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Abstract

Combining anti-cancer drugs has the potential to increase treatment efficacy. Because
patient responses to drug combinations are highly variable, predictive biomarkers of
synergy are required to identify which patients are likely to benefit from a drug
combination. To aid biomarker identification, the DREAM challenge consortium has
recently released data from a screen containing 85 cell lines and 167 drug combinations.
The main challenge of these data is the low sample size: per drug combination, a
median of 14 cell lines have been screened. We found that widely used methods in single
drug response prediction, such as Elastic Net regression per drug, are not predictive in
this setting. Instead, we propose to use multi-task learning: training a single model
simultaneously on all drug combinations, which we show results in increased predictive
performance. In contrast to other multi-task learning approaches, our approach allows
for the identification of biomarkers, by using a modified random forest variable
importance score, which we illustrate using artificial data and the DREAM challenge
data. Notably, we find that mutations in MYO15A are associated with synergy between
ALK / IGFR dual inhibitors and PI3K pathway inhibitors in triple-negative breast
cancer.

Author summary

Combining drugs is a promising strategy for cancer treatment. However, it is often not
known which patients will benefit from a particular drug combination. To identify
patients that are likely to benefit, we need to identify biomarkers, such as mutations in
the tumor’s DNA, that are associated with favorable response to the drug combination.
In this work, we identified such biomarkers using the drug combination data released by
the DREAM challenge consortium, which contain 85 tumor cell lines and 167 drug
combinations. The main challenge of these data is the extremely low sample size: a
median of 14 cell lines have been screened per drug combination. We found that
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traditional methods to identify biomarkers for monotherapy response, which analyze
each drug separately, are not suitable in this low sample size setting. Instead, we used a
technique called multi-task learning to jointly analyze all drug combinations in a single
statistical model. In contrast to existing multi-task learning algorithms, which are
black-box methods, our method allows for the identification of biomarkers. Notably, we
find that, in a subset of breast cancer cell lines, MYO15A mutations associate with
response to the combination of ALK / IGFR dual inhibitors and PI3K pathway
inhibitors.

Introduction 1

Combining drugs is a promising strategy for cancer treatment, as drug combinations can 2

increase the efficacy of treatment. For example, Prahallad et al. (2012) [17] have shown 3

that combining a BRAF inhibitor with an EGFR inhibitor shows synergy in BRAF 4

mutant colorectal cancer. However, for most drug combinations it is not known what 5

subset of patients will respond. By identifying biomarkers (e.g. mutations in the 6

tumor’s DNA that are associated with a favorable response to the drug combination), 7

the selection of a given patient’s treatment can be improved. To facilitate biomarker 8

identification, data from a large-scale drug combinations screen were recently released 9

as part of the AstraZeneca-Sanger DREAM challenge [14], containing 85 cell lines with 10

their response to 167 drug combinations. 11

While the data from this screen can provide information on potential biomarkers of 12

synergy, it is not yet clear what is the best way to identify them. In the context of 13

single drug response prediction, the default approach is to fit ‘individual models’ that 14

are trained separately per drug. We applied a similar approach here in the context of 15

drug combinations, training ‘individual models’ for each drug combination separately 16

(Fig 1A). However, we show that such an approach is unsuitable for the dataset at hand 17

due to the extremely low sample size: a median number of 14 cell lines have been 18

screened per drug combination. 19

We propose to alleviate the problem of low sample size by training ‘joint models’ 20

that use information from all drug combinations simultaneously (Fig 1B). In the 21

literature, this is known as multi-task learning [4, 15]. This approach has been employed 22

before in single drug response prediction by Gönen et al. (2014) [9], Menden et al. 23

(2013) [13] and Yuan et al. (2016) [19], and in synergy prediction by other participants 24

in the AstraZeneca-Sanger DREAM challenge [14]. What distinguishes our approach 25

from other multi-task learning approaches is that we are able to identify biomarkers, 26

whereas others have proposed black-box models. Specifically, the Joint Random Forest 27

model we propose is simultaneously trained on all drug combinations, after which we 28

apply our Drug-combination-specific Variable Importance (DVI) score to the trained 29

