spatial 188 

elements co-vary with one another on average, as a function of spatial separation distance r. For a 189 

given separation distance r, the autocorrelation is positive if individuals separated by r tend to be 190 
of the same type, negative if they tend to be of different types, and zero if there is no consistent 191 
relationship between them. The correlation length is, thus, the shortest distance for which two 192 

spatial elements of the patterns are statistically independent. See Materials and Methods for a 193 
detailed definition of the correlation function. Because this distance is related to the typical cluster 194 

size within the field-of-view, from an ecological perspective, the mean correlation length 195 
quantifies the expected lineage segregation in the surface occupation pattern (see Materials and 196 
Methods). When two matrix-secreting strains colonize the chamber, the correlation length of the 197 

confluence pattern increases as the total initial density of cells decreases (green dots in Fig 2). 198 
However, if the two strains are matrix non-secreting (and therefore only very weakly adhesive), 199 
the correlation length does not show strong dependence on the initial density of cells in the 200 

chamber (black dots in Fig 2). Note that the lowest initial coverage densities for the two cases are 201 

different; matrix-secretors could be initiated at very low densities for which non-secreting strains 202 

did not give viable results. This limitation on initial population density was most likely due to the 203 
relative ease with which non-secreting strains are removed by flow. 204 
 205 
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 206 
Fig 2.  Model validation: correlation length comparison. Experimental correlation lengths 207 

measured in the matrix-producing (pale green dots) and non-producing (black dots) strain, and 208 

their model equivalent σ = 1 (dark-green diamonds), respectively σ = 0 (gray squares). 209 
Numerical results are shown for flow intensity f = 1, which gives the best agreement with the 210 

experiments, averages taken over 2x106 independent realizations. Error bars represent the 211 
standard deviation. The insets show snapshots of colonization patterns obtained in the 212 

experiments (right) and the model (left) at initial colonization densities indicated by the gray 213 
pointers. 214 

 215 

To compare our model and experiments, we used the simulation framework to study the 216 
behavior of the clonal correlation length as a function of flow intensity and system size. To keep 217 
our analysis as close as possible to the experiments, we initialized each simulation with a density 218 

of cells ρ0 and assigned to each cell either the blue or red color with probability 0.5. In this manner, 219 
we constructed, on average, a 1:1 (blue:red) mix of cells randomly located within the lattice.  Since 220 
bacteria in our experiments either produce matrix constitutively or not at all, we assumed that these 221 

strains correspond in our model to the σ = 1 (highly-adhesive) and σ = 0 (weakly-adhesive) cases, 222 
respectively. In addition, we parametrized the spatial scale of the model to mimic the experimental 223 
device. We used a square lattice of lateral length L = 60 sites, which represents each of the (60 μm 224 
x 60 μm) field-of-view tiles of the experimental system (i.e., corresponding to a lattice mesh size 225 

dx = dy = 1 μm), and assuming an approximate cellular cross section of 1 μm2  [29], we limited the 226 
maximum occupancy of each position of the lattice to only one cell. Finally, since we are interested 227 
in the final occupancy patterns, regardless of the temporal scale at which colonization takes place, 228 
we fixed the birth rate to minimize the computational time. This parametrization leaves flow 229 
intensity, f, as the only parameter that is free in the model but fixed in the experiments. Since flow 230 
intensity is defined in terms of a non-dimensional quantity in the model, we established a 231 
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connection between its value in the experiments and the model by finding the best quantitative 232 

agreement between model-produced and experimental patterns. For a broad range of flow 233 

intensities (S2 Fig), the theoretical results confirm the qualitative trend observed with our 234 
experiments: clonal correlation length and total initial density are negatively correlated for highly-235 
adhesive cells, but nearly uncorrelated for weakly-adhesive cells. However, we found the best 236 
quantitative agreement for the mean correlation length between experiments and simulations in 237 
the strong flow limit f = 1, for which the simulation results are shown together with the 238 

experimental data in Fig 2. The correlation length is also quantitatively, but not qualitatively, 239 
affected by the simulated “field of view” (or tile size); spatial segregation increases for larger 240 
systems, but the trends of the σ = 0 and σ = 1 curves are independent of system size for f = 1. A 241 
more detailed analysis of the effect of system size in our simulations is provided in S1 Text. 242 

As a last part of the model validation effort, we obtained the simulation (highly-adhesive, 243 

