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The ability to select the most salient stimulus among competing ones is essential for animal 8 

behavior and operates regardless of the spatial locations that stimuli occupy. Here, we 9 

reveal that the brain employs a combinatorially optimized strategy to solve such location-10 

invariant stimulus selection. With experiments in a key inhibitory nucleus in the vertebrate 11 

midbrain selection network, called isthmi pars magnocellularis (Imc) in owls, we 12 

discovered that the central element is a ‘multilobe’ neuron, which encodes visual locations 13 

with multiple firing fields. This multilobed coding of space is necessitated by scarcity of 14 

Imc neurons. Although distributed seemingly randomly in space, the locations of these 15 

lobes are optimized across the high firing Imc neurons, allowing them to cooperatively 16 

suppress stimuli throughout 2D visual space while minimizing metabolic and circuit wiring 17 

costs. Our work suggests that combinatorial coding of space by sparse inhibitory neurons 18 

may be a general functional module for spatial selection. 19 

Animals routinely encounter multiple competing pieces of information in their sensory 20 

environments. Typically, they handle this informational complexity by selecting the most salient 21 

or behaviorally relevant piece of information, i.e., highest ‘priority’ information, to guide their 22 

actions 1-3. However, how neural circuits orchestrate the computations that are essential for such 23 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/243279doi: bioRxiv preprint 

https://doi.org/10.1101/243279


 

 2

stimulus selection is not well understood. Here, we unravel the neural basis of one such critical 24 

computation, namely, location-invariance. This property permits spatial selection to operate no 25 

matter which specific locations in the sensory world the competing stimuli occupy. Although 26 

appearing straightforward, the implementation of location-invariant stimulus selection requires 27 

comparisons between all possible pairs of stimulus locations and is computationally complex: the 28 

number of location-pairs at which two competing stimuli could be placed, L2-L/2, scales 29 

quadratically with L, the number of spatial locations that are encoded. How does the brain meet 30 

the resulting demands imposed on neural circuitry and solve location-invariant stimulus 31 

selection? 32 

A brain network with a well-established role in spatial target selection, and therefore, an 33 

excellent locus to study this question, is the midbrain selection network. It includes the 34 

sensorimotor hub, the superior colliculus (SC; or the optic tectum, OT, in birds), and a satellite 35 

inhibitory nucleus called the lateral tegmental nucleus 4,5, or isthmi pars magnocellularis, Imc, in 36 

birds 6,7 (Supplementary Fig. 1a). The SC/OT, which encodes a topographic map of sensory (and 37 

motor) space 8,9, plays a critical role in stimulus selection across spatial locations. Specifically, 38 

the intermediate and deep layers of the SC (SCid; called OTid in birds) are required for the 39 

selection of the highest priority stimulus among distracters independently of the spatial locations 40 

of these stimuli 10,11. This location-invariant selection is expressed in the activity of SCid/OTid 41 

neurons as response suppression. When one stimulus is presented at any location, the responses 42 

of SCid/OTid neurons encoding that stimulus are suppressed by a competing stimulus presented 43 

anywhere outside the neurons’ spatial receptive field (RF) 12-14. Mechanistically, competitive 44 

suppression in the OTid is orchestrated by the GABAergic Imc through its specialized 45 

anatomical connectivity with the OT 6,15,16. Each Imc neuron receives input from a restricted set 46 
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of neurons in layer 10 of the OT (OT10), but projects back broadly across the OTid space map 47 

sparing just those neurons that encode the input locations 6 (Supplementary Fig. 1b). This 48 

anatomy allows the Imc to implement a spatial inverse operation, distributing inhibition to all 49 

competing locations in the OTid space map (Supplementary Fig. 1c). The strength of competitive 50 

inhibition depends on the priority of the stimulus 12-14, and, notably, inactivation of the Imc 51 

abolishes this competitive inhibition as well as spatial selection in the OTid 15,16. 52 

In this context, a conceptually straightforward strategy by which the Imc might achieve 53 

location-invariant selection in the OTid is illustrated in Supplementary Fig. 1d – a so-called 54 

‘copy-and-paste’ strategy. Should the spatial RFs of Imc neurons be small, resembling those of 55 

the input OT10 neurons, then simply repeating the Imc-OT circuit module that solves selection 56 

for one pair of locations across all location-pairs, would successfully implement location-57 

invariant stimulus selection. However, the precise nature of the spatial RFs of Imc neurons is not 58 

well understood. In fact, the vertically large Imc RFs reported in previous work 17,18 lead to a 59 

computational paradox (Supplementary Fig. 1e). Here, we set out to investigate the functional 60 

properties of Imc neurons as well as the computations implemented by the Imc-OT network in 61 

the barn owl. In doing so, we discovered a combinatorially optimized strategy for location-62 

invariant stimulus selection, one that is supported by unusual encoding of visual space by Imc. 63 

Spatial RFs of Imc neurons have multiple ‘lobes’. We measured the visuospatial RFs of Imc 64 

neurons using extracellular recordings (Methods). Individual Imc units were identified by 65 

spikesorting single and multiunit data; only those units deemed to be of ‘high quality’ wee 66 

included in the analysis (Methods). We found that individual Imc neurons possessed visual RFs 67 

with multiple, distinct firing fields or ‘lobes’ (Fig. 1a-h; Supplementary Fig. 2ab). The number of 68 

lobes in each RF was estimated in an unbiased manner using a two-step process (Methods): (i) a 69 
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nonlinear clustering method19 to fit different numbers of clusters to the spatial map of firing rates 70 

followed by (ii) a model selection method 20 to robustly select the optimal number of clusters in 71 

the data (Fig. 1c, g, Supplementary Fig. 2c-f). We found that about two-thirds of Imc neurons 72 

had multilobed RFs (80/116; see also Fig. 1l).  73 

 To test if the multilobed structure of Imc RFs was an artifact of our experimental 74 

methods, we performed three controls. First, we tested if errors in spike sorting might have 75 

caused multiple units with single lobed RFs to be misidentified as a single unit with a multilobed 76 

RF. To this end, we applied an additional separability criterion to our sorted units. We tested the 77 

statistical separability of the waveforms of each sorted unit with those of any other unit as well 78 

as with outlier waveforms recorded at the same site, and retained only those units that were well-79 

separated (Methods). We found that the majority of the sorted units (114/116) satisfied the 80 

separability criterion as well (p<0.05; Fig 1i), ruling out multiunit contamination as a source of 81 

error. Second, we examined if the spatial sampling resolution used for RF measurement, as well 82 

as neuronal response variability, might have caused the erroneous identification of single-lobed 83 

RFs as being multilobed (Supplementary Fig. 2g). Using experimentally grounded simulations, 84 

we mapped out the values of sampling step-size and response Fano-factor that yielded a 85 

multilobe misidentification rate of 5% or greater (Fig. 1j; red zone20; Methods). We found that 86 

the values of these parameters for each recorded unit fell outside the 5% misidentification zone. 87 

As a final control, because it is well established that OT RFs have single spatial firing fields, we 88 

measured visual RFs of OT neurons. Our methods correctly identified all of the measured OT 89 

RFs as being single-lobed (Fig. 1k; Supplementary Fig. 2h). Together, these results confirmed 90 

the veracity of our conclusion that the Imc contains predominantly ‘multilobe’ neurons (68%; 91 

78/114; Fig. 1l). 92 
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 93 

Fig. 1. Visual receptive fields (RFs) of Imc neurons have multiple distinct firing fields (‘lobes’). (a) 94 

2-D visual RF of Imc neuron: raster plot of neuron’s responses to visual stimulus presented at different 95 

spatial locations. Inset-top: Gray line – stimulus onset; red lines –  time window used to calculate firing 96 

rate; evoked firing rates in Imc were high (median = 76.5 Hz; n=114 neurons). Inset-bottom: Average 97 

spike waveform for neuron in a; identified as high-quality unit (Methods); mean (black) ± S.D (gray). (b) 98 

Color coded firing rate map corresponding to a. (c) Rate map in b re-plotted as distribution of points in a 99 

2-D plane and subjected to spatial clustering (Methods). Shown are the best single (top-left), best two 100 

(top-right), and best three clusters (bottom-left) fitted to the data using the density peaks clustering 101 

method19 (Supplementary Fig. 2c; Methods). Bottom-right: Plot of GAP statistic, a robust model selection 102 

metric, against the number (k) of clusters fitted to data20 (Methods). Red point: statistically optimal 103 
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number of clusters (k*), identified as the smallest k for which GAP exceeds zero; here k* = 2 (Methods) 104 

20. (d) Half-max extents of these two optimal RF clusters (lobes). (e-h) Same as a-d, but for a different 105 

Imc neuron. (i) Plot of p-values (logarithmic scale) obtained from separability testing for each sorted unit;  106 

one-way ANOVA followed by correction for multiple comparisons (Methods). P-value <0.05 (blue data): 107 

units that are deemed ‘well-separated’ from co-recorded units as well as outliers (n=114). Red data: units 108 

not well separated form cohort. (j) Effect of neuronal response variability and spatial sampling step-size 109 

on number of RF lobes detected in a simulated single-lobed Gaussian RF; Monte-Carlo analysis 110 

(Supplementary Fig. 2g; Methods). Red area: Fano-factor and step-size pairs yielding >5% rate of 111 

misidentifying single-lobed RF as multilobed. Blue data: Experimentally recorded Imc neurons (n = 114). 112 

(k) Summary of number of RF lobes across 69 OT neurons. See also Supplementary Figs. 1 and 2. (l) 113 

Summary of number of RF lobes across 114 Imc neurons. 114 

RF lobes are distributed along the elevation, but not azimuth. To investigate organizing 115 

principles underlying spatial encoding by Imc neurons, we analyzed the properties of the 116 

measured visual RFs along the two major anatomical axes of the Imc (Supplementary Fig. 1a). 117 

The azimuthal centers of RF lobes were nearly identical for lobes within individual multilobe 118 

neurons (Fig. 2a, blue data; Methods), across neurons recorded at a given site (Fig. 2b, blue 119 

data), and across sites recorded along the dorsoventral axis of the Imc (Fig. 2c; Methods). 120 

However, azimuthal encoding varied systematically along the rostrocaudal axis of the Imc: 121 

centers of RF lobes encoded progressively more peripheral azimuths as the recording electrode 122 

was moved from rostral to caudal portions of the Imc (Fig. 2d 17,18).  123 

The encoding of elevation by Imc neurons was strikingly different. RF lobes of individual 124 

multilobe neurons were spaced arbitrarily in elevation (Fig. 2a: large range of red data). 125 

Additionally, RF lobes of multilobe Imc neurons were distributed widely across elevational 126 
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space: for each multilobe neuron (Fig. 2a, inset: large median of data), across neurons recorded 127 

at a given site (Fig. 2b, red), and across sites recorded along both dorsoventral and rostrocaudal 128 

axes (Supplementary Fig. 3a-d). There was also no systematic relationship between encoded 129 

elevations and distance along either principal axis (Supplementary Fig. 3ab).  130 

These results demonstrated that whereas azimuthal space is encoded in a topographic 131 

manner along the rostrocaudal extent of the Imc, elevational space is encoded by multiple, 132 

arbitrarily spaced, and widely distributed lobes of varying number and size (Supplementary Fig. 133 

3e-j), with a maximum of three RF lobes per neuron (Fig. 1i).  134 

Fig. 2. RF lobes of multilobe Imc neurons are distributed along elevation but not azimuth, and RFs 135 

are organized topographically in azimuth, but not elevation. (a) Histograms of pairwise distances 136 

between centers of RF lobes of individual 137 

multilobe neurons (Methods). Blue: azimuthal 138 

distance; red: elevational distance; marked 139 

range: 5th to 95th percentile range of red data. 140 

Arrows: median values; *: median 141 

significantly different from 0 (p = 0.17, 142 

azimuth; p < 0.05, elevation; one-tailed 143 

ranksum tests). Inset: Histogram of maximum 144 

elevational distance between centers of RF 145 

lobes of individual multilobe neurons (p < 0.05, one-tailed ranksum test). (b) Histograms of maximum 146 

distances between centers of RF lobes of multilobe neurons sorted from individual recording sites 147 