Joint Random Forest to identify biomarkers of synergy. We provide a Python 30

implementation on our Github (https://github.com/NKI-CCB/multitask_vi/). 31

We show that the joint model outperforms individual models in terms of predictive 32

performance. Using the joint model together with the DVI, we are able to identify 33

biomarkers of response on both simulated and real data. Finally, we found that 34

MYO15A mutations associate with synergy between an ALK / IGFR dual inhibitor and 35

PI3K pathway inhibitors in triple-negative breast cancer. 36
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Results 37

The AstraZeneca-Sanger DREAM challenge data 38

In order to predict synergy from molecular data, we have used the data from the 39

AstraZeneca-Sanger DREAM challenge (from here on referred to as: DREAM data) [14]. 40

The goal of this community challenge was to create models that predict whether a given 41

drug combination will show synergy in certain cell lines. The DREAM data include 85 42

cell lines and 167 drug combinations, with a median of 14 cell lines screened per drug 43

combination. The dataset consists of three parts: synergy scores, monotherapy response 44

data and molecular data of the cell lines (e.g. mutations and copy number alteration 45

data). 46

As the response variable for our model, we used the synergy scores as provided in 47

the DREAM data, which were based on a Loewe additivity model [5, 8]. For each cell 48

line, drug combination pair, monotherapy data were available, quantifying the response 49

of a cell line to each individual drug in the drug combination by the 50% Inhibitory 50

Concentration (IC50) or the Area Under the dose-response Curve (AUC). For each cell 51

line, molecular data were provided in the form of mutation, copy number alteration 52

(CNA), methylation and gene expression data. Because of the high dimensionality and 53

the low sample size, we restricted mutations and CNAs to a reduced set of potential 54

driver genes. Finally, we defined ‘pathway rules’ that integrate the mutation and CNA 55

data with information from KEGG [11,12]. More information on how these data were 56

processed is provided in the S1 Text. 57

We used the monotherapy and the molecular data of the cell lines to predict drug 58

synergy (Fig 1). More formally, we defined the input matrix X using 382 mutation, 76 59

copy number, 23 monotherapy, and 16 pathway rule variables. The response vector y 60

was defined using the synergy scores. Each of the input data types explain a part of the 61

synergy and are therefore useful to include in a predictive model. For biomarker 62

identification we focused on genomic variables only, as monotherapy data are unlikely to 63

be useful as clinical biomarkers (this information is typically not available for most 64

drugs for a given patient). 65

Per-combination individual models perform poorly 66

For our initial approach, we used the DREAM data to create ‘individual models’ that 67

are trained separately per drug combination (Fig 1A) (Methods). To test the variability 68

across different prediction methods, the individual models were trained using either 69

Elastic Net, SVM (with RBF kernels) or Random Forest. For each method, predictive 70

performance was assessed using cross-validation with the ‘primary score’ (a weighted 71

average of the correlation between the observed and predicted synergy scores) defined in 72

the DREAM challenge [14] as endpoint. 73

Overall, the predictive performance of the individual models was low for all methods 74

(0.04 on average) (Fig 2A), most likely due to the extremely low sample size (median of 75

14 cell lines per combination). We also observed that the predictions from the 76

individual SVM models resulted in negative correlations between the observed and 77

predicted synergy scores (Fig 2A). This is due to a cross-validation artifact that leads to 78

negative correlations when the model is unable to detect structure in the data (S2 Text), 79

which likely mostly affected the SVM due to the high complexity of the RBF kernels. 80
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Simultaneously learning across drug combinations improves 81

predictive performance 82

To alleviate the low sample size problem, we created ‘joint models’, which are trained on 83

all drug combinations simultaneously, thereby leveraging the information from the 84

entire dataset. Using cross-validation, we found that the joint models achieve higher 85

predictive performance compared to individual models (Fig 2A), regardless of the 86

underlying method (Elastic Net, SVM, Random Forest). 87

A drawback of the standard cross-validation scheme is that the same cell line can be 88

in different cross-validation folds (but for different drug combinations), which could bias 89