σ = 1) and experimental (matrix-producer) distributions resulting from the correlation lengths 244 

obtained with independent replicates, and compared one versus the other for different initial 245 
densities (Fig 3). To compute the distributions, we divided the experimental measures in three 246 

ranges of initial densities (low, intermediate and high according to the clusters of experimental 247 

data observed in Fig 2) and used fast adaptive kernel density estimation in which the bandwidth 248 
of the kernel varies across the dataset. These algorithms are particularly useful to estimate 249 
asymmetric distributions with a fat tail in one extreme and a thinner tail on the other [47]. The 250 

model and experimental distributions agree, especially in the high and low-density limits at which 251 
more experimental replicates were gathered. Note that, in both extremes, the estimated 252 

distributions are skewed (S3 Fig), suggesting that the median is a better measure of the central 253 
tendency of the distribution than the mean. However, because both measures do not seem to differ 254 
significantly (see S2 Fig and S4 Fig) whereas the mean provides less noisy results, we will focus 255 

hereafter on the mean and the standard deviation as indicators of central tendency and dispersion, 256 

respectively.  257 
 258 

 259 
Fig 3. Model validation: distribution of correlation lengths for matrix-producing strains. 260 
Estimated theoretical (full line) and experimental (dashed line) correlation length distributions. 261 
The symbols represent the experimental distribution prior to smoothing estimations. Each color 262 

represents a range of colonizing cell densities: green, 10-1 cells/μm2 for the model and high 263 
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density experimental data (cluster of data around 10-1 cells/μm2in Fig 2); blue, 10-2 and 2.15x10-2 264 

cells/μm2 for the model and intermediate density experimental data (7x10-3 < ρ0 < 3x10-2 265 

cells/μm2); and red, 10-3 and 2.15x10-3 cells/μm2 in the model and low density experimental data 266 
(ρ0 < 5x10-3 cells/μm2). 267 

 268 

Model predictions. Interaction between bacterial traits and flow intensity. 269 
As discussed above, we consider founder density and adhesiveness as the traits of interest for our 270 
strains in this study. Both of these traits are influenced by genetically encoded factors, such as 271 
matrix secretion, as well as by environmental factors, such as habitat turnover and surface 272 

chemistry [48]. To the extent that adhesion and surface colonization density are under bacterial 273 
control, we consider these traits here to be part of a general strategy set for influencing surface 274 
occupation [49]. We explore the effects of the flow on colonization strategies by studying how 275 

diverse combinations of flow strength, adhesiveness, and initial population density influence final 276 
patterns of surface occupation. As described above, numerical simulations were initiated with a 277 
1:1 mixture of red and blue strains that have the same adhesiveness.  278 

 As shown in S2 Fig, the mean correlation length decreases as the initial density increases 279 
for any flow intensity and any cell adhesiveness. This trend is applicable also for weakly adhesive 280 
cells (σ = 0), although for the highest flow intensities the trend is only evident for very high initial 281 

densities. The results are more convoluted when looking at a range of adhesiveness for a fixed 282 
initial density (S5 Fig). Lower ρ0 (cells/μm2) conditions show null or positive association between 283 

adhesiveness and correlation length, whereas higher initial densities show a null or slightly 284 
negative interdependence.  285 

 In order to assess how the different colonization strategies would be influenced by the 286 

flow, we quantified the difference between the correlation length reached by highly-adhesive 287 

strains (σ = 1) and weakly-adhesive strains (σ = 0) as a function of flow intensity and initial 288 
population density. Intuitively, one might expect that populations of highly-adhesive cells 289 
universally obtain larger clonal clusters, and indeed, this outcome does occur broadly, especially 290 

with increasing flow speed. When flow is strong, less-adhesive cells are frequently removed from 291 
the surface, exposing new area for attachment and growth and generally causing population 292 

admixture. However, there is a considerable region of the parameter space in which populations 293 
of weakly-adhesive cells show the larger clonal clusters (higher correlation length) at confluence, 294 
especially when flow is weak, or when initial population density is high (Fig 4a). The difference 295 
in correlation length between highly and weakly-adhesive cells becomes more pronounced in 296 
larger systems. Weakly-adhesive strains form larger clusters than the highly-adhesive ones for a 297 

larger set of flow intensities, and this difference in cluster size can be quantitatively of similar 298 
magnitude to the one gained by highly-adhesive strains in the strong flow limit (further details on 299 

the effects of the system size are provided in S1 Text). 300 
 301 

 302 
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 303 

Fig 4. Model output: mean cluster size and variability. a) Difference in correlation length 304 
resulting from investing in cell adhesion for different flow intensities and initial colonization 305 

densities. The dashed line indicates the values of f and ρ0 at which this difference is equal to 306 
zero. Averages are taken over 5x104 independent realizations. b, c) The standard deviation of the 307 

correlation length is a proxy for lineage segregation variability in highly-adhesive strains, (b; σ = 308 
1) and weakly-adhesive cells (c; σ = 0). Averages are taken over 2x106 independent realizations 309 

of the model. 310 

 311 

 Finally, the correlation length of clonal clusters is highly variable in our experiments with 312 
constitutively matrix-secreting cells, especially for intermediate colonizing population density (Fig 313 