(Methods); conventions as in a; p = 0.65 for azimuth; one-tailed ranskum test, p < 0.05 for elevation; one 148 

tailed t-test. (c) Plot of average azimuthal center of a recording site against the dorsoventral position of 149 

the site within the Imc (Methods); colors: different penetrations. Inset: Data re-plotted as histogram of 150 
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pairwise differences in the azimuthal centers of recording sites along a dorsoventral penetration (p=0.18, 151 

one-tailed ranskum test). (d) Plot of average azimuthal ‘center’ of a dorsoventral penetration against the 152 

rostrocaudal position of electrode in the Imc in that recording session (Methods). Colors: different 153 

recording sessions; Spearman correlation =1 in each case. See also Supplementary Fig. 3 154 

Neuronal scarcity necessitates multiple RF lobes. The multilobed encoding of (elevational) 155 

space by Imc neurons was puzzling. This was especially so because neurons that provide input to 156 

the Imc (OT10), as well those that receive Imc’s output (OTid), all tile sensory space with single-157 

lobed spatial RFs organized topographically in both elevation and azimuth (Fig. 1m) 8. Might the 158 

implementation of stimulus selection across space, a main function of the Imc 16, impose any 159 

demands on its spatial coding properties? We turned to theory to examine the implications, 160 

specifically, of the need for location-invariant stimulus selection on Imc RF structure (Methods). 161 

Briefly, we compared the total number of location-pairs at which selection must occur in the 162 

OTid, with the number of location-pairs in the OTid at which selection is achievable by a set of 163 

Imc neurons. Since multilobed Imc encoding is restricted along the elevation (Fig. 2ab; 164 

Supplementary Fig. 3a-d), we focused on stimulus selection between all possible pairs of 165 

elevations at any azimuth. We proved mathematically that if the number of Imc neurons (N) 166 

encoding different elevations at a given azimuth is less than the number of distinct elevational 167 

locations (L) encoded by the OTid at that azimuth (N<L), then multilobed Imc RFs are necessary 168 

for location-invariant stimulus selection (Methods).  169 

To examine the biological applicability of this insight, we estimated L and N in the owl 170 

brain. For a given azimuth, the OTid encodes elevations ranging typically from -60˚ to +60˚ and 171 

does so at a spatial resolution of at least 3° 8,12. Consequently, the number of distinct elevational 172 

locations encoded by the OTid at a given azimuth is at least 40 (Lel > 40). Next, we estimated Nel. 173 
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Because visual azimuth is organized topographically along Imc’s rostrocaudal axis (Fig. 2d), 174 

transverse sections of the Imc provide snapshots of Imc tissue encoding all elevations at a given 175 

azimuth (Fig. 3ab). We obtained histological sections perpendicular to the rostrocaudal axis of 176 

the Imc and performed Nissl staining to visualize cell bodies (Methods). Counts of the number of 177 

Nissl-stained somata21 showed that the majority of sections (75%) had fewer than 28 neurons per 178 

section (Nel; Fig. 3bc). Thus, Nel is typically much smaller than Lel  (median Nel / Lel < 26/40 = 179 

0.65). In contrast, along the azimuth, there are at least as many Imc neurons as there are encoded 180 

azimuthal locations; Naz ≥ Laz  (Methods). 181 

These results indicated that multilobed encoding in the Imc may be driven by the need for 182 

the Imc-OT circuit to achieve location-invariant 183 

stimulus selection along elevation in the face of 184 

a paucity of Imc neurons encoding elevation 185 

(Fig. 3bc).  186 

Fig. 3. Imc encodes elevations with a sparse 187 

number of neurons. (a) Coronal section of owl 188 

midbrain showing Imc and OT. (b) Zoomed-in 189 

image showing individual, Nissl-stained, Imc somata 190 

(arrowheads); 23 somata in this section. (c) violin 191 

plot showing number of Imc somata per coronal section; each dot – one section; n=64 sections across two 192 

owls. Dashed line: median (26 neurons); solid line: 75th percentile (28 neurons).  193 

Model predicts combinatorially optimized inhibition for location-invariant selection. To 194 

explore how an under-complete set of Imc neurons might implement location invariant selection, 195 

we turned to computational modeling. We set up stimulus selection across spatial locations as an 196 
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optimization problem with L locations (elevations at a given azimuth), and N model neurons 197 

encoding those elevations (N<L; Supplementary Fig. 4; Methods). We imbued all model neurons 198 

with Imc-like spatially inverting connectivity with the OT (Supplementary Figs. 1 and 4). The 199 

spatial RFs of these model Imc neurons were represented, for simplicity, using ones and zeros, 200 

with ones corresponding to locations inside the RF, and zeros, outside (Fig. 4A; also see 201 

Supplementary Fig. 4 for  validity of model even when this assumption is relaxed). The goal of 202 

the optimization was to identify the spatial RF structures of these N neurons (i.e., the numbers of 203 

their RF lobes and their spatial locations), such that when two stimuli of equal priority are placed 204 

at any pair of locations, they suppress each other equally. This necessary and sufficient condition 205 

for location-invariant selection was captured by a specially constructed cost function whose 206 

value decreased as the number of location-pairs at which the above condition was satisfied 207 

increased. The cost function took the minimum possible value of –L(L-1) if and only if the 208 

condition was satisfied at all location-pairs (Methods). Any set of Imc RFs that achieved this 209 

minimum value, i.e., that achieved location invariant selection, was called an ‘optimal solution’. 210 

To match experimental observations (Fig. 1i), we added the constraint that the maximum number 211 

of RF lobes allowed for each neuron (kmax) was three. 212 

An optimal solution for L=5 locations with N=4 neurons illustrates how fewer than L 213 

inhibitory neurons can successfully achieve location-invariant selection (Fig. 4a-c; see also 214 

Supplementary Fig. 5ab for example optimal solutions for L=20 and L=40 locations). Repeated 215 

optimization runs (1000 runs) for L=5 locations and N ranging from 1 to 5 indicated that the 216 

smallest number of neurons with which location-invariant selection could be achieved by the 217 

model, called N*, was 4 (Supplementary Fig. 5c; Methods). Therefore, the maximum ‘savings’ 218 

in the number of Imc-like neurons for L=5 locations was 1 (L-N*). Notably, however, as L 219 
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increased, neuronal savings increased (Fig. 4d), with L=40 requiring N*=27 neurons to solve 220 

location-invariant selection (savings of 13 neurons = 32%; Supplementary Fig. 5b). In addition, 221 

neuronal savings also increased as a function of the maximum number of RF lobes allowed per 222 

neuron (Fig. 4d). 223 

Further examination of optimal model solutions for all runs of all (L, N*, kmax) values 224 

tested revealed three signature properties that held true in every case. First, every optimal 225 

solution contained multilobe Imc neurons (Fig. 4a and Supplementary Fig. 5d). Conceptually, 226 

this ‘multilobe property’ is necessary because of the paucity of neurons, i.e., the N<L constraint, 227 

as demonstrated by theory (Methods). Second, every multilobe neuron in an optimal solution 228 

shared each of its lobes, but not all, with another neuron (Fig. 4e and Supplementary Fig. 5e) – a 229 

severe constraint on the relative organization of RF lobes across neurons, one that imposes 230 

structured non-orthogonality on the RFs. Conceptually, this ‘optimized lobe-overlap property’ is 231 

necessary because selection needs to be solved also when two stimuli are placed at the locations 232 

encoded by different lobes of an individual multilobe neuron (Supplementary Fig. 5f). Third, 233 

neurons in optimal solutions used a combinatorial inhibition strategy to achieve location-234 

invariant stimulus selection: assorted subsets of neurons were selectively recruited to solve 235 

stimulus selection for individual location-pairs, with the subsets corresponding to different 236 

location-pairs intersecting extensively. The assorted nature of the subsets was evident in the 237 

observation that ‘distant’ neurons were recruited to solve selection between even nearby 238 

locations, and vice-versa (Fig. 4f) – features that held true across all permutations of the ordering 239 

of the neurons in the solution set (Supplementary Fig. 5gh). The extensive intersection feature 240 

was evident in the observation that the neural subsets recruited to solve selection even for 241 

location-pairs occupying distant portions of space shared common neurons (Fig. 4g; 242 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/243279doi: bioRxiv preprint 

https://doi.org/10.1101/243279


 

 12

Supplementary Fig. 5i). Conceptually, this ‘combinatorial property’ is a consequence of the RF 243 

lobes of individual multilobe neurons being widely distributed and arbitrarily spaced in optimal 244 

model solutions (Supplementary Fig. 5j and 6bd): restricting RF lobes to only nearby locations 245 

substantially limits the space of available RF configurations, precluding optimal solutions.  246 

Taken together, the model predicted that the solution of location-invariant selection when 247 

N < L necessitated combinatorially 248 

optimized coding by sparse, multilobe 249 

inhibitory neurons (COSMI). In contrast, 250 

when N ≥ L, as is the case with Imc’s 251 

azimuthal encoding, the model was always 252 

able to solve location invariant selection 253 

with single-lobed neurons (Fig. 4d, kmax=1, 254 

blue data), using the straightforward copy-255 

and-paste strategy (Supplementary Fig. 256 

1d).   257 

Fig. 4. Model predicts combinatorially 258 

optimized solution for location-invariant 259 

stimulus selection when neurons are scarce. 260 

(a-c) Illustration of location-invariant 261 

selection by an optimal model solution for 262 

L=5 locations (a-e) and N=4 neurons (#1-#4). (a) The four RFs in the optimal solution. Shaded areas: RF 263 

of neuron; two neurons have multilobed RFs (#1 – two lobes, #3 – 3 lobes). (b) Optimal solution in a 264 

implements selection between stimuli Sa and Sb at location-pair ab (extreme left). Sa and Sb are of equal 265 

priority (1 unit for simplicity). Top row: Information flow through the model OT10-Imc-OTid circuit 266 
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triggered by Sa. 1
st column: Activation of OT10 space map. 2nd column: Activation of individual Imc 267 

neurons. 3rd column: Suppression pattern generated by each activated Imc neuron (spatial inverse of the 268 

neuron’s RF; consistent with published anatomical results; Supplementary Fig. 1b-e 6). 4th column: 269 

Combined pattern of suppression in the OTid. Dark colors: 2 units of suppression; light colors: 1 unit 270 

(Methods). Curved arrow: Net suppression driven by Sa location b. Dark-gray shading: ‘Activated’ 271 

neuron (#2); defined as a neuron driven by Sa but that does not send inhibition to location b. Red shading: 272 

‘Recruited’ neuron (#3); defined as activated neuron that sends inhibition to location b, thereby involved 273 

in selection for location-pair ab. Bottom row: Same as top row, but for stimulus Sb. (c) Selection matrix 274 

summarizing implementation of selection for all location pairs by optimal model solution in a. Columns: 275 

10 possible location-pairs; rows: the four neurons. In each column: dark-gray – activated neurons, red – 276 

recruited neurons, blank  –  neurons not activated by either stimulus. (d) Summary plot showing the 277 

fewest number of neurons (N*) needed by model to solve location-invariant selection for different 278 

numbers of locations (L) (Supplementary Fig. 5c; Methods). kmax: maximum number of RF lobes allowed 279 

for each neuron (Methods). (e-g) Illustration of signature properties for combinatorially optimized 280 

inhibition exhibited by optimal model solution in a. (e) Signature property #2 (optimized lobe-overlap; 281 

see text). Top row: multilobe neuron #1 in A shares upper, but not lower lobe with neuron #2, and shares 282 

lower, but not upper lobe with neurons #3 and #4. Bottom row: Similar, but for multilobe neuron #3 (see 283 

also Supplementary Fig. 5e). (f, g) Signature property #3 (combinatorial inhibition; see text). Left panels: 284 

Locations a-e. Right panels: Patterns of neurons activated and recruited to solve selection for indicated 285 

location-pairs (LPs); extracted from selection matrix in c. ‘Assortedness’ feature: location-pair bc 286 

involves nearby locations (f, left panel), but recruits distant neurons to solve selection (f, right panel; #1 287 

and #4; distance =3; Methods); conversely, distant location-pair ae recruits nearby neurons (#1 and #2; 288 

distance =1. This holds across all permutations of neuronal ordering (Supplementary Fig. 5gh; Methods). 289 

Extensive intersection feature: location-pairs occupying distant portions of space (g, left panel) recruit 290 

intersecting neural subsets to solve selection (g, right panel; see also Supplementary Fig. 5i; Methods). 291 