the predictive performance. To test for this, we also performed leave-one-cell-line-out 90

cross-validation, in which all data associated with a given cell line were left out from the 91

training step of a given fold. Overall, we found that joint models were more predictive 92

than individual ones using leave-one-cell-line-out cross-validation too (Fig 2B), ruling 93

out this bias. We also observed that the individual Random Forest models resulted in 94

negative predictive performance in this setting (Fig 2B), whereas the predictive 95

performance was positive using regular cross-validation (Fig 2A). This too can be 96

attributed to the aforementioned cross-validation artifact (S2 Text). 97

To determine whether the joint models were predictive for specific classes of drug, 98

we grouped the 119 drugs into 19 drug classes and checked whether the difference in 99

predictive performance between the individual or joint models was associated with any 100

of the drug classes. This showed that drug combinations containing IGFR inhibitors are 101

significantly better predicted using the joint model (Mann-Whitney U test, 102

FDR-corrected p = 0.047) (Fig 2C). Furthermore, for drug combinations containing 103

DNA damaging agents (DDA), the joint model showed on average no increase in 104

predictive performance (Fig 2D, bottom panel). Compared to the overall increase in 105

predictive performance between individual and joint models, this effect was significant 106

(Mann-Whitney U test, FDR-corrected p = 0.036) (Figure 2D, top panel). 107

To further characterize the joint model predictive performance improvement, we 108

used a simulated dataset and assessed under which conditions joint models outperform 109

individual models using Random Forests. In this simulation, we created a data set of 110

similar size as the DREAM data and then varied the sample size or the number of 111

features (Methods). We found that simultaneously learning across drug combinations 112

was most beneficial in highly underdetermined cases, i.e. when the sample size was low 113

or the number of variables was high (Fig S1). Interestingly, when the number of samples 114

was sufficiently high (e.g. n = 100), the individual and joint Random Forest models 115

achieved virtually identical predictive performance. 116

Altogether, our results show that, for most combinations, joint models obtain a 117

higher predictive performance compared to individual models by simultaneously 118

learning across drug combinations. As the joint Random Forest model obtained the 119

highest predictive performance, we decided to further use this joint model for biomarker 120

identification. 121

Joint model Variable Importance scores are not sufficient to 122

identify biomarkers of synergy 123

In an initial attempt to identify biomarkers of synergy using the joint model, we first 124

computed the Random Forest’s variable importance score (VI), referred to as the joint 125

model VI score (JVI) (Fig 3A). Ranking the variables by their JVI, we identified 126

variables that had a large impact on the prediction of many different drug combinations. 127

We found that the monotherapy variables were the most important variables overall 128

(highest JVI scores in Fig 4) (one-tailed Mann-Whitney U test, p = 2.474e-16) (S3 Text), 129

followed by pathway rules (one-tailed Mann-Whitney U test, p = 6.248e-06) (S4 Text). 130

PLOS 4/18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/243568doi: bioRxiv preprint 

https://doi.org/10.1101/243568
http://creativecommons.org/licenses/by-nc-nd/4.0/


A major drawback of the JVI is that the associations cannot be traced back to 131

specific drug combinations, limiting its use for finding biomarkers of synergy for specific 132

drug combinations. For example, the highest-ranked molecular data variable was 133

mutations in ATAD5, which we are unable to link to a specific drug combination using 134

the JVI. To identify biomarkers, we needed a drug-combination-specific variable 135

importance score. Although this could be achieved by computing Random Forest VI 136

scores for the individual models, referred to as Individual model VI score (IVI) (Fig 3A), 137

we preferred to do this using the Joint Random Forest model because of its superior 138

predictive performance. Thus, we needed to define a measure of variable importance per 139

drug combination and per variable using the Joint Random Forest model. 140

Drug-combination-specific Variable Importance identifies 141

biomarkers of synergy 142

To identify biomarkers for a specific drug combination using the Joint Random Forest 143

model, we developed a Drug-combination-specific Variable Importance score (DVI) 144