3). In light of this observation, we used the model to investigate how flow intensity influences 314 
variability in the correlation length for highly- and weakly-adhesive cells and continuously varying 315 
initial surface density. For low flows, the variability in clonal cluster size follows the same trend 316 

for highly-adhesive and weakly-adhesive strains, reaching its maximum values at intermediate 317 
initial densities (Fig 4b, 4c, S6 Fig). Differences between strains emerge as flow intensity 318 
increases. On the one hand, highly-adhesive cells cannot be detached or shoved, and thus their 319 

cluster size variability is not influenced by flow speed (S6 Fig). Such variability in the correlation 320 
length is also quantitatively influenced by system size, although the curve maintains its concavity 321 
as a function of the initial population density (S1 Text). On the other hand, as flow speed increases, 322 
the dispersion in the weakly-adhesive strain correlation length transitions from a convex form to a 323 

uniformly decreasing function of initial population density (Fig 4c). This pattern holds for strains 324 
with intermediate adhesiveness, although the influence of flow intensity on correlation length 325 
variability decreases as adhesiveness increases (S6 Fig). 326 

 327 

Discussion 328 

Combining experiments in microfluidic devices with numerical simulations of a cellular 329 
automaton, we have developed a framework for quantifying strain mixture versus segregation in 330 
the coverage patterns that emerge from bacterial expansion competition on 2-D flat surfaces. We 331 
used experimental data to validate the core assumptions of the model framework, which permitted 332 
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us to make predictions for a broad set of ecological scenarios defined by the intensity of 333 

environmental flow, surface colonization density, cell adhesion properties, and the extension of 334 

the colonized surface. 335 
Microbes occupy a vast variety of surfaces, often subject to a wide range of fluid flow 336 

intensities. A common example of surface attachment stressed by laminar flow-induced shear 337 
forces is  chitin colonization in marine environments [9], an important feature of the natural 338 
ecology of many Vibrio species. Typical surface colonization densities are also likely to vary 339 

widely depending on the species, environmental conditions, and local demographics of bacterial 340 
communities. Among the mechanisms that control seeding density, some are under bacterial 341 
control, and others are not. For example, chemotaxis toward surfaces and the active production of 342 
adhesins/extracellular matrix can modulate cell surface occupation, but so too will ambient 343 
population density conditions in the planktonic phase, local flow patterns, and the chemistry of the 344 

surface bacteria attempt to colonize [25], [48], [50], [51]. Decreasing the initial colonization 345 

density increases the typical distance between founder cells and thus the territory that can be 346 
potentially occupied by each of them and its descendants [52]. In our experiments and simulations 347 

with highly-adhesive strains subject to strong flows, this translates into a negative correlation 348 

between cell lineage cluster size and initial cell density, consistent with previous reports in other 349 
species [53]. In populations of weakly-adhesive cells, however, flow encourages spatial mixing of 350 
genetic lineages by detaching cells and transporting them to other positions in the local 351 

environment, which reduces the sensitivity of the final pattern to the initial conditions. As a result, 352 
when flows are strong and colonization densities are moderate to low, investment in cell-cell and 353 

cell-surface adhesion results in stronger clonal clustering of cell lineages. 354 
It follows from intuition that populations of highly-adhesive cells might generate coherent 355 

clonal clusters more easily than less adhesive cells. And indeed, this result was observed in our 356 

experiments and for many model conditions. However, there was a broad region of the model 357 

parameter space in which the opposite behavior was predicted. This exception occurred at low 358 
flow strengths and, independently of flow strength, when the initial population density of 359 
colonizing cells was very high. In each of these two cases, we found that a different mechanism 360 

underlies such counterintuitive result. For the former case, if flows are weak cell relocations occur 361 
over short distances, which alleviates local competition for space within large clusters instead of 362 

mixing the population. Weakly adhesive strains thus form larger clusters than highly-adhesive 363 
strains via limited dispersal. For the latter case, when surfaces are almost fully occupied during 364 
the colonization phase, populations of highly adherent cells (which resist removal by flow) fix the 365 

initial state of the system into one of randomly distributed cell lineages. In populations of weakly 366 
adhesive cells, however, the vast majority of cells that detach cannot re-attach to the surface 367 
elsewhere and are lost to the flow output. The positions from which detached cells were removed 368 

are then occupied by descendants of neighboring cells that had managed to remain in place. If the 369 

detached cell was originally surrounded by cells of its same lineage, then the empty space is filled 370 

by a new cell within the same lineage and the update has no effect; in a mixed region, however, 371 
the growth will tend to reduce mixing and thus to increase the clonal correlation length of the 372 
system. Therefore, populations of highly-adhesive cells are not universally expected to show 373 
stronger spatial genetic structure than populations of less adherent cells; the structure depends on 374 
the ecological conditions and bacterial traits controlling surface colonization density, as well as 375 