See also Supplementary Fig. 4, 5 and 6. 292 
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Experimental validation of model predictions in Imc. To examine if the owl Imc might 293 

employ a combinatorially optimized strategy for location-invariant selection in elevation, we 294 

tested experimentally whether the RFs of Imc neurons exhibited the three signature properties 295 

predicted by the model. Because all elevations at a given azimuth are encoded by neurons within 296 

a coronal plane (Fig. 2bc), we sampled these neurons by making recordings at multiple 297 

dorsoventral sites within each coronal plane (Methods).  298 

Across recordings made in 16 such coronal planes, we found that multilobe neurons were 299 

present in nearly every case (14/16; Fig. 5a; also Supplementary Fig. 3a), thereby validating the 300 

signature property #1. The impracticability of recording exhaustively from all Imc neurons in a 301 

coronal plane made it infeasible to test if every lobe of each multilobe neuron satisfied the 302 

optimized lobe-overlap property (signature property #2; Fig. 4e). Therefore, we tested if at least 303 

one lobe of each multilobe neuron satisfied it (Fig. 5b; Methods). The median fraction of 304 

multilobe neurons in each coronal plane that satisfied this property was 1 (Fig. 5c). Finally, we 305 

tested signature property #3 (combinatorial inhibition). Both its features, namely, assorted 306 

recruitment and extensive intersection, were satisfied in nearly every testable case (7/8 and 6/6 307 

planes respectively; Fig. 5d-g; Methods), despite the non-exhaustive sampling of Imc neurons in 308 

individual planes. In addition, the arbitrarily spaced and widely distributed nature of the RF lobes 309 

of individual model neurons (Supplementary Fig. 5jk), a model feature driving combinatorial 310 

inhibition, was also found in experimental data (Fig. 2ab, Supplementary Fig. 3a-d).  311 
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  312 

Fig. 5. Experimental validation of model predictions in the Imc. (a) Signature property #1: Pie-chart 313 

summary of fraction of Imc coronal planes tested that contained multilobe neurons (87% = 14/16 planes; 314 

also Supplementary Fig. 3ef). (b-c) Signature property #2. (b) Left: Rate map of RF of another Imc 315 

neuron sorted from the same recording site as the neuron in Fig. 1a-d. (Only these two neurons were 316 

recorded in this Imc coronal plane.) Middle: Half-max of RFs of neurons in Fig. 1 (purple; reproduced 317 

from 1d) and Fig. 5b left (orange). Right: For each neuron, the upper RF lobe, but not lower one, shows 318 

overlap, satisfying the testable lobe-overlap property (see text); conventions as in Fig. 4e. (c) Fraction of 319 

multilobe neurons in each coronal plane satisfying the testable version of lobe-overlap property; dot – 320 

coronal plane; median fraction = 1. (d-f) Signature property #3. (d) RFs (half-max) of all Imc neurons 321 

recorded within an example coronal plane. a-g are seven (discretized) spatial locations encoded by these 322 

neurons (Methods). (e) Selection matrix showing combinatorial activation of recorded neurons for 323 

selection at different location-pairs; conventions as in Fig. 4c. (f) Two left panels: Illustration of 324 

assortedness feature for example in d; conventions as in Fig. 4f (Methods). Right: Summary of this 325 

feature across Imc coronal planes; only those planes containing ≥ 3 Imc neurons each were testable (8/14; 326 

Methods) Dashed lines: Distance cut-offs for ‘distant’ neurons (green; 0.66) and ‘nearby’ neurons 327 

(magenta; 0.33; Methods). Filled circles: Imc coronal planes that satisfied these cut-off criteria; ≥ 7/8 in 328 

each case (Methods). (g) Left: Illustration of ‘extensive intersection’ feature for example in d; 329 

conventions as in 4g. Right: Pie-chart summary of this feature across coronal planes (100% exhibited the 330 

feature; 6/6). Note that this feature was testable only for those planes for which the recorded neurons 331 
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encoded location-pairs occupying distant portions of space (6/14; Methods). 332 

Metabolic and wiring costs explain specialized properties of Imc neurons. Three questions 333 

regarding the biological implementation of location-invariant selection in the Imc circuit 334 

remained puzzling. First, why might N<L be biologically desirable in the Imc, in the first place 335 

(necessitating combinatorially optimized inhibition)? Second, if N<L is attractive biologically, 336 

why don’t Imc RFs have a large number of lobes, thereby achieving greater savings in the 337 

number of Imc neurons (Fig. 4d)? In other words, why is the maximum number of Imc RF lobes 338 

restricted to a low number (kmax = 3; Fig. 1i)? Third, why is multilobed encoding found only 339 

along one spatial axis (here, elevation), why not along both axes for greater neuronal savings?  340 

To gain insight into these questions, we examined Imc function in the context of two 341 

types of costs that nervous systems must incur in building and operating a neural circuit: wiring 342 

cost and metabolic cost. We estimated wiring cost by quantifying the cost of implementing 343 

spatially inverting projection patterns from the Imc to the OT (Methods 22), and metabolic cost 344 

by quantifying the cost of broadcasting of spikes across the OT for competitive suppression. We 345 

found that wiring cost decreases as the number of RF lobes increases (Fig. 6a; Methods). In 346 

contrast, metabolic cost increases as the number of RF lobes increases (Fig. 6b; Methods). 347 

Consequently, the wiring cost places a lower bound on the number of RF lobes (and a 348 

corresponding upper bound on the number of neurons), whereas the metabolic cost places an 349 

upper bound on the number of RF lobes (and a lower bound on the number of neurons). The 350 

ideal number of RF lobes (and the number of neurons necessary), therefore, is one that 351 

minimizes some weighted combination of the two opposing costs (Fig. 6c; blue). Because Imc 352 

neurons have high firing rates (median = 76.5 Hz  15,23; Fig. 1a), the metabolic cost of Imc 353 

function scales up substantially, pulling the ideal number of RF lobes to even lower values (Fig. 354 
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6c, red vs. blue; thereby also providing a rationale for the continued presence of some single-355 

lobe neurons in the Imc; Fig. 1i) 356 

Taken together, these results indicate that a small number of Imc neurons (N<L), with 357 

multilobed RFs that have a small number of RF lobes (small kmax value), are ideally suited to 358 

achieve location-invariant selection while minimizing the net neural costs. Therefore, increasing 359 

excessively the number of RF lobes along one spatial axis (here, elevation), or increasing the 360 

number of RF lobes also along the other axis as well (here, azimuth), is not biologically 361 

desirable. The occurrence of multilobed encoding specifically along elevation, rather than 362 

azimuth, is likely a side-effect of azimuthal inputs from OT’s rostrocaudal axis being mapped 363 

directly onto the parallel (and long) rostrocaudal axis of the Imc 6, relegating elevation to be 364 

coded by the transverse (and neurally sparse) planes. 365 

Fig. 6. Metabolic and wiring costs of location-invariant stimulus selection. (a) Wiring cost plotted as 366 

a function of the maximum number of Imc RF lobes allowed (kmax); calculated across optimal model 367 

solutions (Methods). (b) 368 

Metabolic cost as a function of 369 

kmax (Methods). (c) Schematic 370 

showing total cost (weighted 371 

combination of a and b) for Imc 372 

circuit to solve location-invariant selection for a given L at low average firing rates (blue: 10 Hz), and 373 

high average firing rates (red: 80 Hz; Methods). Circled values along x-axis (and corresponding large 374 

dots) indicate the optimal kmax values at the two firing rate levels. Results demonstrate left shift of optimal 375 

kmax with increasing firing rates (Methods). Absolute values of optimal kmax are a result of the specific 376 

weights chosen here; weights identical for both curves. In all cases: mean ± SD values are plotted; SD 377 

values smaller than size of dots. 378 
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Discussion.  379 

The combination of electrophysiology, theory, anatomy, and modeling in this study provides a 380 

detailed unpacking in owls of a critical neural function, namely location-invariant stimulus 381 

selection. 382 

Multilobed visuospatial RFs and stimulus selection. 383 

Multilobed spatial RFs have not been reported previously in any visual sensory area to the best 384 

of our knowledge. We find that in the Imc, a sensory area that is just two synapses away from the 385 

retina 24, the majority of neurons have multilobed visual RFs. This contrasts with previous 386 

reports of large, vertically elongated visual RFs in the Imc 17,18 (a consequence of the detailed 387 

approaches used here, rather than species differences 15).  Multilobed Imc RFs were uncovered 388 

here using flashing dots as visual stimuli, a classical approach that has been used extensively in 389 

visual neuroscience studies across species. The use of this approach contrasts directly the 390 

unusual multilobed encoding of space by Imc with the single-lobed encoding of space by OT 391 

(Fig. 1k).  392 

We demonstrate the need for such unusual encoding in the inhibitory Imc (Fig. 3), and 393 

uncover a novel neural strategy for location-invariant stimulus selection – combinatorially 394 

optimized feature coding by a sparse set of multilobe inhibitory neurons (COSMI; Fig 4). The 395 

need for this strategy is unimpacted by the simplifying assumption of binary RFs made by the 396 

optimization model (Supplementary Fig 4), and is further supported by experimental validation 397 

of model predictions (Fig. 5). Additionally, through subsequent estimation of the net cost of 398 

neural circuit operation, we provide a plausible rationale for ‘why’ the owl Imc may be 399 

organized, anatomically and functionally, in the way that it is (Fig. 6). The specific values of 400 
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kmax, the maximum number of RF lobes, used to develop this rationale (Fig. 6) represent values 401 

that are particularly relevant to the Imc: kmax=1 corresponds the single-lobed case, kmax=3 402 

corresponds to the experimentally determined value in the owl Imc, and kmax=10 corresponds to 403 

the practical upper bound on the number of possible RF lobes (based on the functional properties 404 

of Imc neurons; Methods).  405 

The arguments in this study are framed in the context of selection between pairs of 406 

locations. Because selection among multiple stimuli requires comparisons between all possible 407 

pairs of stimulus locations, the computational principles uncovered here apply directly to the 408 

general problem of selection across an arbitrary number of competing stimuli.   409 

COSMI is distinct from traditional population coding schemes 410 

Combinatorially optimized coding is conceptually distinct from traditional population neural 411 

coding schemes. For instance, in population vector coding, multiple neurons with overlapping, 412 

single-lobed tuning curves (or RFs) are activated to encode feature values such as stimulus 413 

locations, motion direction, etc., with high precision 25-28. Typically, it is possible to order these 414 

RFs along the feature axis such that neighboring values of features are always encoded by 415 

functionally ‘local' subsets of neurons (Supplementary Fig. 6ac). In contrast, neurons with 416 

multilobed RFs cannot be ordered this way: some neurons always code also for distant locations 417 

(Supplementary Figs. 6bd and 5i), and selection for a given location-pair cannot be guaranteed 418 

by a ‘local’ subset of neurons (Supplementary Fig. 6bd). A population coding scheme reported in 419 

the literature that does involve multilobed encoding as well as the activation of non-local neural 420 

subsets is the combinatorial coding of odors by olfactory receptor neurons 29. Whereas assorted 421 

and extensively intersecting subsets of neurons are activated to encode odors, no inherent 422 

constraint on the relative positioning of these RF lobes across neurons has been demonstrated. In 423 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/243279doi: bioRxiv preprint 

https://doi.org/10.1101/243279


 

 20

contrast, in the combinatorially optimized coding reported here, the placement of RF lobes needs 424 

to be optimized across neurons, and is exemplified by the lobe-overlap property (Fig. 4e). For 425 

this same reason, our scheme also differs from the encoding of space by entorhinal grid cells: the 426 

firing fields of different grid cells are not inherently yoked to one another 30,31. In addition, each 427 

grid cell has a large number of highly organized firing fields, unlike the few, and arbitrarily 428 

placed, RF lobes of Imc neurons. Finally, combinatorially optimized coding also stands in direct 429 

contrast to the sparse, orthogonal coding by an overcomplete set of neurons reported in many 430 

brain areas 32,33: it involves promiscuous, non-orthogonal coding by an under-complete set of 431 

neurons. The problem of location-invariant selection with limited neurons, which yields 432 

combinatorially optimized coding in Imc, belongs to the same (np-complete) class of 433 

computationally complex problems as the traveling salesman problem and the minimum 434 

spanning tree problem 34,35. Although the brain solves it naturally, exactly how Imc’s optimized, 435 

multilobed RFs are specified during neural development is an intriguing open question.  436 

Generality of COSMI beyond the owl Imc.  437 

The discoveries, here, of multilobed visual representation, a new form of population coding, and 438 

an efficient neural solution for a critical brain function (stimulus selection) have come from the 439 

systematic study of the functional response properties of inhibitory neurons in the owl Imc. 440 

The Imc, called the periparabigeminal lateral tegmental nucleus (pLTN) in mammals, is 441 

conserved across vertebrate midbrains, as is the specialized anatomical connectivity between the 442 