(Fig 3A). The DVI determines the contribution of each variable to the prediction in the 145

same way as the original Random Forest VI score, but only considers the samples from 146

one drug combination at a time (Fig 3B). To evaluate the DVI, we created a simulated 147

dataset in which we engineered a biomarker with two parameters: 1) e: the effect size of 148

the association of the biomarker with synergy; and 2) d: the number of drug 149

combinations for which this biomarker was engineered to be associated with synergy. As 150

expected, increasing either one of these enhances the ability of the DVI to identify the 151

biomarker (Fig 5B). 152

We then used the simulated dataset to compare the DVI to the Individual model 153

Variable Importance (IVI, Random Forest VI score on individual models). This showed 154

that the ability of the IVI to identify the engineered biomarker is correlated with the 155

effect size (e), but not with the number of drug combinations (d) (Figure 5A). This is 156

expected, since the Individual Random Forest models (underlying the IVI scores) do not 157

share information across different drug combinations. Hence, increasing d has no effect 158

on the model’s ability to recover the biomarker. Interestingly, we found that biomarkers 159

with a sufficiently large effect size are identified by both the IVI and the DVI. We found 160

that the DVI is significantly better than the IVI at identifying the biomarker in 161

scenarios where e is small and d is high (Figure 5C). 162

These findings were reflected in the DREAM data. For example, ranking the 163

associations by their DVI, the highest-ranking molecular data variable was the 164

association of ATAD5 mutation status with synergy between IAP inhibitors and TNF 165

inhibitors (Figure 5D). As ATAD5, IAP and TNF are all part of the apoptosis pathway, 166

this illustrates that the DVI is able to identify interesting associations. Given the large 167

effect size, it is not surprising that this association is ranked high for this drug 168

combination by both the DVI (ranked #3) and the IVI (ranked #1). Using the effect 169

size from this association (Glass’ ∆ = 2.8) and assuming that the biomarker is not 170

shared with any other drug combinations, we related this example to the simulated data 171

and found that this example falls in the region where the DVI has little added value 172

(Fig 5C). 173

In addition, we identified a biomarker (MYO15A mutations) that is exclusively 174

identified by the DVI. Given that we observed this association in four related drug 175

combinations and an average Glass’ ∆ of 0.87, this example indeed falls in the region 176

where the DVI improves over the IVI (Fig 5C). 177
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MYO15A mutations associate with synergy between an ALK / 178

IGFR dual inhibitor and PI3K pathway inhibitors in 179

triple-negative breast cancer 180

We set out to identify biomarkers that were exclusively identified by the DVI. To this 181

end, we decided to focus on the drug combinations containing IGFR inhibitors, for 182

which the joint model obtained the largest increase in predictive performance over the 183

individual models (Fig 2C). Using the DVI to rank all non-monotherapy variables for 184

each of these drug combinations, we found that MYO15A mutations had the highest 185

average rank. The association between MYO15A mutations and synergy was strongest 186

in combinations of an ALK / IGFR dual inhibitor with PI3K pathway inhibitors (two 187

AKT inhibitors, one PIK3CB / PIK3CD inhibitor and one mTOR inhibitor), hence we 188

decided to further focus on these. These combinations were tested in 23 breast cancer 189

cell lines, of which 20 were triple negative. 190

The association between MYO15A and the synergy score was strongest in the 191

combination containing the PIK3CB / PIK3CD inhibitor (Fig 6A). For the other 192

combinations, the effect was in the same direction and hence in support of this 193

association. Even though these effects would not have been considered significant 194

individually, the model leverages the information across the drug combinations. 195

Of the cell lines in which these combinations have been screened, only five cell lines 196

(two MYO15A mutant lines, three wild-type lines) were screened in all combinations; 197

the remaining 18 cell lines (two mutant, 16 wild-type) were not (Fig 6B). Hence, by 198

combining these different combinations, the sample size is effectively increased to 23 cell 199

lines. Altogether, this illustrates how the DVI can be used to identify biomarkers of 200

synergy using the joint Random Forest model. 201

Discussion 202

Drug combinations are of great interest in cancer care, as they can increase treatment 203

efficacy. However, without specific biomarkers, it is difficult to predict which drug 204

combinations will have a synergistic effect in a given patient. Most current approaches 205

for identifying biomarkers of single drug response fit a separate model for each drug. 206