the environmental flow regime. 376 
Complex surface attributes, such as its topology and chemical properties, are not explored 377 

here but are expected to influence cluster sizes in some natural environments by increasing the 378 
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complexity of fluid flow patterns, inducing short-range cell relocation and modifying the long-379 

range relocation mechanism. Furthermore, in our simulations and experiments, surfaces are 380 

unoccupied prior to cell inoculation. In V. cholerae and other biofilm-forming organisms, matrix 381 
production is known to prevent planktonic cells from entering the biofilm, thus providing a 382 
competitive advantage to resident cells during surface colonization processes [54]. The tendency 383 
of cells to adhere to one another and form large clusters is likely to fall under selection based on 384 
the size of resource patches in a given environment. Resources matching has been intensively 385 

addressed in animal ecology, both from the perspective of optimizing the search process [55]–[58], 386 
and including its demographic implications [59]–[61]. Given our model results, we speculate a 387 
relationship between adhesion, surface attraction, and the variance of cell lineage cluster size that 388 
could determine the ability of microbes to cope with variability in nutrient patchiness. Exploring 389 
the role of these three parameters is a future line of research expanding upon this study. 390 

The emergent spatial structure of cell lineages during biofilm growth is important to 391 

numerous other facets of microbial ecology, especially for the evolutionary trajectories of social 392 
phenotypes [16]. Many phenotypes associated with biofilm formation and the pathogenesis of 393 

bacterial infections, for example, are secreted factors such as digestive enzymes and nutrient-394 

chelating molecules [66]. In many cases, these secreted compounds may enable a biofilm, as a 395 
collective, to degrade complex polymers – including host tissues – that otherwise would be 396 
inaccessible [9], [12]. Since secreted enzymes can be costly to produce and may benefit all cells 397 

in the immediate surroundings, their evolutionary stability often relies on population structure, 398 
which can promote preferential interaction among cells of a single strain. If cells are mostly 399 

surrounded by neighbors of the same lineage, cooperative cells are more likely to interact with 400 
clonemates, which are also cooperative, promoting the evolutionary stability of the cooperative 401 
phenotype in question [21], [67]. Other forms of cell-cell interaction, on the other hand, are only 402 

effective in mixed population structures; these include, for example, cross-feeding mutualisms in 403 

which different cell types depend on close proximity to benefit each other [17]–[19]. Antagonistic 404 
phenotypes, such as toxin secretion (e.g. Type VI-mediated attack), also depend on mixed 405 
population structure to be optimally effective [68]–[73]. 406 

 Given the relationship between spatial structure and the evolutionary stability of different 407 
secretion phenotypes, we might expect surface colonization and adhesion strategies to coevolve 408 

with the ability to produce extracellular public goods, as well as toxins. This would be consistent 409 
with the coevolution of cooperation and dispersal more generally, either via movement in motile 410 
organisms or passive transport in sessile species, which has been well-explored [74]–[80]. Varying 411 

surface colonization and adhesion is just one of several means through which spatial structure can 412 
be altered by microbes in the process of biofilm growth [16]. Previous reports have shown that 413 
some organisms, such as the social amoeba Dictyostelium discoideum, preferentially adhere to 414 

clonemates and promote aggregation of genotypes during collective movement [81]. For many 415 

microbes, the expansion of growing cell groups toward a source of limiting nutrients tends to 416 

promote the spontaneous segregation of different strains due to genetic drift along the advancing 417 
group front [36]. After colonizing a surface, matrix-guided motility heavily influences early 418 
biofilm structure in some strains of Pseudomonas aeruginosa [82]. During cell group growth, 419 
phenotypes like toxin secretion also promote strain segregation by enforcing positive feedback on 420 
the local frequency of each self-immune toxin-secreting strain of V. cholerae [72]. Combined with 421 

constraints due to surface properties, this array of biological forces can yield complex dynamics 422 
of spatial organization in microbial communities that we are just beginning to understand [22]. 423 
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 Other factors will also impact the evolution of adhesion phenotypes, including the relative 424 

advantage of highly-adhesive cells against less-adhesive cells in direct competition [54], and the 425 

trade-off between competitive surface adhesion and the ability to disperse to new habitats for later 426 
growth [38], [40], [83]. This is only one of many dimensions of surface-associated microbial 427 
behavior, which can include sophisticated mechanisms of surface departure and re-attachment, as 428 
well as various forms of individual and collective surface motility [26]. Disentangling the impacts 429 
of these different adhesion and detachment principles is an important area for future study. 430 