Imc/pLTN and the OT/SC 5,6. It is the primary source of long-range competitive inhibition to the 443 

OT 16, and has been proposed to be a critical processing hub for stimulus selection for attention 444 

7,15,16. However, the functional properties of this midbrain nucleus of emerging importance have 445 

not been studied in any vertebrate other than the barn owl thus far. The biological advantages 446 
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afforded by combinatorially optimized inhibition together with the Imc’s conserved nature 447 

suggest that COSMI may be a solution employed generally by the vertebrate midbrain to achieve 448 

location-invariant spatial selection.  449 

The computational principle of combinatorially optimized inhibition also extends 450 

naturally to selection across values of other stimulus features such as orientation, color, odor, etc. 451 

Typically, the functional properties of inhibitory neurons in cortical as well as sub-cortical areas 452 

are less well-studied than those of primary (pyramidal) neurons. Our results indicate that a 453 

careful examination of the encoding properties of inhibitory neurons in key brain areas may 454 

reveal COSMI, the result of concerted shaping of functional and structural circuit properties, as a 455 

widespread strategy for efficient, feature-invariant stimulus selection and decision-making under 456 

metabolic and anatomic constraints.  457 
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Methods 468 

Animals. We performed experimental recordings in 15 head-fixed, non-anesthetized adult barn 469 

owls that were viewing a visual screen passively (Tyto alba). Both male and female birds were 470 

used; the birds were shared across several studies. All procedures for animal care and use were 471 

carried out following approval by the Johns Hopkins University Institutional Animal Care and 472 

Use Committee, and in accordance with NIH guidelines for the care and use of laboratory 473 

animals. Owls were group housed in enclosures within the aviary, each containing up to 6 birds. 474 

The light/dark cycle was 12 hrs/12 hrs. 475 

Neurophysiology. Experiments were performed following protocols that have been described 476 

previously 12,16. Briefly, epoxy-coated, high impedance, tungsten microelectrodes (A-M Systems, 477 

250µm, 5 -10 MΩ at 1 kHz) were used to record single and multi-units extracellularly. A mixture 478 

of isoflurane (1.5-2%) and nitrous oxide/oxygen (45:55 by volume) was used at the start of the 479 

experiment to anesthetize the bird and secure it in the experimental rig (a 30-minute period of 480 

initial set-up). Isoflurane was turned off immediately after the bird was secured and was not 481 

turned back on for the remainder of the experiment. Frequently, nitrous oxide was also turned off 482 

at this point, but in several experiments, it was left on for a few hours if the bird’s temperament 483 

necessitated it (some birds were calm when restrained, while others were not). However, it was 484 

turned off at least 30 minutes before the recording session. Our recordings were performed 485 

starting, typically, 3 hours after initial set-up (the time required for positioning the electrode). As 486 

recovery from isofluorane occurs well under 30 minutes after it is turned off, and recovery from 487 

nitrous oxide occurs within a minute (the bird stands up and flies away if freed from restraints), 488 

recordings were made in animals that were not anesthetized and non-tranquilized. 489 

We first targeted the OT based on well-established methods 8. We then navigated to the 490 
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Imc using the OT’s topographic space map as reference and previously published methods 491 

(Supplementary Fig. 1a) 16. The Imc is located approximately 16 mm ventral to the surface of the 492 

brain. Dorsoventral penetrations through the Imc were made at a medial-leading angle of 5° from 493 

the vertical to avoid a major blood vessel in the path to the Imc.  494 

Visual stimuli and RF measurement. Visual stimuli used here have been described previously 495 

12,13. Briefly, either stationary, translating, or looming visual dots (of fixed contrast) were flashed 496 

at different locations on a tangent TV monitor in front of the owl. Looming stimuli were dots that 497 

expanded linearly in size over time, starting from a size of 0.6° in radius. Visual stimuli were 498 

presented for a duration of 250ms (and inter stimulus interval of 1.5-3 s) at all sampled locations. 499 

Pilot experiments indicated that visual RFs were narrow in azimuth but spread along the 500 

elevation. Therefore, RF measurements were made by presenting stimuli over the -60˚ to 60˚ 501 

range in elevation, and over a 40° (± 10.4°) range in azimuth (centered around the azimuth that 502 

yielded the best responses). Each sampled stimulus location was repeatedly tested 9-15 times in a 503 

randomly interleaved fashion. Multi-unit spike waveforms, recorded using Tucker Davis 504 

Technologies hardware interfaced with MATLAB, were sorted off-line into putative single 505 

neurons (see below). The spatial responses for each neuron were measured by counting spikes at 506 

each sampled location during a 100-350 ms time window following stimulus onset. 507 

Spike sorting multi-unit data. The ‘chronux’ spike-sorting toolbox was used for the majority of 508 

the analyses 36. This method is based on a hierarchical unsupervised clustering approach in 509 

which the spike waveforms are initially classified into a large number of clusters, typically 10 510 

times the number of putative units recorded. Clusters with very few spikes are discarded and the 511 

remaining clusters are then aggregated automatically using metrics of similarity between 512 
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waveform shapes. In addition, we include only those units for analysis that have less than 5% of 513 

the spikes within 1.5 ms of each other (ISI criterion).  514 

The statistical separability of individual sorted units was assessed based on the distance 515 

of a unit’s cluster (of waveforms) from the clusters corresponding to other units as well as the 516 

outlier cluster measured at the same site. We first projected the spike waveforms measured at a 517 

given site to a 3-dimensional space using principal components analysis. Then, we performed a 518 

one-way ANOVA test to examine if the mean of the waveforms of a given unit (in the projected 519 

3-dimensions) was significantly different from the means corresponding to the other units and 520 

the outliers. This was followed by the Holm-Bonferroni criterion for multiple comparisons. In a 521 

few cases (4/116), there were either too few waveforms in the outlier cluster (number of 522 

waveforms in outlier cluster < 8% of number of waveforms in any of the remaining sorted units), 523 

or the outlier waveforms did not form a cluster with a Gaussian distribution. In such cases, we 524 

only tested for the distance of the unit’s cluster mean from the cluster means of other units. We 525 

regarded only those units whose cluster means were significantly different from the means of all 526 

other units (and the outlier cluster) as ‘well-separated’ units per this separability criterion 527 

(p<0.05; the p-value plotted for each unit in Figure 1i is the largest p-value obtained across all 528 

comparisons for that unit). Only well-separated units were included in all remaining analyses 529 

(subsequent to Fig. 1i) in this study. 530 

Identification of the optimal number of RF lobes (Fig. 1). In order to determine the number of 531 

firing fields (or lobes) in an RF in an unbiased manner, we first transformed the measured RF 532 

responses to a distribution of points in 2-dimensional space (azimuth x elevation). This 533 

distribution was generated such that the density of points around each sampled spatial location 534 

was proportional to the firing rate of the neuron evoked by a visual stimulus presented at that 535 
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location. We achieved this by distributing points randomly and uniformly within a rectangle 536 

centered around the sampled location such that the number of points was equal to the firing rate 537 

at that location; the dimensions of the rectangle were the azimuthal and elevational sampling 538 

steps, respectively.   This transformation allowed us to apply spatial clustering methods to the 539 

firing rate maps.  540 

Next, using the density peaks clustering method 19, we fit successively k=1,2,3…6 541 

clusters to the distribution (Fig. 1cg). This clustering method identifies cluster centers by 542 

searching for regions that have high local density of points (ρ) that are also far away from any 543 

points of equal or higher density (δ=minimum distance from points of equal or higher density; 544 

Supplementary Fig. 2c-f. For the point with highest local density, δ is conventionally taken as the 545 

maximum distance of the point from all other points). It is robust to nonlinear cluster boundaries 546 

and unequal cluster sizes – conditions under which traditional methods like k-means perform 547 

poorly. The k cluster centers are chosen by the algorithm as points with the k highest values of 548 

gamma (γ), defined as the product of ρ and δ. We repeated this procedure for each k, thereby 549 

fitting the 1-best, 2-best, … 6-best clusters to the data.  550 

 Following this, we applied a model selection procedure to identify the optimal number of 551 

clusters in the data, i.e., the best k value (k*), based on the ‘gap statistic’ 20. This is an unbiased 552 

method to detect the number of clusters that best fit a distribution of points. For each k, we 553 

estimated a ‘gap’ value (gap(k)), which evaluated the goodness of fitting k clusters to the 554 

distribution. The gap value was calculated by standardizing the pooled within-cluster sum of 555 

square distances between all points in each of the k clusters (Wk) and comparing its log value 556 

(log (Wk)) to the expectation of this quantity, (E*(log (Wk)), under the null hypothesis that the 557 

data contains only one cluster 20. We calculated this in MATLAB by using the ‘evalclusters’ 558 
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function with ‘gap’ as the evaluation method, which yielded gap(k) as well as se(k) for each k; 559 

se(k) was the standard error in the estimate of gap(k). Then, the gap selection statistic was 560 

defined as, GAP(k) = gap(k)- gap(k+1) + se(k+1). The number of clusters that fit the data 561 

optimally is defined by the method as the smallest value of k for which GAP(k) >= 0.  562 

Conceptually, the value of GAP(k) for the null hypothesis (k*=1) keeps decreasing linearly with 563 

increasing k, whereas the rate of the decrease of the metric under the alternate hypothesis (k*>1) 564 

has been shown to fall exactly at k=k*. Hence the ‘gap’ between the two curves is maximum at 565 

k=k*, and GAP(k), the difference between gap(k) and gap(k+1) is greater than zero for the first 566 

time when k=k*.   567 

Defining the centers of RF lobes. The center of an RF lobe defined as the stimulus location 568 

evoking the highest firing rate within that lobe. The azimuthal RF ‘center’ of an Imc neuron is 569 

defined as the average of the azimuthal centers of all of its RF lobes, because RF lobes of an 570 

individual neuron do not vary significantly in azimuth (Fig. 2a; blue). The azimuthal RF ‘center’ 571 

of a recording site in the Imc, across all the neurons recorded at that site, is defined as the 572 

average of the azimuthal centers across all the RF lobes of all the neurons recorded at that site. 573 

This is valid because RF centers of individual neurons within a recording site do not vary 574 

significantly in azimuth (Fig. 2b; blue). The azimuthal RF ‘center’ of a penetration is defined as 575 

the average of the azimuthal centers across all recording sites in that penetration. This is valid 576 

because RF centers of individual recording sites within a penetration do not vary significantly in 577 

azimuth (Fig. 2c).  578 

Monte-Carlo analysis of the effect of neuronal noise and spatial sampling resolution on 579 

number of detected RF lobes (Fig. 1). A low spatial sampling resolution during the 580 

measurement of spatial RFs, as well as high variability in neural responses, could both cause a 581 
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single lobed RF to appear falsely as a multilobed one (see Supplementary Fig. 2g). To test how 582 

robust our method for identifying the ideal number of RF lobes is to sampling resolution 583 

(sampling step-size) and neural response variability (response Fano-factor; defined as 584 

variance/mean), we performed the following control. First, we generated a single-lobed Gaussian 585 

in 2D (azimuth x elevation), with mean and covariance equal to the average values of these 586 

parameters across all the experimentally measured Imc RFs (114 Imc units). Using this single-587 

lobed Gaussian as ‘reference’, we repeatedly simulated RFs using different step-sizes and 588 

different response Fano-factor values:  For a given step-size, the firing rate at each location was 589 

chosen randomly from a normal distribution with mean equal to the value yielded by the 590 

reference Gaussian at that location, and variance determined by the Fano-factor value. Next, we 591 

transformed this simulated RF into a distribution of 2-D points and applied the density peaks 592 

clustering method. Finally, we applied the gap-statistic model selection method to determine the 593 

ideal number of lobes in the RF. We repeated this 150 times for each step-size and Fano-factor 594 

pair, and calculated the fraction of times for which multiple RF lobes were detected 595 

(erroneously) in this data. We repeated the whole procedure for a range of step-size and Fano-596 

factor values that subsumed the range of experimental step-sizes and measured Fano-factor 597 

values, and identified the zone that yielded ≥ 5% false detection rate of multiple lobes (Fig. 1j). 598 

 To test if our experimental conditions had a high chance of falsely detecting multilobed 599 