We have shown that such an approach does not obtain good prediction performance for 207

predicting synergy in the DREAM data, likely due to the low sample size. To alleviate 208

this limitation, we used multi-task learning to leverage the information contained in 209

several drug combinations. Compared to previous work [9, 13, 14,19], our model has the 210

advantage that it is not a ‘black-box method’ and hence can identify biomarkers. 211

In our models, we found that monotherapy data are important for predicting synergy. 212

Recently, Gayvert et al. (2017) [7] have analyzed a similar drug synergy screen, in which 213

they report the same, but do not offer a rationale. We believe that the link between 214

monotherapy and synergy could be attributed to both biological and technical reasons. 215

A biological explanation may be that a small reduction in viability using monotherapy 216

can be evidence of target engagement by the drug, which is required for synergy. On the 217

other hand, the high variable importance of monotherapy can also be technical. When 218

one of the drugs is very potent (e.g. kills 80% of the cells by itself), the expectation is 219

that the combination will kill most cells even if the effect is only additive. Hence, 220

detecting the difference between synergy and additivity would become very difficult in 221

this scenario, as this difference may not exceed the noise level. We note that both 222

scenarios are supported by the data: some drug combinations show positive correlation 223

between monotherapy sensitivity and synergy (corresponding to the first scenario), 224

while others show a negative correlation (supporting the second scenario) (S3 Text). 225

Another interesting observation is that, on average, using a joint or individual 226
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Random Forest model leads to similar predictive performance for drug combinations 227

containing DNA damaging agents. This may reflect previous observations that 228

monotherapy response to DNA damaging agents is notoriously hard to predict [1, 18], 229

which might also apply to synergy prediction. 230

An interesting extension of our method would be the inclusion of variables specific to 231

single drugs or drug combinations, such as chemical structures. These variables could be 232

encoded for each drug or drug combination, similar to the way information is currently 233

encoded specifically for cell lines. While such variables would be correlated with the 234

drug combination indicator variables used in the current model, they could contain 235

additional information, for example when two drug combinations are chemically similar 236

to each other. As chemical information was only available for a subset of the drugs in 237

the DREAM data, we were unable to use this information efficiently. This could be 238

investigated in future work. 239

In summary, we have presented a method that circumvents the problem of low 240

sample sizes by combining information across drug combinations. In contrast to 241

previous work, our method allows for the identification of biomarkers. With the large 242

number of possible drug combinations, many future drug combination screens are likely 243

to be performed in a small number of cell lines. We believe that our approach can aid to 244

identify biomarkers specifically in such screens. 245

Methods 246

Individual and joint prediction models 247

Predictive models are typically trained per drug combination (Fig 1A). We refer to 248

these models as ‘individual models’. In this work, we propose a ‘joint model’, which is 249

simultaneously trained on data from all drug combinations (Fig 1B). Such an approach 250

can be viewed as multi-task learning, where each drug combination represents a task. 251

The joint model takes an augmented matrix X∗ as input, in which each sample 252

represents a cell line, drug combination pair. We used an indicator variable to code the 253

different drug combinations. The remaining variables are either: 254

1. Private to a cell line, drug combination pair (i.e. monotherapy and pathway rules), 255

and hence unique to every sample in X∗. 256

2. Private to a cell line only (i.e. mutation and CNA data), and hence repeated 257

across drug combinations. 258

3. Private to a drug combination only (e.g. chemical structures), and hence repeated 259

across cell lines (though apart from the indicator variables to code the different 260

drug combinations, none were used in this work). 261

These three categories are visualized in Fig S2 in purple, green and blue respectively. 262