 431 

Materials and Methods 432 

V. cholerae strain engineering. 433 
We conducted surface colonization experiments using V. cholerae, a model organism for biofilm 434 
formation on a broad range of surfaces. In order to control the several genes that are regulated by 435 

the flagellum activity and by quorum sensing, we first deleted flaA, which encodes the flagelling 436 
core protein, and hapR, which encodes the quorum sensing master regulator. This results in a 437 

double mutant ΔflaAΔhapR that produces EPS and therefore termed EPS+. Second, we produced a 438 
triple mutant strain by deleting vpsL, a gene required for EPS production. The resulting 439 

ΔflaAΔhapRΔvpsL strain never produces EPS and we thus call it EPS-. Finally, we derived two 440 
versions of the EPS+ and the EPS- strain: one that expresses the teal fluorescent protein mTFP1 441 

and one that expresses the ref fluorescent protein mKate. This difference in the fluorescence 442 
protein is the only difference between otherwise genetically identical strains in our mixes, and it 443 
will allow us to distinguish different lineages in the surface colonization pattern. 444 

 445 

Experimental protocol. 446 

We performed bacterial surface occupation experiments using microfluidic culture methods. 447 

Chambers were 500 μm wide, 100 μm high and 7 mm long, and were constructed from 448 

poly(dimethylsiloxane) bonded to glass coverslips. Overnight cultures of the EPS+ and EPS- 449 
strains were normalized to an optical density at 600 nm of 1.0, mixed to create a 1:1 culture of red 450 

and blue cells, and back-diluted either 1:100, 1:1000, or 1:10000 prior to being introduced into the 451 
chambers. The cultures were then incubated at room temperature for one hour to allow cells to 452 
attach to the glass coverslip. Varying the planktonic culture density in this manner allowed us to 453 

vary the initial population density on the glass surface. Following this attachment period, sterile 454 
M9 medium with 0.5% glucose was introduced to the chamber at 0.1 uL/min, using a high 455 

precision syringe pump (Harvard Apparatus).  The chambers were fixed to the stage of an inverted 456 
spinning disk confocal microscope (Nikon, Andor), which was used to capture images of the cell 457 

populations residing on the coverslip glass. The entire surface of each chamber was imaged once 458 
per hour until surface coverage was complete as judged by eye. 459 

 460 
Model details.  461 
The two main ingredients of our model are: 462 

(i) Reproduction. Bacteria reproduce at a given rate μ: every time step a cell division takes 463 
place with probability pb = μ dt, where the length of the time step dt (i.e. temporal resolution of 464 

the simulations) is fixed such that pb < 1. Since fluorescent protein constructs have no fitness effect 465 
[38], we set the same reproduction rate for both strains. In addition, since in each experiment both 466 
strains equally invest in adhesion, we ignore the potential cost of adhesiveness here. Finally, since 467 
we are interested in the final spatial cell distributions, our results are independent of the specific 468 
value used for μ, which is fixed to minimize computational time. Newborn cells occupy a randomly 469 
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chosen site among the available places within the Moore neighborhood of the parental cell (eight 470 

lattice positions surrounding the parental cell). If there is no empty position, the new cell will try 471 

to shove one of the resident (i.e. existing) cells in the neighborhood and occupy its position. The 472 
outcome of a shoving attempt is determined by a displacement probability, ps, defined in terms of 473 
non-dimensional adhesiveness as: 474 

𝑝𝑠 =
1 − 𝜎

2
 . (1) 

 475 
With this definition, highly-adhesive cells (σ = 1) are never displaced by newborns, 476 

whereas weakly-adhesive residents and newborns will have the same probability to be shoved due 477 
to low cell-surface adhesion (i.e. ps=0.5). From each shoving event, two possibilities ensue: (i) the 478 
resident cell remains in its position, and the newborn is displaced to one of the empty neighboring 479 
sites of the resident, or (ii) the newborn cell takes the position of the resident, which is displaced 480 

to one of its empty neighboring sites. In both scenarios, if the complete neighborhood of the 481 
resident cell is occupied, the losing cell is removed from the system with the outflow. Note that 482 
this formulation truncates a cascade of shoving events that might take place for weakly adhesive 483 

cells as a cluster of bacteria expands from its center. In this manner, we are assuming that shoving 484 
events can only occur on short spatial scales before one cell must be released into the passing flow 485 
to relieve the pressure of increasing local population density.  486 

(ii) Cell detachment and relocation. At every time step, we also check for potential cell 487 
relocations that occur due to fluid flow passing above the cell monolayer. Since flow enters the 488 

experimental chambers from one direction only (left to right), we assume that cells can only be 489 
removed by flow if their neighboring position on the left is empty. This simplification implements 490 

a drafting effect that is supported by basic fluid mechanics calculations reported by [84]: cells are 491 
protected from drag by neighbors that sit on the surface immediately upstream. Therefore, the 492 

detachment probability is zero when the directly adjacent up-stream site is occupied, and pd 493 
otherwise. We define pd using a combination of the non-dimensional flow strength, f, and cell 494 
adhesiveness: 495 