RFs, we compared the experimentally used step-size for each RF and the RF’s Fano-factor value 600 

with those that yielded a ≥ 5% false detection rate in simulation. The Fano-factor for each RF 601 

was calculated as the average of the Fano-factor values at all sampled locations in that RF. The 602 

step-size for each RF was calculated as the average of the azimuth and elevation sampling steps 603 

used to measure the RF. We found that all of our RFs were well within the ‘safe’ zone of ≤ 5% 604 
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error (Fig. 1j). Thus, the detection of multilobed RFs in our data was unlikely to be a spurious 605 

consequence of sub-optimal measurement conditions.  606 

Theoretical calculations regarding the need for multilobed RFs. We wondered if the 607 

implementation of stimulus selection in the OTid, specifically, location-invariant selection in the 608 

OTid, imposed any demands on Imc RF structure. To this end, we compared the total number of 609 

location-pairs at which selection must occur in the OTid, with the number of location-pairs at 610 

which selection is achievable by a set of Imc neurons. Since multilobed Imc encoding is 611 

restricted along the elevation (Fig. 2ab), we focused on stimulus selection between all possible 612 

pairs of elevations at any azimuth. 613 

Simplified version: We started by making two simplifying assumptions: (a) that the OT space 614 

map is a collection of non-overlapping spatial RFs that tile sensory space, and (b) that each Imc 615 

neuron has exactly k RF lobes (k always ≥ 1).  616 

 In this scheme, if the number of distinct elevations (at a given azimuth) in the discretized 617 

OT space map is L, then the total number of distinct pairs of stimulus locations possible is L(L-618 

1). A stimulus placed within any RF lobe of a k-lobed Imc neuron can suppress competing 619 

stimuli located anywhere outside the RF, i.e., at L-k locations. Therefore, each Imc neuron is 620 

capable of implementing competitive selection at k(L-k) pairs of locations. With N such Imc 621 

neurons, the number of pairs of stimulus locations at which competitive selection can be resolved 622 

by the Imc is at most Nk(L-k). Note that this quantity is computed assuming no overlap between 623 

Imc RFs and is greater than the number of pairs of stimulus locations at which competitive 624 

selection can be resolved by the Imc if overlap between RFs is allowed. Therefore, to achieve 625 

successful competitive suppression between all possible pairs of stimulus locations, i.e., location 626 

invariance, a condition that must be satisfied is  627 
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                                                        ���� � �� � ��� � 1�                                                       - (1) 628 

                                               
�              � � ������

������
                                                                 - (2) 629 

This necessary (but not sufficient) condition for location invariance is already very 630 

revealing: If all Imc neurons had only single lobed RFs, i.e., k = 1, the above inequality reduces 631 

to � � � , i.e., the number of Imc neurons would need to be greater than or equal to the number 632 

of distinct spatial locations. Since the logical proposition ‘A => B’ is exactly the same as the 633 

proposition ‘not (B) => not (A)’, in our case, the proposition ‘k = 1 => N ≥ L’ is exactly the 634 

same as the proposition ‘N < L => k≠1’, i.e., if the number of Imc neurons is less than the 635 

number of spatial locations, then at least one Imc RF must be multilobed (because RFs cannot 636 

have fewer than one lobe, by definition).  637 

 This conclusion held true even when both the simplifying assumptions – (a) that OT RFs 638 

are non-overlapping, and (b) that all Imc neurons have the same number of RF lobes –  were 639 

relaxed (see ‘Full version’ next).  640 

Full version: We used a more biologically accurate model of space in which RF extents, overlap 641 

of RFs across neurons, and the resolution of competition reported in the OTid (the minimum 642 

distance between two stimuli such that OTid is able to select the stronger of the two stimuli) 12 643 

were all modeled to match experimental data. In addition, we allowed varying numbers of Imc 644 

RF lobes:  645 

 Let the total range of elevational locations for which barn owl’s midbrain encodes space 646 

be R and the resolution of encoding space be r. Then, the number of distinct locations at which a 647 

stimulus can be placed along elevation is � 
 �

	
. Let the resolution for competitive selection be 648 

Cres.  649 
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 The total number of distinct location-pairs at which two competing stimuli can be placed 650 

such that they are greater than Cres apart from each other is approximately  � �� � 
�	�


	

. Note 651 

that this quantity is calculated by counting all the locations at which a second stimulus can be 652 

placed such that it is at least Cres away on either side of a first stimulus that is placed in any of the 653 

L locations. However, when a first stimulus is placed at the edge of the visual field, a second 654 

competing stimulus can be placed only on one side such that it is Cres away. It is straightforward 655 

to show that � �� � 
�	�


	

 is smaller than the quantity when we include the edge effects. Hence, 656 

for location invariance to be achieved, selection of the stronger stimulus must at least be 657 

implemented when two competing stimuli are placed in any of these possible location-pairs.  658 

 Let the number of lobes in a given Imc neuron be �. Let the half-max size of each lobe be 659 

lh .  Then, a k lobed Imc neuron solves competition for a total of ��� � ��

	
�� location-pairs 660 

(assuming each Imc neuron sends inhibition to all locations that lie outside the half-max extent 661 

of the neuron’s RF, without loss of generality; see “Model assumptions” section below and 662 

Supplementary Fig. 4 for implications of this assumption). This is just the number of location-663 

pairs such that one stimulus can be placed inside the multi-lobed RF (at its peak for effective 664 

suppression of competing stimuli) and the other outside. Let the total number of k lobed Imc 665 

neurons be �� .  666 

Therefore, the total number of Imc neurons is  667 

                                              � 
 ∑ ����                                                                       - (3) 668 

To achieve location invariance, we need   669 

                              ∑ ��� � �� � ��

	
�
 � � �� � 
����

	

                                                       - (4) 670 
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Since � � 1, and �� � 2�	�
 (mean lh = 33.6˚± 1.25˚ from the 209 RF lobes across 114 671 

Imc neurons we measured, and Cres < 10˚ 12), we get 672 

              �� � ��

	
�
 � �� � 
����

	

                                                                                    - (5) 673 

Using (5) in (4) gives, 674 

                                                          ∑ ���� � �                                                             - (6) 675 

In other words, if all the Imc neurons are single lobed (k=1), this equation becomes 676 

� � �. Since the logical proposition ‘A => B’ is exactly the same as the proposition ‘not (B) => 677 

not (A)’, the proposition ‘k = 1 => N ≥ L’ is exactly the same as the proposition ‘N < L => k ≠ 678 

1’ i.e., if the number of Imc neurons is less than the number of spatial locations, then at least one 679 

Imc RF must be multilobed (because RFs cannot have fewer than one lobe, by definition).  680 

Histology (Fig. 3).  Owls were perfused with paraformaldehyde and their brains extracted per 681 

standard procedures. The fixed brains were blocked so that the rostro caudal axis of the Imc was 682 

perpendicular to the sectioning plane, and brain sections of 40 µm thickness were obtained. 683 

Sections containing Imc were mounted, Nissl stained, and cover-slipped. Sections were imaged 684 

at 40x under a light microscope and the number of Nissl stained somata in the Imc in each 685 

section were manually counted by NRM and SPM independently21. For each section, the 686 

maximum value of the counts from the two authors was used to generate the plot in Fig. 3c.  687 

Location-invariant selection across azimuthal locations. The OTid encodes azimuths ranging 688 

typically from -10° to 60° at a spatial resolution of no better than 1° 8,12. Consequently, the 689 

number of distinct azimuthal locations encoded by each OTid is ≤ 70 (Laz   ≤ 70).  690 

Because the rostrocaudal extent of the Imc is 2800 µm, and the somas of Imc neurons are 691 

no larger than ~33 µm (largest somatic dimension = 33 µm, n=456 neurons across 20 coronal 692 
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sections), there are at least 70 (coronal) sections along the rostrocaudal axis of the Imc, with each 693 

section containing at least one Imc neuron not also found in the neighboring sections. 694 

Consequently, there are at least 70 neurons involved in encoding the Laz distinct azimuths, Naz ≥ 695 

70; Naz ≥ Laz. (For this conservative estimate of Naz, we only need that of the ~26 neurons in each 696 

successive coronal section of the Imc (median #neurons per section = 26; Fig. 3c; dashed red 697 

line), just one be distinct.  698 

Thus, there are sufficient Imc neurons to encode azimuthal locations, precluding the need 699 

for a combinatorial solution for location invariant selection along the azimuth (involving 700 

multilobe neurons with RF lobes spread along the azimuth). Consistent with this expectation, 701 

azimuthal encoding by Imc neurons is effectively single-lobed: all lobes of a multilobe Imc 702 

neuron encode the same azimuth (Fig. 2a-c). 703 

Optimization model for solving location-invariant stimulus selection across elevations (Fig. 704 

4)  705 

Conceptualizing and setting-up the model (Supplementary Fig. 4):  706 

In our model,  707 

• L = number distinct spatial elevations at a given azimuth encoded in our model (i.e., the 708 

number of elevations in the ‘OTid’ space map).  709 

• N = number of model Imc-like neurons, i.e., neurons with Imc-like anatomical projection 710 

patterns.   711 

• kmax = maximum number of RF lobes allowed for each model neuron.  712 

• N* = smallest number of upto-kmax-lobed model neurons needed to solve location-invariant 713 

selection across L elevations. 714 
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The optimization model solves for the number and positions of RF lobes of each of the N model 715 

neurons in order to achieve location-invariant selection. The model neurons are ‘Imc-like’: each 716 

of them is excited by a stimulus placed anywhere within its RF, and delivers competitive 717 

inhibition to all locations in the OTid space map outside its RF that is proportional to the strength 718 

of the stimulus (Supplementary Fig. 4ab). Without loss of generality, we take stimulus priority = 719 

1 unit (for all stimuli), and the proportionality constant (underlying inhibition by the Imc) to be 720 

1. Therefore, for each stimulus, each neuron excited by that stimulus generates an inhibition of 1 721 

unit at those locations in the OTid that are outside that neuron’s RF (Supplementary Fig. 4ab). 722 

For successful, relative-priority dependent competitive stimulus selection between stimuli 723 

presented at a given pair of locations, the net inhibition at these two locations in the OTid should 724 

be equal. For location-invariant competitive selection, this condition must hold for stimuli placed 725 

at any pair of all the possible Lc2 (L choose 2) pairs of locations. The details of the setup of the 726 

optimization problem are described below. 727 

 Let X be a matrix of size L X N (Supplementary Fig. 4c), where the jth column of the 728 

matrix corresponds to the L elevational locations encoded by the jth Imc neuron in the population. 729 

The optimization problem is framed as minX f (X; L, N), where the objective function f(X) is 730 

designed such that it achieves its minimum value (of -L(L-1)) for a given L only when the RFs of 731 

the model neurons achieve location-invariant selection.  732 

 Consider two competing stimuli (of equal strength) placed at locations 1 and 2. In our 733 

scheme, we represent this by a row vector a1xn= [1 1 0 ….0 …0] (Supplementary Fig. 4d). The 734 

ones in the first two indices of the row vector correspond to the two locations at which the 735 

competing stimuli are placed.  736 
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 Note that XTaT results in a vector in which the jth index corresponds to the number of 737 

locations that the jth neuron is activated by when the two competing stimuli are placed in 738 

positions shown in a (Supplementary Fig. 4e).  739 

 Additionally, the matrix (X-1) corresponds to the suppression image of the Imc 740 

population. The jth column of this matrix represents the locations to which the jth Imc neuron 741 

sends inhibition in the OT space map. This is because of the inverse anatomical projections from 742 

the Imc to the OT. The product (X-1)XTaT then results in a vector in which the jth index 743 

corresponds to the net inhibition sent to the jth location by the entire Imc population when the two 744 

competing stimuli are placed at different locations, i.e., at different positions within the row 745 

vector a (Supplementary Fig. 4f).  746 

 For competitive selection at these two locations, the net inhibition at these two locations 747 

in the space map of the model ‘OTid’ should be equal. To penalize solutions for which this is not 748 

the case, we include a cost term in the objective function that is equal to the square of difference 749 

in the inhibition at the two locations. This is written mathematically as  750 

                           ����; �, �, �� 
 ���� � 1�������                                                                 - (7) 751 

where b is a row vector whose length equals that of a and nonzero indices are same as a, but with 752 

the sign of one of the 1s flipped (in this case b= [1 -1 0 ….0 …0] or [-1 1 0 ….0 …0]). The 753 

minimum value that f1 can take is 0, which happens when equal inhibition is sent to both the 754 

locations at which the competing stimuli are placed (Supplementary Fig. 4f).  755 