The response vector y∗ was defined as the concatenation of the response values, such 263

that each sample corresponds to a cell line, drug combination pair. The resulting input 264

data X∗ can be fitted onto y∗ using standard machine learning algorithms. In this work, 265

we have compared three different algorithms: 266

• Elastic Net [20], as implemented in the R package glmnet [6], with α set to 0.5 267

and λ optimized in a nested cross-validation loop. 268

• SVM [3] with RBF kernels, as implemented in the Python package 269

scikit-learn [16], optimizing the hyper-parameters C over [50, 100, 200, 300] and γ 270

over [0.001, 0.0001, 0.0005, 0.00005, 0.00001] in a nested cross-validation loop. 271
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• Random Forest [10], as implemented in the Python package scikit-learn, using 272

default parameters. 273

We compared these joint models to ‘individual models’, which are trained per drug 274

combination and contain the same variables, except the drug combination indicator 275

variables (which are constant within a given drug combination). Predictive performance 276

was assessed using 2-fold cross-validation with the ‘primary score’ (a weighted average 277

of the correlation between the observed and predicted synergy scores) as described in 278

Menden et al. (2017) [14] as endpoint. The exact definition of the primary score is 279

∑q
i=1

√
ni − 1 r(yi, ŷi)∑q

i=1

√
ni − 1

(1)

where q is the number of drug combinations, ni the number of cell lines in drug 280

combination i, r a function that computes the Pearson correlation, yi the synergy scores 281

for drug combination i and ŷi the predicted synergy scores for drug combination i. For 282

a fair comparison, all different models (individual and joint; Elastic Net, SVM and 283

Random Forest) were tested using the same cross-validation folds. 284

Simulation study to compare the predictive performance of 285

individual and joint Random Forest models 286

To assess in which situations the joint model outperformed the individual one, we 287

simulated a dataset with 14 cell lines, 497 variables and 10 drug combinations. This 288

dataset closely follows the DREAM dataset in terms of number of samples (median 289

number of cell lines per drug combination is 14) and number of variables (497). For the 290

number of drug combinations, we have limited ourselves to 10, to reduce the 291

computational burden. 292

For each entry in the input matrix X, a value was drawn from a Bernoulli 293

distribution with p = 0.5. For each entry in the response vector y, a value was drawn 294

from a standard-normal distribution. We then engineered an association between the 295

synergy scores (for all drug combinations in the simulation) and variable j by setting 296

y = y + 2Xj , resulting in an average effect size of two. 297

Subsequently, we trained an individual and a joint Random Forest on these data. 298

We evaluated the predictive performance by generating a separate test set, using the 299

same characteristics as the ones used to create the training data. The performance was 300

measured using the ‘primary score’ described above. 301

To study the effect of sample size on the predictive performance, we varied the 302

sample size between 14, 25, 50 and 100. Likewise, to study the effect of the number of 303

variables, we varied the number of variables between 125, 250, 497 and 1000. 304

Variable importance measures 305

The basic idea of the permuted variable importance [2] is that a variable is considered 306

to be important if it has a positive effect on predictive performance. The importance of 307

a variable Xj is evaluated by, for a given tree in the forest, calculating the prediction 308

accuracy of the tree on out-of-bag (OOB) samples before and after permuting the values 309

of variable Xj . The (positive) difference between the two accuracy values is the 310

permuted variable importance for the given tree. The permuted variable importance for 311

the Random Forest is calculated by taking the mean difference in prediction accuracy 312

over all trees in the forest. 313

In this work, we used the permuted variable importance in two different ways 314

(Figure 3A). When applied to the Joint Random Forest model, we get a global overview 315
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of variable importance, which we call the Joint model Variable Importance (JVI). When 316

applied to Individual Random Forest models, we get variable importance scores per 317

variable and per drug combination. 318

Additionally, to get variable importance scores per drug combination from the Joint 319

Random Forest model we defined the Drug-combination-specific Variable Importance 320