𝑝𝑑 = 𝑓(1 − 𝜎), (2) 

where, for simplicity, we assume that f is normalized and therefore can take any value between 0 496 

and 1. According to Eq. (2), highly-adhesive cells cannot be detached, whereas weakly-adhesive 497 
cells will be dislocated with a probability given only by the strength of the flow. Because it is not 498 
possible experimentally to track detached and re-attached individual cells over the full length of 499 

the microfluidic growth chambers to inform our model, we hypothesized a mechanism for long-500 
range surface re-attachment. We could thus make predictions of the spatial structure of the 501 
population at confluence and directly check them against experimental results. In our simulations, 502 

once a cell has been detached, a landing position is calculated using the following rules that 503 
account for flow directionality. The distance traveled in the direction of the flow, Δx, is determined 504 
by a random integer uniformly distributed between 0 and fL, whereas the distance traveled in the 505 
transversal direction, Δy, is obtained as a random integer uniformly distributed between −Δx and 506 

Δx. If the sorted position was already occupied, then the detached cell is removed from the system, 507 
which accounts for bacterial loss with the outflow. With these rules, cells can only relocate to 508 
positions downstream of the flow orientation, unless they pass through the system boundaries due 509 
to periodic boundary conditions, which recovers the isotropy in the surface-occupation patterns. 510 
On the other hand, detached cells can freely drift perpendicular to the flow. A summary of the 511 
model parameters and their numerical values is provided in S1 Table. 512 
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 513 

Characterization of surface occupation patterns: the correlation length.  514 

We characterize bacterial surface occupation patterns using the spatial autocorrelation function, 515 
C(r), which can be mathematically defined as, 516 
 517 

𝐶(𝑟) =  
< 𝑐(𝑅)𝑐(𝑅 + 𝑟) > −< 𝑐(𝑅) >< 𝑐(𝑅 + 𝑟) >

< 𝑐2(𝑅) > −< 𝑐(𝑅) >2
 (3) 

 518 
where c is the binary variable that represents the lineage color (and thus takes value 1 or 2 519 

depending on whether the lattice cell is occupied by a blue or red cell), and <.> represents an 520 
average over all the elementary spatial units of the system, which are labeled by the index R. Given 521 
the use of periodic boundary conditions in our cellular automaton and cell mixing across adjacent 522 

tiles in the experimental device, surface occupation patterns are isotropic and the average over the 523 
angular variable can be done.  524 

In microscopy images, the elementary unit is the pixel (0.065 μm), whereas in the 525 
simulations, it is the lattice position (1 μm). Note that the normalization factor ensures that the 526 

correlation function reaches 1 when two positions have a perfect correlation. In addition, the 527 
uncorrelated average product, <c(R)><c(R+r)>, force the correlation function to be zero when 528 

two locations are completely independent from each other. The correlation length is thus given by 529 
the first zero of the correlation function (S7 Fig). The spatial autocorrelation function given in Eq. 530 
(3) is related to the radial distribution function, often used to describe how density varies as a 531 

function of distance from a reference particle in a system of multiple particles. 532 
  533 
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 758 

Supporting information  759 

Symbol Name Cause Value 

σ Cell adhesiveness BT Free parameter in [0,1] 

f Flow intensity EF Free parameter in [0,1] 

ρ0 Founder cell density BT by EF interaction 
Free parameter in [10-3, 0.5] 

cells/μm2 

μ Reproduction rate BT Fixed parameter, 0.57 a.u. 

L Lateral lattice size EF Fixed parameter, 60 μm 

dt Time step -- Fixed parameter, 1/L2 a.u. 

dx Lattice mesh -- Fixed parameter, 1 μm  

pd Detachment probability BT by EF interaction 𝑓(1 − 𝜎) 

ps Shoving probability BT by BT interaction 
1 − 𝜎

2
 

Δx x-distance traveled EF Random, in [0, fL] 

Δy y-distance traveled EF Random, in [-Δx, Δx] 

 760 

S1 Table. List of parameters used in the model, including whether it represents an 761 

environmental factor (EF), a bacterial trait (BT) or an interaction between them. 762 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 24, 2018. ; https://doi.org/10.1101/243055doi: bioRxiv preprint 

https://doi.org/10.1101/243055


22 
 

 763 
S1 Fig. Schematic of the experimental setup and the model updating rules. a) Schematic of 764 

the division of the experimental chamber in tiles and model representation of one of the tiles, as a 765 
2D lattice with one cell at each lattice box. b) Cell displacement due to shoving following cell 766 

division occurs with probability ps. With complementary probability 1-ps the resident cell keeps 767 
its position and the newborn jumps to one of the adjacent empty position. c) Cells may be 768 

detached from the surface of the chamber with probability pd and transported to a new 769 
emplacement following the relocation rules explained in the text with periodic boundary 770 

conditions (Materials and Methods). U(a,b) indicates a uniformly distributed random variable 771 
between a and b. f is the flow intensity and L the lattice lateral length. 772 