 In addition to the strength of inhibition at the two locations being equal, the strength of 756 

inhibition must be strictly negative. This is because, the other possibility, of strength of 757 

inhibition at each location being zero, would not be acceptable because no inhibition would be 758 
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sent to either of the two locations. To penalize solutions for which this condition is not met, we 759 

include a cost term in the objective function that is equal to the number of locations at which the 760 

inhibition is not negative. This is written mathematically as 761 

                         �
��; �, �, �� 
 � � ������� � 1������                                                         - (8) 762 

Minimizing f2, therefore, ensures that inhibition is sent to both the locations. The 763 

minimum value f2 can take is -2, when inhibition is sent to both the competing locations 764 

(Supplementary Fig. 4f).  765 

Finally, we write the full objective for the location-pair (specified via vector a) as                               766 

                              ���; �, �, �� 
 ����; �, �, �� � �
��; �, �, �� 767 

                                                
 ���� � 1������� � � � ������� � 1������                      - (9) 768 

the minimum possible value of which is -2. 769 

 For location invariance to be achieved, the function f should be minimized for each pair 770 

of locations at which competing stimuli can be placed. In other words, f should be minimized for 771 

all possible permutations of vector a. This can be written mathematically as  772 

���; �, �, �� 
  ! �"�� � 1���#�.� "�� � 1���#�� � 

                                                            ! �# � ������� � 1���#���                                               - (10) 773 

where A is the permutation matrix of a for all possible location-pairs and B is the corresponding 774 

permutation matrix of b. tr(Y) refers to the trace (sum of all the diagonal elements) of the matrix 775 

Y, Y.*Z is the Hadamard (element-wise) product between the matrices Y and Z and sign(Y) is a 776 

matrix obtained by applying the element-wise sign operator to the matrix Y.  777 
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 Because there are Lc2 possible location-pairs (corresponding to the Lc2 permutations of the 778 

vector a), the minimum value that f can achieve is -2*Lc2 = -L(L-1). Thus, location-invariant 779 

selection is achieved in our optimization model if and only if the cost function converges to the 780 

lowest possible value of –L(L-1).  781 

 We add two constraints to this optimization scheme. First, we code the RFs of all the 782 

model neurons with ones (inside RF) and zeros (outside RF), a simplifying assumption (see 783 

“Model assumptions” section below for implications of this assumption). Second, we introduce a 784 

mechanism to limit the number of lobes in any model neuron to kmax. This is done so that, by 785 

setting kmax = 3, we would be able to match the experimentally observed constraint that there are 786 

no more than three RF lobes per Imc neuron. The first constraint is fed into the optimization 787 

problem as bounded integer constraints with bounds between 0 and 1 to make the RFs binary. 788 

The second constraint is implemented as an inequality constraint, written mathematically as  789 

                                     ��$� 
 ���� � %� � �� � 0, �'! (�� $ 
 1,2 … �                               - (11) 790 

where 1L is a row vector of length L, and Xj is the jth column of X corresponding to the RF of the 791 

jth neuron. Additionally, we also test the model with kmax = 10 for some of the analyses reported 792 

in Fig. 4, Fig. 6 and Supplementary Fig. 5.   793 

 We solve the above nonlinear optimization problem with mixed constraints, an np-794 

complete problem, using the ‘MIDACO’ solver in MATLAB 37. 795 

Estimating N*:  796 

N* is the smallest number of model neurons needed to solve location-invariant selection for a 797 

given L and kmax, i.e., the smallest N for which the minimum value of the objective function (-798 

L(L-1)) can be successfully achieved. This was estimated as follows. For each value of N from 1 799 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2018. ; https://doi.org/10.1101/243279doi: bioRxiv preprint 

https://doi.org/10.1101/243279


 

 37

to L, we ran the optimization model 1000 times (1000 runs). Any given run was said to have 800 

converged to a solution if the value of cost function did not change for 1000 successive iterations 801 

(by setting the ‘evalstop’ criterion in the optimization code to 1000), thereby reaching an 802 

asymptotic value. The collection of model neuron RFs at convergence was called a ‘convergent 803 

solution’. Additionally, if the convergent solution attained the value of –L(L-1), then it was 804 

called an ‘optimal solution’. In other words, optimal solutions are ones that converged and 805 

additionally achieve location-invariant stimulus selection.  806 

 N* (for a given L and kmax) is, therefore, the smallest value of N for which at least one of 807 

the 1000 runs yielded an optimal solution, meaning that for N = N*-1, none of the 1000 runs 808 

yielded a solution that successfully achieved location-invariant selection.  809 

 For instance, if kmax=1 lobe, then for all L, N* = L (Fig. 4d, blue data; consistent with 810 

theoretical calculation presented in the text surrounding Fig. 3). If kmax = 3 lobes and L = 5 811 

elevations, all runs for all values of N from 1 to L yielded convergent solutions, but optimal 812 

solutions were produced only when N ≥ 4 (Supplementary Fig. 5a). More generally, if kmax > 1 813 

lobe, then for all L > 4, N* < L (Fig. 4d; red and black data).  814 

Range of kmax values chosen for various analyses (Fig. 4d onwards):  815 

The specific values of kmax used in our simulations (Fig. 4 and 6) were 1, 3, and 10 lobes. The 816 

reasoning for this choice of values is described below.   817 

• kmax = 1 lobe corresponded to the null hypothesis of single lobed RFs  818 

• kmax = 3 lobes represented Imc data (Fig. 1i) 819 

• kmax =10 lobes. (i) The range of elevations encoded by the OTid and the Imc is no greater 820 

than -60° to -60°, and (ii) Most individual RF-lobes have a half-max height ≥ 10° (10-821 
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percentile value of half-max height of an individual RF lobe = 10° (Supplementary Fig. 3e). 822 

Therefore, the number of possible distinct lobes along elevation for RFs of typical Imc 823 

neurons ≤ ~10 lobes (=120°/ (10° + 2°); with the two added degrees representing 1° spacing 824 

on either side of a lobe to separate it from abutting ones.)  825 

Model assumptions:  826 

Our optimization model makes two key simplifying assumptions: (a) discretized (pixelated) 827 

spatial locations, and (b) binary (on or off) RFs of the model neurons. The former assumption 828 

can be readily reconciled with biology by making the pixel size sufficiently small. Therefore, this 829 

assumption does not result in loss of generality of the model. Second, the pattern of spatial 830 

inhibition sent to the OTid space map, the key computational function required of Imc in the 831 

model, is the spatial inverse of the RF: inhibition is sent to all locations except the ones inside 832 

the RF. In other words, the spatial pattern of inhibition is, by definition, a ‘binarized spatial 833 

inverse’ of the Imc RF, with the strength of delivered inhibition being proportional to the specific 834 

location within the continuous RF at which the stimulus is placed (Supplementary Fig. 4ab). For 835 

the model, it is the pattern of inhibition that is critical, informationally speaking, rather than the 836 

variations in the strength of delivered inhibition based on the specific location within RF that a 837 

stimulus occupies (Supplementary Fig. 4ab). (This is unlike population vector coding, where the 838 

specific values of firing rates within an RF are critical informationally 25-28). Therefore, the 839 

continuous RF can be binarized itself (say, at the half-max, or 75%-max level) without the 840 

qualitative conclusions of the model being affected (Supplementary Fig. 4ab). Notably, despite 841 

these simplifying abstractions of the biology by the model, we found that predictions from the 842 

model held true experimentally (Fig. 5), further revealing that the model captured sufficiently 843 

well the key computational principles at play in this circuit. Consequently, it was able to provide 844 
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a compelling explanation for the unusual functional properties of Imc neurons, and illuminate 845 

neural mechanisms of location-invariant stimulus selection in this midbrain circuit.  846 

 847 

Characterizing signature properties of optimal model solutions, and testing them in 848 

experimental data (Figs. 4 and 5).   849 

The “multilobe property” (property #1).  850 

Model: For each optimal solution at each (L,N*,kmax) tested, we examined if any of the model 851 

RFs were multilobed. A model RF was said to be multilobed if it had “on” pixels that were 852 

separated by “off” pixels; two adjacent “on” pixels were treated as one lobe. For instance, in Fig. 853 

4a, neurons #2 and #4 have one lobe each. Neuron #1 has two RF lobes and neuron #2 has 3 RF 854 

lobes. These two neurons are multilobed. Thus, this optimal model solution is said to satisfy the 855 

“multilobe property”. 856 

Data: For each coronal Imc plane recorded, we examined if any of the neurons in that plane had 857 

multilobed RFs. Whether an RF was single or multilobed was determined using methods 858 

described in (and surrounding) Fig. 1.   859 

The “optimized lobe-overlap property” (property #2).  860 

Model: A multilobed model neuron that shares each of its RF lobes, but not all, with another 861 

neuron is said to satisfy this property. If every neuron in a model solution satisfies this property, 862 

the model solution itself is said to satisfy the optimized lobe-overlap property. The fraction of 863 

model solutions satisfying this property for each (L, N*) is plotted in Supplementary Fig. 5C 864 

(100%, in each case).  865 
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Data: The set of neurons recorded within a given coronal plane, i.e., across all the recording sites 866 

along a dorsoventral penetration, is collectively a potential solution set for location-invariant 867 

selection across all elevation pairs at that azimuth. (This is because of our finding that spatial 868 

azimuth is encoded topographically along the rostrocaudal axis of the Imc, and all the elevations 869 

at a given azimuth are encoded by the neurons in the coronal plane at the appropriate point along 870 

the rostrocaudal axis; Fig. 2 and Supplementary Fig. 3).  A multilobe neuron that shares at least 871 

one of its RF lobes, but not all, with another neuron in the solution set is said to satisfy the 872 

experimentally testable version of the lobe-overlap property. To test this property in data, we 873 

first obtained the set of discrete elevational locations encoded by Imc neurons in a solution set 874 

(coronal plane). We did this by quantizing, at a resolution of 3˚ (to match theory and model; see 875 

main text related to Fig. 3), the maximum elevation range encoded by their RFs combined. Next, 876 

an RF lobe of a multilobed Imc neuron was said to overlap with the RF of another neuron if there 877 

existed a location within the former’s half-max extent that also lay within the half-max extent of 878 

the latter’s RF. The fraction of multilobed Imc RFs in each coronal plane that satisfy this testable 879 

version of the optimized lobe-overlap property is shown in Fig. 5c.  (This testable version of the 880 

lobe-overlap property was necessary because of the inherent infeasibility of recording from all 881 

Imc neurons in a coronal section, i.e., from all the neurons in a ‘solution set’. Specifically, the 882 

small ML extent of the Imc (<350 µm), coupled with the thickness of the electrode (250 µm) that 883 

was used to reliably target the deep Imc (~16 mm below brain surface), limited us to one 884 

dorsoventral penetration within a coronal section. This made recording from all Imc neurons in a 885 

given section unviable. The average # neurons recorded per section = 3.44 ± 0.47.  886 

The ‘combinatorial’ property (property #3). 887 
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(A) “Assorted neural subset” feature: Distant neurons are recruited to achieve selection for 888 

nearby locations, and nearby neurons are recruited to achieve selection for distant locations. To 889 

test for this feature, we divide the elevation range (L locations) into three parts, the upper L/3, 890 

middle L/3 and lower L/3 locations. Two locations are said to be ‘nearby’ if the distance 891 

between them is ≤ L/3, and ‘distant’ if the distance between them is ≥ 2*L/3. Similarly, two 892 

neurons are said to be nearby if the distance between them is ≤ (N-1)/3, and distant, if their 893 

distance is ≥ 2*(N-1)/3. We then ask if distant neurons are recruited for a nearby location-pair 894 

(LP), and vice-versa. Since there is no meaningful functional ordering of multilobe neurons 895 

owing to the lack of topography in the encoding of elevation, we must test these questions across 896 

permutations of the ordering of Imc neurons within a solution. 897 

Model: First, we tested if distant neurons are recruited for a nearby location-pair. We did so by 898 

computing the following metric (eq. (12)) for each (L, N*) (Fig. 4f).  899 

            * ��+(!,- �.� 
 / min

�������


3 min
��	��������


 4 max
���	�� �!