(DVI). This is a modified version of the permuted variable importance, in which the 321

prediction accuracy is calculated using only the samples that correspond to the 322

combination of interest (Figure 2B). For the Random Forest, this accuracy is calculated 323

using a weighted mean square error, in which OOB samples belonging to the 324

combination have weight 1 and all other samples have a weight of 0. A Python 325

implementation of the DVI is available from 326

https://github.com/NKI-CCB/multitask_vi/. 327

Simulation study to compare the Individual Variable 328

Importance and the Drug-combination-specific Variable 329

Importance 330

We generated a simulated dataset as above (14 cell lines, 497 variables and 10 drug 331

combinations; values in X drawn from a Bernoulli distribution with p = 0.5; and values 332

in y drawn from a standard-normal distribution). We then engineered an association 333

between drug combination i and variable j by setting yi = yi + eXj , where e is the 334

effect size. To compare the individual and joint models in different configurations, we 335

varied the effect size of the association between e = [0, 1, 2, 3, 4] and we varied the 336

number of drug combinations in which the association occurred between d = [1, 3, 5, 7, 9], 337

leading to a total of 25 configurations. To estimate the variability in each configuration, 338

we repeated the aforementioned process 50 times for each configuration, leading to a 339

total of 1250 datasets. Each of the 1250 datasets was analyzed using: 340

• A Joint Random Forest, followed by DVI to rank the variables per drug 341

combination. 342

• 10 Individual Random Forest models, followed by IVI to rank the variables per 343

drug combination. 344

For each of the parametrizations (e and d), we determined: 345

• The median rank of the engineered association using a Joint Random Forest. 346

• The median rank of the engineered association using an Individual Random Forest. 347

• The significance of the difference between these two medians, using a Wilcoxon 348

signed-rank test. 349

When d = 1, we determine median rank of the engineered association using the 50 350

repeats. When d = 3, we use the ranks for the 50 repeats in each of the 3 drug 351

combinations in which the association was engineered, essentially yielding 150 repeats. 352

In general, for each parameterization we determine the median rank of the engineered 353

association using the 50d repeats. 354

We determined the significance of the difference between the individual and the joint 355

model as follows. For each repeat and for each parametrization of e and d, we 356

determined the median rank of the association across the d drug combinations in which 357

the association was engineered. For each parametrization of e and d, we then determined 358

the significance using a Wilcoxon signed-rank test (across the 50 repeats). The resulting 359

p-values were corrected for multiple testing using a Benjamini-Hochberg correction. 360
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Fig 1. Overview of the models used in this work. A: Graphical representation
of q individual models, in which a different model is trained independently for each of
the q drug combinations. B: Graphical representation of the joint model, in which a
single model is jointly trained on all q drug combinations simultaneously.
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Fig 2. Predictive performance of the joint and individual models.
Performance was measured by taking the weighted sum of correlations between the
observed and predicted synergy scores. A: Predictive performance stratified by method
(Elastic Net, SVM, Random Forest) and model (individual, joint). B: Predictive
performance for individual and Joint Random Forest models, assessed using
leave-one-cell-line-out cross-validation. C&D: Association between a specific drug class
and the difference in predictive performance between individual and joint models (top
panel). How the predictive performance changed between the individual and joint
models is illustrated in the bottom panel. Each dot represents the predictions for a
given drug combination. Predictions for the same drug combination are connected
between the individual and the joint models. The size of the dot is proportional to the
number of cell lines the model was trained on. From left to right: combinations
containing IGFR inhibitors (IGFRi), all other drug combinations (not containing
IGFRi), combinations containing DNA damaging agents (DDA), and all other
combinations (not containing DDA). Note that the extreme correlations (i.e.
correlations close to 1 or -1) can be attributed to small sample size (indicated here by
the size of the dot in the bottom panel).
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Fig 3. Overview of variable importance scores used in this work. A:
Illustration of variable importance scores. Applying the variable importance score
normally used with Random Forests to the Joint Random Forest model yields the Joint
model Variable Importance (JVI), a measure of variable importance across all drug
combinations. Applying the variable importance score normally used with Random
Forests to Individual Random Forest models yields the Individual model Variable
Importance (IVI), a measure of variable importance per variable and per drug
combination. In order to obtain a variable importance for each drug combination using
the Joint Random Forest model, we propose the Drug-combination-specific Variable
Importance (DVI). B: Illustration of the JVI and the DVI in a single decision tree from
the random forest. For both variable importance scores, the importance is assessed by
permuting the values of the given variable (a permuted variable is indicated by a
horizontal arrow here) and then calculating for each sample (a sample is indicated by a
box at the bottom of the tree) the difference between the permuted and unpermuted
errors. In the given example, variable A is more important than variable B, as indicated
by the higher difference in error (∆MSE) when permuting variable A.
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Fig 5. Associations using the IVI and the DVI. Associations using the
Individual model Variable Importance (IVI) and the Drug-combination-specific Variable
Importance (DVI) A&B: Heatmap showing the median rank of the engineered
biomarker in the simulated dataset, stratified by effect size (e) and number of drug
combinations for which the biomarker was engineered to be associated with synergy (d),
using either (A) the IVI or (B) the DVI. C: Heatmap showing for which e (effect size)
and which d (number of drug combinations for which the biomarker was engineered to
be associated with synergy) the DVI is significantly better (indicated in pink) than the
IVI at retrieving the association in a simulated dataset. Examples used in this paper
from the DREAM data (associations with MYO15A and ATAD5 ) are indicated in this
plot based on their effect size and the number of drug combinations in which we observe
them. D: Synergy score for a combination of an IAPi and an TNFi, stratified by
ATAD5 mutation status.