  773 
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 774 
S2 Fig. Correlation length versus initial density. Mean correlation length, 𝜉, for different 775 

colonization strategies (σ, ρ0) in several ecological conditions given by the flow intensity f. Each 776 

curve represents a cell adhesiveness σ. The color code is maintained in all the panels. Averages 777 
are taken over 2x106 independent model realizations. 778 
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 779 
S3 Fig. Skewness of the correlation length. Skewness of the distribution of correlation lengths 780 
for different colonization strategies (σ, ρ0) and ecological conditions, given by the flow intensity 781 

f. Each curve represents a value of the adhesiveness σ, whose color code is maintained in all the 782 
panels. The skewness is obtained from 2x106 independent realizations of the model. Horizontal 783 

dashed lines in each panel indicate the values +/- 0.5 and the full lines, +/- 1. Skewness in the 784 
interval [0.5, 1] in absolute value indicate that the data are moderately skewed, and if the 785 

skewness greater 1 in absolute value, then the distribution is highly skewed. 786 
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 787 
S4 Fig. Median correlation length. Median of the correlation length distribution for different 788 

colonization strategies (σ, ρ0) and ecological conditions given by the flow intensity f. Each curve 789 

represents a value of the adhesiveness σ. The color code is maintained in all the panels. The 790 
median is obtained from a set of 2x106 independent model realizations. 791 
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 792 
S5 Fig. Correlation length versus cell adhesiveness. Mean correlation length, 𝜉, for different 793 

colonization strategies (σ, ρ0) in several ecological conditions given by the flow intensity f. Each 794 
curve represents a value of the initial density, ρ0. The color code is maintained in all the panels. 795 

Averages are taken over 2x106 independent model realization. 796 
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 797 
S6 Fig. Cluster size variability. a) f = 0.25, b) f = 0.375, c) f = 0.5, d) f = 1. Each curve 798 

represents the standard deviation in ξ for a given adhesiveness, σ. Color code is maintained in all 799 
the panels. Averages are taken over 2x106 independent model realizations. 800 
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 801 
S7 Fig. Correlation function of individual model realizations. Correlation functions obtained 802 
for single realizations of the model at low (panel a; ρ0 = 10-3 cells/μm2) and high (panel b; ρ0 = 803 

10-1 cells/μm2) initial density of cells. Correlation functions are obtained for the patterns shown 804 
in the snapshots. The color code indicates whether the pattern corresponds to σ=1 (green) or σ=0 805 
(black) strains. The dashed lines point the value of the correlation length in each case, defined as 806 

the first zero of the correlation function. 807 
 808 

 809 
  810 
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 811 

 812 

S1 Text. Size effect analysis. 813 

 814 

Our experimental results have been obtained using a square observation window of lateral 815 

length L = 60μm embedded within a much larger microfluidic device. Using the simulation 816 
framework, we investigated whether the spatial measures in the occupation patterns are influenced 817 
by the size of the focal system. 818 

 First, we focused on the correlation length, for both highly-adhesive and weakly-adhesive 819 
strains, in the intense flow limit (f = 1). As shown in the main text, in this regime the model 820 

accurately reproduces experimental results if the same focal area is used in both approaches. 821 

Numerical simulations on larger systems confirm that both strains maintain the same qualitative 822 
trends across simulated areas, and although the curves are quantitatively affected by the simulated 823 

area, they intersect at the same value of the initial population density (Fig A1). The sublinear 824 

scaling of the correlation length with system size, suggests a saturation of the correlation length in 825 
the limit in which ξ << L for any initial density and cell adhesiveness (Fig A2). Next, we prepared 826 

a simulation setup in which we divided a system of lateral length L = 120μm in four tiles of lateral 827 
size 60μm, and simultaneously measured the correlation length in the total system and in each of 828 
the tiles. To ensure that the initial population density was constant for the whole system and each 829 

tile, we initialized every tile with a total population density ρ0 (ρ0/2 of each strain on average). 830 
Focusing on the intense flow limit (f = 1), the distance traveled by relocated cells in the direction 831 

of the flow is a random number between 0 and L, so for a given focal area, the population mixing 832 
depends on whether the system is isolated or embedded in a bigger one. However, the use of 833 

periodic boundary conditions, as discussed in the main text, minimizes differences in the 834 
correlation length for strong flows (Fig A3). The residual difference in the correlation length is 835 

due to the fact that, in small isolated systems, the periodic boundary conditions can introduce small 836 
additional correlations, since detached cells that exit the system through one of the borders and re-837 
enter through the opposite may be relocated close to their original position. These events are 838 