�*�789                          - (12) 900 

Here, ‘d’ is the maximum distance between the neurons recruited for solving selection for 901 

a given nearby location-pair in a given solution. The maximum of this across all nearby location-902 

pairs yields the farthest distance between neurons recruited to solve selection for any nearby 903 

location-pair. The minimum of this value across permutations of neurons in the solution, and 904 

across all solutions, yields d (nearby LP) for that (L, N*).   905 

For L=5 (N*=4), we tested this exhaustively for all possible permutations (4!). However, 906 

for L = 20 (N* = 14) and L = 40 (N* = 27), the number of permutations is very large (14! = 8.7 907 

x1010 and 27! = 1.08 x 1028). Because it was infeasible to test all possible permutations in these 908 
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cases, we tested a subset of permutations (n=1000) that was selected randomly from the set of all 909 

the possible permutations using the ‘randperm’ function in MATLAB.  910 

For each (L, N*), we calculated the normalized minimum distance between neurons 911 

recruited for selection at distant location-pairs as shown in eq. (13), and plotted it in 912 

Supplementary Fig. 5e.  913 

   *��	���+(!,- �.� 
 "����	�� �!��"���

"��	�"���

                                                                                                     - (13) 914 

Here, dmax (= N*-1) and dmin (= 1) are the maximum and minimum possible distances 915 

between neurons in a solutions set consisting of N* neurons. We found that in every case, this 916 

normalized distance was high (>0.66; the normalized cut-off value chosen for defining ‘distant’ 917 

neurons).   918 

Next, we tested if nearby neurons are recruited for a distant location-pair, using a metric 919 

constructed with a logic similar to that used above: 920 

                       * �*�� (�  �.� 
 : max

�������


; max
��	��������


 < min
"�
����  �!

�*�=>?                           - (14) 921 

    *��	��*�� (�  �.� 
 "�"�
���� �!��"���

"��	�"���

                                                                                                  - (15) 922 

For each (L, N*), we calculated the normalized maximum distance between neurons 923 

recruited for selection at distant LPs (eq. (15)), and plotted the results in Supplementary Fig. 5f. 924 

We found that in every case, this normalized distance was small (<0.33; the normalized cut-off 925 

value chosen for defining ‘nearby’ neurons).   926 

Data: For Imc neurons in each solution set (coronal plane), we obtained the range of discretized 927 

elevation values encoded as before (resolution of 3˚), and then calculated the normalized 928 

minimum distance between nearby neurons and the normalized maximum distance between 929 
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distant neurons using the Eq. (13) and (15) above. Note that for the notions of nearby neurons 930 

and distant neurons, there need to be at least 3 neurons in the solution set so that the maximum 931 

distance is 2 and the minimum distance is 1. Out of 14 coronal planes that contained multilobe 932 

neurons, 8 had ≥3 neurons. The results from these 8 planes are plotted in Fig. 5f. 933 

(B) “Extensive intersection” feature. Location-pairs occupying distant portions of space recruit 934 

shared neurons to solve selection at each pair. Two location-pairs are said occupy distant 935 

portions of (elevational) space if one location-pair lies within the upper third of the locations 936 

(upper L/3) and the other lies within the lower third of the locations (lower L/3). Since 937 

intersection between the neural subsets is independent of the ordering of the neurons, we do not 938 

need to test this for all permutations of neuron orderings. Model: For every optimal solution at a 939 

given (L, N*), we tested if there existed two location-pairs in distant portions of space such that 940 

the neural subsets recruited to solve selection at each location-pair shared at least one neuron. 941 

The fraction of optimal solutions that satisfied this property is plotted as a function of (L, N*) in 942 

Supplementary Fig. 5g; the fraction is uniformly 100%.  943 

Data: For Imc neurons in each solution set (coronal plane), we obtained the range of discretized 944 

elevation values encoded as before (resolution of 3˚). We then tested if these neurons satisfied 945 

the extensive-intersection property as described for the model. Of the 14 coronal planes at which 946 

neurons were recorded, in 6 cases, the encoded locations included two location-pairs that 947 

occupied distant locations. The fraction of these 6 coronal planes that satisfied the extensive 948 

intersection property is shown in Fig. 5g (100%). 949 

Wiring and metabolic costs of location-invariant selection in the Imc-OT circuit (Fig. 6).  950 

Wiring cost: The wiring cost for location-invariant selection by the Imc is estimated as the cost 951 

of generating axonal projections (‘wires’) between each Imc neuron and each of its target OTid 952 
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neurons. This cost depends both on the number of locations that each neuron must suppress and 953 

the number of neurons in the population. Assuming that the lengths of wires from Imc to each 954 

OTid neuron is approximately equal (say 1 unit each, without loss of generality), we can estimate 955 

the total wiring length and consequently the total wiring cost using Eq. (16) below (see 22).  956 

       @�!��� �'� ��, �#, ����� 
 �A �#Locations suppressed by neuron � ��^P�#

�$�
        - (16) 957 

The summation is the total wiring length of all the wires from the Imc neurons to the OTid 958 

population. ‘p’ is a power term such that typically 1 < p < 4 (see 22). This quantity is computed 959 

for each optimal solution (obtained over the 1000 runs) for a given (L, N*, kmax) triplet, and the 960 

results are plotted in Fig. 6a.  961 

Metabolic cost: The metabolic cost for location-invariant selection by the Imc is estimated as the 962 

cost of generating and broadcasting spikes to the OTid to achieve competitive suppression. This 963 

depends on the number of neurons activated by a stimulus at each of the L locations, as well as 964 

the number of OTid locations to which each activated neuron delivers inhibition. If the cost of 965 

suppressing one OTid location using 1 spike is 1 unit, then the total metabolic cost for the circuit 966 

for a given firing rate f is given by Eq. (17) below (using a similar formula as for wiring cost).  967 

Q+ (,'��R R'� ��, �#, ���� , ��


 ��
� S  

�

�$�

S�#Locations suppressed by neuron � when stimulus is placed at location $��^q
�#

�$�

 

                                                                                                                                                   - (17) 968 

Note that the term in the inner summation is non-zero only for activated neurons when the 969 

stimulus is placed at location j. ‘q’ is a power term chosen such that 1 < q <4 (similar to the 970 

wiring cost). This quantity is computed for each optimal solution (obtained over the 1000 runs) 971 
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for a given (L, N*, kmax, f = 10 Hz), and the results plotted in Fig. 6b.  972 

Total cost: The total cost for any solution is calculated as a weighted combination of the wiring 973 

cost (weight = α) and the metabolic cost (weight =  β ) as given in Eq. (18) below. There are five 974 

parameters in this summation (Z, P, [, \ and f ). The results are plotted for 975 

Z 
 20, P 
 2.5, [ 
 80, \ 
 2.42 for firing rates of f=10 Hz (blue curve) and f=80 Hz (red 976 

curve) in Fig. 6c. 977 

`' (� R'�  ��, �#, ���� , �� 
 aZ � @�!��� R'� ��, �#, �����b � 

                                                                              �[ � Q+ (,'��R R'� ��, �#, ���� , ���            - (18) 978 

Data analyses and statistical tests. All analyses were carried out with custom MATLAB code. 979 

Parametric or non-parametric statistical tests were applied based on whether the distributions 980 

being compared were Gaussian or not, respectively (Lilliefors test of normality). The Holm-981 

Bonferroni correction was used to account for multiple comparisons. Data shown as a ± b refer 982 

to mean ± s.e.m, unless specified otherwise.  The ‘*’ symbol indicates significance at the 0.05 983 

level (after corrections for multiple comparisons, if applicable). Correlations between RF centers 984 

(azimuth) and electrode measurement positions (rostrocaudal/ dorsoventral) were tested using 985 

Spearman’s rank correlation coefficient (corr command in MATLAB with the Spearman option).  986 

Code and data availability. Software code and the data that support the findings of this study 987 

are available from the corresponding author upon reasonable request. 988 

 989 
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Supplementary Figures 1079 

 1080 

 1081 

Supplementary Fig. 1. Anatomical connectivity and information flow between the Imc and 1082 

optic tectum (OT). Related to Fig. 1. (a) Left: Cartoon showing side view of barn owl brain 1083 

(inset), and coronal section taken along the indicated line in inset.  Right: Nissl stained, coronal 1084 

section of midbrain depicting the multilayered optic tectum (OT) and the isthmi pars 1085 

magnocellularis (Imc). The OT10 is seen as a darkly stained arc of cell bodies. The Imc is a long 1086 

and narrow (baguette-like) structure: 2800 μm long rostrocaudally and 350 μm mediolaterally; 1087 

appears in transverse sections as a 700-μm x 350-μm elliptical disk of neurons (blue oval) 16. The 1088 

long, rostrocaudal axis of the Imc is parallel to the rostrocaudal axis of the OT. Dark area in the 1089 

dorsal portion of Imc: electrolytic lesion following stereotactic and electrophysiologically-based 1090 

targeting of Imc. (b) Schematic of anatomical connectivity between the Imc and OT. Imc 1091 

neurons receive input from a focal portion of OT10 (black neuron), but project broadly back (blue 1092 

lines) to the OTid sparing just the portion of the space map providing input (light blue shading 1093 
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across OT layers) 6. All layers of OT are known to represent space topographically, but how the 1094 

Imc represents space is not well understood (see also (e)).  (c) Schematic of information flow 1095 

through the OT10-Imc-OTid circuit showing the functional, spatial-inverse operation executed by 1096 

established Imc-OT connectivity 6. Maps of visual space in the OT10 (left), Imc (middle) and 1097 

OTid (right). For purposes of illustrating the spatial inverse operation, Imc RFs are assumed to 1098 

be large with an unknown shape (yellow shading). A visual stimulus S1 at location 1 activates 1099 

the space map in OT10 (left; dashed circle - RF of activated neuron). This, in turn, activates an 1100 

Imc neuron (middle; yellow represents assumed RF of activated Imc neuron), which delivers 1101 

inhibition to all locations in the OTid space map that are outside the RF of the activated Imc 1102 

neuron (right; yellow shading) 6,15,16. (d) Schematic representation of stimulus selection in the 1103 

OTid under the assumption that Imc RFs are small, resembling OT10 RFs. Left: Shown are two 1104 

stimuli S1 and S2, at locations 1 and 2, respectively, which activate corresponding neurons in the 1105 

OT10 space map. Middle: Imc neuron activated by S1 (yellow RF), and Imc neuron activated by 1106 

S2 (blue RF). Right: Combined pattern of suppression generated in the OTid by the activated Imc 1107 

neurons: each neuron delivers suppression to locations outside its RF; green = yellow + blue. 1108 

Each stimulus successfully suppresses the other – S2 lies within the yellow zone of suppression 1109 

produced by S1, and vice-versa – implementing selection for stimuli at these two locations. 1110 

Similarly, if every spatial location was encoded by an Imc neuron with a small, OT10 like RF 1111 

(and with space-inverting connectivity with the OT), then stimulus selection in the OTid would 1112 

be achieved successfully for all pairs of locations (the ‘copy-and-paste’ strategy described in the 1113 

text). (e) Same as (d), but with Imc RFs that are large and elongated vertically, covering almost 1114 

the entire elevational extent, as reported in the literature 17,18. Shown in the middle panel are the 1115 

RFs of two Imc neurons, in yellow and blue, respectively. Left: As in (d). Middle: S1 activates 1116 
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both Imc neurons, and so does S2. Right: Resulting patterns of inhibition in the OTid space map; 1117 

green = yellow + blue; large swaths of space are left without inhibition (white region in right 1118 

panel, corresponds to intersection of the two RFs). Specifically, neither stimulus is suppressed by 1119 

the other even though the two stimuli are well separated in elevation (shown here to be 1120 

approximately 60° apart), preventing stimulus selection along the elevation. Large, vertically 1121 

elongated Imc RFs, therefore, are unable to support spatial selection in the OTid across all 1122 

elevational locations. This is an apparent paradox in terms of Imc-OT function because the OTid 1123 

is known to exhibit location-invariant selection, including when stimuli are <10° apart in 1124 

azimuth or elevation 10,12-14, with Imc driving this global competitive selection 16.  1125 

 1126 

 1127 

 1128 
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 1129 

Supplementary Fig. 2. Analysis of visual RFs of example Imc and OTid neurons. Related to 1130 

Fig. 1. (a) Three-lobed visual RF of an example Imc neuron. (Left) Color coded rate map of RF. 1131 

(Middle, top) spike waveform for the neuron. (Middle, bottom) GAP statistic plot. (Right) Half-1132 

max extents of the 3 lobes identified by model selection with the gap statistic. (b) Single-lobed 1133 

visual RF of an Imc neuron; conventions same as (a). (c) Density peaks clustering method. 1134 

Scatter plot of local density (ρ) around each datapoint in Fig. 1c vs. the distance of that datapoint 1135 

from other points that have higher local density (δ). (For the point with highest local density, δ is 1136 

conventionally taken as the maximum distance of the point from all other points). Points that 1137 

have both high local density (large ρ value) and that are far away from other points of high local 1138 

density (large δ value) are potential cluster centers; Red and blue points in this example. Red 1139 

point corresponds to the center of top cluster, and blue point, the center of lower cluster shown in 1140 
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Fig. 1d.  (d-f) Same as (c), but for RFs in Figs. 1f, Supplementary Figs. 2a and 2b respectively. 1141 