PLOS 16/18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/243568doi: bioRxiv preprint 

https://doi.org/10.1101/243568
http://creativecommons.org/licenses/by-nc-nd/4.0/


−2
0

0
20

40
60

80

●
●●
●

●

●

●

●

●

●

●

●

●

●

−2
0

−1
0

0
10

20
30

●

●
●

●
●

●

●

●

●

●●

● ●

●

−2
0

0
20

40

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0
10

20
30

40

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ALK/IGFRi & PIK3CB/PIK3CDi

ALK/IGFRi & PIK3CB/PIK3CDi

ALK/IGFRi & AKTi 1

ALK/IGFRi & AKTi 1

ALK/IGFRi & AKTi 2

ALK/IGFRi & AKTi 2

ALK/IGFRi & MTORi

ALK/IGFRi & MTORi

ALK/IGFRi & PIK3CB/PIK3CDi

ALK/IGFRi & AKTi 1 ALK/IGFRi & AKTi 2

ALK/IGFRi & MTORi

MYO15A mutations status MYO15A mutations status

Wild-type Mutated Wild-type Mutated

Wild-type Mutated Wild-type Mutated
Sy

ne
rg

y 
sc

or
e

Sy
ne

rg
y 

sc
or

e
Sy

ne
rg

y 
sc

or
e

Sy
ne

rg
y 

sc
or

e

MYO15A mutated cell lines

MYO15A wild-type cell lines

A B

Fig 6. MYO15A mutations associate with synergy between ALK / IGFR
dual inhibitors and PI3K pathway inhibitors A: Synergy scores for
combinations of ALK / IGFR dual inhibitors and PI3K pathway inhibitors, stratified by
MYO15A mutation status. B: Venn diagrams illustrating the overlap in cell lines
screened for these four drug combinations. Top panel: MYO15A mutant cell lines,
bottom panel: MYO15A wild-type cell lines.

0.
0

0.
2

0.
4

0.
6

14 25 50 100

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

125 250 497 1000

BA

n (number of samples)

In
cr

ea
se

 in
 p

re
di

ct
iv

e 
pe

rf
or

m
an

ce
(jo

in
t m

od
el

 - 
in

di
vi

du
al

 m
od

el
)

In
cr

ea
se

 in
 p

re
di

ct
iv

e 
pe

rf
or

m
an

ce
(jo

in
t m

od
el

 - 
in

di
vi

du
al

 m
od

el
)

p (number of variables)

Fig S1. Simulation study to assess under what conditions the joint model
outperforms the individual model using Random Forests. A: Difference in
predictive performance between the joint and individual model for different values of n
(number of samples). B: Difference in predictive performance between the joint and
individual model for different values of p (number of variables).
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Fig S2. Overview of models used in this work. This figure is similar to Fig 1,
but with the added value of showing which variables are private to a cell line, drug
combination pair (purple), private to a cell line (green) or private to a drug combination
(blue). A: Individual models B: Joint model.
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