equivalent to limited dispersal and hence tend to increase clonal cluster size. However, as it is 839 
shown in Fig A3, their effect is negligible, reinforcing the validity of our periodic boundary 840 

conditions. 841 

 Next, we extended our analysis to consider a L=240 μm patch with various flow intensities. 842 
In this scenario, system size influences the outcome of the simulations in two directions. First, the 843 
set of flow strengths for which patterns of weakly-adhesive cells have larger clonal clusters than 844 

those made by adhesive strains increases considerably. Second, such regions show a larger 845 
difference correlation length for bigger systems (Fig A4a). This result indicates that avoiding the 846 
production of adhesion substances does not entail a residual gain (slightly larger clusters without 847 

the metabolic cost of matrix production) but, for a wide range of environmental flows (f < 0.4), 848 
such gain can be very significant, as much as that of matrix-production in strong environmental 849 
flows (but, again, without the metabolic cost). If, on the other hand, we are observing a small 850 
system that, instead of in isolation, is within a bigger one, the flow range for which weakly-851 
adhesive cells show larger clusters segregation is reduced to very weak intensities. This shrinkage 852 
of the region results from our flow strength implementation discussed above: when the small 853 
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system is part of a bigger one, detached cells can travel larger distances even at weak 854 

environmental flows and thus the range of limited dispersal is reduced (Fig A4b compared to 855 

Figure 4). All this phenomenology indicates that, in a real system, the ratio between the typical 856 
distance travelled with the flow and the system size will influence considerably the quantitative 857 
(but not the qualitative) behavior of our measure for genetic segregation.  858 

Finally, we analyzed the effect of the system size on cluster size variability for σ = 1 strains. 859 
The standard deviation of the correlation length maintained its concavity regardless of the system 860 

size, but it reached its maximum at different initial population densities (Fig A5a). Since highly-861 
adhesive cells are not relocated by the flow, the confluence pattern is strongly determined by the 862 
spatial distribution of the founder population, and its correlation length variability depends on the 863 
variability of the initial lineage mixing. Hence, it is the number of cells and not the density what 864 
determines the position of the maximum in the standard deviation (Fig A5b). For high cell 865 

numbers, it is very unlikely to randomly create a configuration with large clusters, whereas for low 866 
cell numbers, the cluster size at confluence is necessarily large. In addition, for a fixed initial 867 

density (or number of cells) the standard deviation increases with system size since the variability 868 
in the spatial distribution of the founder population increases with system size.  869 

In summary, the observation window can quantitatively affect some results of our analyses 870 
as well as the regions of the parameter space in which they are expected. Therefore, not only 871 
environmental forces, such as fluid flow, and bacterial traits, such as cell adhesion, are important 872 

to quantify biofilm population structure. The size of the observation frames needs to be accounted 873 
for as well. Importantly, however, the overall qualitative behavior of our results is not affected by 874 

the size of the observation window and, therefore, any conclusion drawn for smaller surfaces can 875 
be extrapolated to larger systems. 876 

 877 
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Fig A1. Effect of surface in correlation length. The clonal cluster size is strongly influenced by the 878 
extension of the colonized surface, although the trends of highly-adhesive and weakly-adhesive strains, 879 
and the crossing point between curves, are system size independent. Full lines correspond to σ = 1 and 880 

dashed lines to σ = 0. a) L = 60μm, b) L = 120μm, c) L = 240μm, d) L = 360μm. 881 

 882 

Fig A2. Correlation length scaling with system size. The correlation length scales sub-linearly, both for 883 
highly-adhesive (a) and weakly-adhesive (b) strains, with system size, which suggests a clonal cluster size 884 

saturation for large systems. 885 

 886 

Fig A3. Finite size effects in the correlation length. Tiles within a larger system have the same 887 
correlation length than isolated surfaces of the same size. Simulations are run independently on systems 888 

of lateral length L = 60μm (black circles) and L = 120μm (blue squares). In this latter scenario, the system 889 
is divided in four tiles of lateral length 60μm and the correlation length of each of the tiles is 890 

independently obtained following the same protocol used in the L = 60μm case. 891 
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 892 

 893 
Fig A4. System size effects on the correlation length difference between highly-adhesive and 894 

weakly-adhesive strains. Correlation length differences are evaluated on a system of lateral length L = 895 
240μm (b) and the result is compared to what would be observed using an observation window of lateral 896 

length L = 60μm within the system (a). In the latter case, each of the 16 observation windows is used as an 897 
independent replicate. Therefore, averages in b) are taken over 4000 replicates whereas 64000 898 

independent realizations are gathered for the smaller system. 899 

 900 

Fig A5. Variability in the correlation length is influenced by system size. Correlation length standard 901 
deviation versus initial population density (a), and initial number of cells (b). Color code is maintained in 902 

both panels 903 

 904 

 905 
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