(g) Effect of sampling resolution and neuronal noise on detection of optimal number of lobes in 1142 

the data. (Left) The simulated single-lobed 2D Gaussian RF used for the Monte-Carlo analysis in 1143 

Fig. 1j (Methods). Shown are mean firing rates at different locations. (Right) Plot of the RF 1144 

obtained when it is re-simulated after adding noise (Fano-factor = 30), and sampled with step-1145 

sizes = 5˚ in azimuth and elevation. This sampled RF was identified as having two lobes by our 1146 

analysis pipeline (conversion to distribution of points on plane, density peak clustering, followed 1147 

by gap statistic model selection), which is incorrect because the true underlying Gaussian RF 1148 

was single-lobed. This illustrates how noisy neural responses can lead to the erroneous 1149 

conclusion that a single-lobed RF is multilobed. (h) 2D visual RF of an example OTid neuron. 1150 

Conventions as in (a), (b). The RF is single lobed.  1151 
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Supplementary Fig. 3. Detailed analysis of the organization and structure of RF lobes of 1153 

Imc neurons. . Related to Fig. 2. (a) Plot of elevational centers (black horizontal ticks) of all 1154 

the visual RF lobes of all individual neurons recorded at a multiunit site, as a function of the 1155 

dorsoventral position of the electrode within the Imc along a penetration. Each horizontal band 1156 

(gray and white) band depicts a different penetration; the vertical extent of each band spans -60° 1157 

to +60° in elevation. No systematic organization of elevational centers of RF lobes along the 1158 

dorsoventral as evidenced by widespread and irregular distribution of lobe centers at each depth 1159 

within a penetration. (b) Plot of elevational centers (black horizontal ticks) of all the visual RF 1160 

lobes of all individual neurons recorded at a multiunit site, as a function of the rostrocaudal 1161 

position of the electrode during that recording session. Each horizontal band (gray and white) 1162 

depicts a different recording session; the vertical extent of each band spans -60° to +60° in 1163 

elevation. No systematic organization of elevational centers of RF lobes along the rostrocaudal 1164 

axis, as evidenced by widespread and irregular distribution of lobe centers at each penetration 1165 

(within a recording session). (c) Histogram showing maximum distance between RF lobes 1166 

measured along each penetration (i.e., each horizontal band in (a)). * indicates mean significantly 1167 

different from 0 (p < 0.001); one tailed t-test. (d) Histogram showing maximum distance 1168 

between RF lobes measured across all penetrations made along the rostrocaudal axis in each 1169 

recording session (i.e., each horizontal band in (b)). * indicates mean significantly different from 1170 

0 (p < 0.001); one tailed t-test. (e, f) Multilobe neurons were found at all tested azimuths. (e) 1171 

Scatter plot of the azimuthal and elevation centers of the individual lobes of multilobed RFs of 1172 

all neurons. (f) Fraction of measured RFs that were multilobed, plotted as a function of the 1173 

azimuthal center of the RF (blue corresponds to 2-lobed Imc RFs and green to 3-lobed Imc RF). 1174 

(g) RF lobes of Imc neurons are elongated in elevation. Histogram of azimuthal (open) and 1175 
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elevational (red) half-max widths of all the RF lobes across all recorded neurons. Arrows 1176 

indicate median values. * indicated that lobes are larger in elevation than in azimuth (ranksum 1177 

test p < 10-25). (h, i, j) Lobes of single-lobed RFs are taller (more elongated in elevation) than 1178 

those of two-lobed RFs, which are in turn taller than those of three-lobed RFs. Scatter plot of 1179 

elevational vs. azimuthal half-max widths of single-lobed RFs (h), two-lobed RFs (i), and three-1180 

lobed RFs (j). Insets: Histogram of data points projected onto the line perpendicular to the line of 1181 

unity. The median values of the histograms increase (and approach zero) as we go from panel h 1182 

(single-lobed RFs) to j (three-lobed RFs). HMW: Half-max width. 1183 

 1184 

Supplementary Fig. 4. Setup of location-invariant stimulus selection as an optimization 1185 

problem. Related to Fig. 4. (a-b) Patterns of spatial inhibition sent by the Imc to OT by 1186 
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continuous Imc RFs (biologically-consistent), vs. binary Imc RFs (simplified abstraction for 1187 

modeling purposes). (a) Top: Schematic of an Imc RF that encodes locations using continuous 1188 

values of firing rates. Bottom: Pattern of inhibition sent by the Imc RF to the OTid space map 1189 

based on the space inverting anatomy between the Imc and OT. Without loss of generality, 1190 

locations outside the half-max extent of the Imc RF are considered to be spared by Imc spatial 1191 

inhibition. (b) Same as (a), but when the Imc RF is assumed to be binary at the half-max level of 1192 

the RF (Methods). The spatial pattern of Imc inhibition in (b) is nearly identical to that in (a) 1193 

(with the exception that the strength of inhibition in a gets scaled based on the specific position 1194 

of the stimulus within the RF half-max.) (c) Left: RF solutions (from Fig. 4a) obtained by the 1195 

optimization problem when L=5 and N=4. Right: Same RFs represented as an L x N matrix ‘X’ 1196 

for the optimization problem. (d) Left: Stimuli presented at locations a and b (from Fig. 4b). 1197 

Right: Stimuli pair represented as a row vector for the optimization problem. (e) The product 1198 

XTaT results in a vector of length N X 1 whose jth element equals the number of locations that 1199 

activate model neuron j. For instance, neuron #2 is activated by both Sa and Sb. So, the second 1200 

element of the vector XTaT is 2. (f) The product (X-1)XTaT results in a vector of length Lx1 1201 

whose jth element equals the net inhibition sent by the Imc population to location j when the 1202 

stimuli are presented at locations indicated by vector a. For instance, the inhibition sent to 1203 

location b is -1 (by Imc neuron #3). So the second element of (X-1)XTaT  is -1.  1204 
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 1205 
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Supplementary Fig. 5. All optimal model solutions exhibit signature properties of 1206 

combinatorially optimized inhibition. Related to Fig. 4. (a) Example optimal solution for (L, 1207 

N*) = (20, 14). Black pixels: Locations inside neurons’ RF, White pixels: Locations outside 1208 

neurons’ RF. (b) Example optimal solution for (L, N*) = (40, 27). Same convention as in (a).  (c) 1209 

Minimum value of cost function achieved by the optimization model with L=5 locations, plotted 1210 

as a function of number of Imc-like neurons in the model; optimization was run 1000 times for 1211 

each N. The minimum value progressively decreased as N increased, achieving the lowest 1212 

possible value that the cost function can achieve (-L(L-1); -20 for L=5) only when N=4. In other 1213 

words, the smallest number of neurons at which location-invariant selection is achievable by the 1214 

model, called N*, was 4 when L=5 locations. Therefore, neuronal savings, defined as L-N*, was 1215 

1. (d) Fraction of optimal model solutions that had multilobed Imc neurons for all (L, N*) pairs; 1216 

black bars – kmax=3, red bars – kmax=10. (e) Fraction of optimal model solutions that satisfy the 1217 

“optimized lobe-overlap” property. Same conventions as in (d). (f) Schematic plot illustrating the 1218 

need for the optimized lobe-overlap property for multilobed Imc neurons. Shown is a two-lobed 1219 

Imc neuron (middle). When stimuli S1 and S2 are placed such that they both lie within the RF of 1220 

this Imc neuron (left), the resulting zone of suppression generated by this Imc neuron in the OTid 1221 

spares both stimuli (right). Thus, selection for this location-pair cannot be achieved by just this 1222 

Imc neuron. (g) Minimum distance between neurons across model solutions and permutations 1223 

recruited for solving selection for nearby location-pairs plotted as fraction of the maximum 1224 

possible distance between neurons (Methods). Green dashed line: Distance cut-off for ‘distant’ 1225 

neurons. (h) Maximum distance between neurons across model solutions and permutations 1226 

recruited for solving selection for distant location-pairs plotted as fraction of the maximum 1227 

possible distance between neurons (Methods). Magenta dashed line: Distance cut-off for 1228 
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‘nearby’ neurons. (i) Fraction of optimal model solutions that satisfying the extensive 1229 

intersection property. Same conventions as in (d). (j) Histogram of distance between centers of 1230 

RF lobes within individual multilobed neurons for a randomly selected model solution for (L, 1231 

N*,kmax) = (40, 27, 3). Inset: Maximum elevational distance between lobes of a multilobe neuron 1232 

for the same model solution. Lobes of neurons in model solutions were arbitrarily placed and 1233 

widely spread. * indicates mean significantly different from 0 (p<0.001); one tailed t-test. (k) All 1234 

24 possible permutations of the model solution in Fig. 4a; same conventions as in Fig. 4a). For 1235 

each permutation, there is at least one pair of nearby neurons that encode distant locations 1236 

(indicated by blue box). 1237 
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 1238 

Fig. 6. Conceptual differences between traditional population vector coding of space versus 1239 

COSMI coding of space. Related to Fig. 4. (a) Population vector coding. Schematic illustration 1240 

(heat map) of the RFs of 20 single-lobed neurons with overlapping RFs, encoding 20 feature 1241 

values (say, locations). Neurons are numbered from 1 to 20 (rows), locations are denoted by 1242 

alphabets (a to t; columns). Black indicates the locations at which each neuron is active. The RF 1243 

of a given neuron (row) can be read out by looking at the black pixels along that row; the 1244 

neurons activated by a stimulus at a particular location (column) can be read out by looking at 1245 

the black pixels along that column. It is evident that each stimulus at a particular location 1246 
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(column) is encoded by a functionally ‘local’ group of neurons from the ordered set. For 1247 

instance, stimulus at location p (indicated by red arrow) is encoded by neurons 15, 16, and 17 1248 

(indicated in red). Stated equivalently, each neuron encodes only for nearby locations (for 1249 

instance, row #8). In addition, stimuli at ‘nearby’ locations (for instance, p and q, indicated by 1250 

red and blue arrows, respectively) are always encoded by ‘nearby’ neurons (15,16,17; and 1251 

16,17,18, respectively). These features hold true in this canonical ordering of the neurons, in 1252 

which the RFs cover systematically locations (feature-values) from one end to the other in space 1253 

(feature space), and this canonical ordering is always possible for such single lobed RFs. (b) 1254 

COSMI. Schematic illustration of an optimal model solution (i.e., RFs of inhibitory neurons with 1255 

optimized overlap; see Fig. 4 and text) that achieve location-invariant selection for L=20 1256 

locations with N*=14 neurons (see text surrounding Fig. 4). Conventions as in (a). It is evident 1257 

that not every stimulus location (column) can be encoded by a functionally ‘local’ group of 1258 

neurons from the set. For instance, stimulus at location p (indicated by red arrow) is encoded by 1259 

distant neurons 2 and 14 (indicated in red). Stated equivalently, each neuron does not only 1260 

encode for nearby locations, rather, it can encode for arbitrarily distant ones (for instance, row 1261 

#8). In addition, ‘nearby’ locations cannot always be encoded by ‘nearby’ neurons. For instance, 1262 

p and q, indicated by red and blue arrows, respectively, are encoded by widely distributed 1263 

neurons across the population (2,14; and 8,12, respectively). These features are illustrated here 1264 

for one particular ordering of the neurons: in order to facilitate comparison with (a), neurons 1265 

have been numbered such that lower numbers correspond to neurons for which at least one RF 1266 

lobe occurs earlier than the RF lobes of neurons with a higher number. However, these features 1267 

hold true no matter the ordering of the neurons, in other words, there is no ordering of the 1268 

neurons such that ‘nearby’ feature values are encoded only by ‘nearby’ neurons (see also Fig. 5e, 1269 
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and signature property #3 – Figs. 4 and 5). (Note: in A, the maximum number of pixels in a 1270 

neuron’s RF was chosen to be 3, to match the maximum number of lobes in the RFs of multilobe 1271 

neurons in B.) (c) Another illustration of population vector coding using overlapping single-1272 

lobed RFs, but with 40 locations and 40 neurons; conventions as in A. (d) Another illustration of 1273 

COSMI  with an optimal model solution using overlapping multi-lobed RFs, but with 40 1274 

locations and 27 neurons (N*=27 neurons for L=40 locations; see Fig. 4 and text). Conventions 1275 

as in (b).  1276 
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