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Motivation: Intracellular signalling is realized by complex signalling net-
works which are almost impossible to understand without network models, es-
pecially if feedbacks are involved. Modular Response Analysis (MRA) is a
convenient modelling method to study signalling networks in various contexts.
Results: We developed a derivative of MRA that is suited to model signalling
networks from incomplete perturbation schemes and multi-perturbation data.
We applied the method to study the effect of SHP2, a protein that has been
implicated in resistance to targeted therapy in colon cancer, using data from a
knock out and parental colon cancer cell line. We find that SHP2 is required
for MAPK signalling, whereas AKT signalling only partially depends on SHP2.
Availability: An R-package is available at https://github.com/MathurinD/STASNet
Contact: nils.bluethgen@charite.de

Introduction

Cells constantly receive external cues that are integrated by signalling networks
in the cell to direct their cell fates. The topology of those signalling networks is
understood to a great extend (Caron et al., 2010, Oda et al., 2005). However, the
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Figure 1: Workflow of the STASNet package STASNet uses network struc-
ture, experimental design and perturbation data as inputs to generate a sig-
nalling network model. This model can then be used to suggest modifications
in the network structure that are necessary to explain the data (Structural
modification), be analysed with profile likelihood (Raue et al., 2009)(Parameter
analysis), compared to models from other cells (Model comparison) or used to
simulate the response of the network to - also novel - perturbations (Simulation).
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complexity of these networks makes it difficult to predict what the outcome of
a perturbation would be, as feedbacks and cross-talk render intuitive reasoning
impossible.

During the last years, several approaches have been developed to use compu-
tational models to tackle this problem. These approaches range from Boolean
models that use logical rules to abstract the interactions between the elements
of the network (Grieco et al., 2013) to complex models based on differential
equations that model details of the reaction kinetics (Raue et al., 2014) or more
phenomenological stimulus-response kinetics (Korkut et al., 2015). Boolean
approaches have proven useful to predict the outcome in response to major al-
terations such as mutations or copy number alterations, but they fail to explain
more subtle differences between cells and have problems to describe dynamic
processes or effects of feedbacks (Saadatpour and Albert, 2013). On the other
side of the spectrum, differential equations can be used to describe the system
in details. However, fitting those models requires a tremendous amount of data,
limiting them to a very small scale. Intermediate approaches typically require
a limited amount of data and model quantitative responses of the signalling
networks to perturbations. Those methods have the major advantage of provid-
ing a way of simulating complex networks with relatively little data. Modular
Response Analysis (MRA) is an example of such approaches, where the individ-
ual phosphorylation and dephosphorylation events of kinases and phosphatases
are abstracted as influences between modules. MRA was first formulated as a
matrix inversion problem, and the corresponding singular value decomposition
approach has been used to study the activation of the MEK-ERK cascade by
NGF and EGF (Santos et al., 2007). A maximum likelihood formulation has
been developed to study regulatory interactions between signalling, proteins and
mRNA (Stelniec-Klotz et al., 2012), and refined to predict drug combinations to
overcome resistance mechanisms (Klinger et al., 2013). A more recent approach
based on Bayesian networks where prior information on the parameter can be
integrated was also described (Halasz et al., 2016).

In this article, we describe an augmented version of MRA (Kholodenko et al.,
2002; Klinger et al., 2013) that is particularly suited to model and reverse engi-
neer signalling networks using perturbation data. We illustrate the approach by
modelling the role of PTPN11 (SHP2) in EGFR signalling. To this end we re-
verse engineer the networks of a colon cancer cell line and a PTPN11 knock out
derivative, which shows that PTPN11 is required to activate MAPK signalling,
but has little influence on PI3K/AKT signalling, which contradicts previous lit-
erature (Wu et al., 2001). Our results show how modelling perturbation data of
isogenic cell lines can help to uncover the role of individual proteins in signalling
networks. We provide our method as an open-source R-package called STASNet
(STeady-STate Analysis of Signaling Networks).
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Figure 2: Minimal STASNet example Minimal example of package inputs
and the underlying symbolic equations. A Example of a perturbation scheme. B
Symbolic equations of selected global responses generated by the package with
structurally identifiable parameters colorized. As B is neither measured nor
perturbed, rABrBC is reduced to one parameter by STASNet. The inhibitory
parameters are depicted in red. C Input files for STASNet: the data MIDAS.csv
file specifies the experimental layout in (A) (stimulation of S, inhibition of A,
and measurement of A and C), network.tab contains the network structure and
basal.dat the nodes that have basal activity (see Material and Methods).
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Materials and Methods

Perturbation response

We consider a dynamical system for the (log-transformed) read-outs x, which
represent the phosphorylation status of the considered kinases,

ẋ = f(x,p), x ∈ Rn, p ∈ Rp,

with parameters p and stable steady state ϕ(p). This section describes how to
infer the strength of direct interaction between different nodes (components of
x) from measurements of the steady states at different parameter values.

Let any type of experimental perturbation of the system be represented by
a change of a specific parameter k from its unperturbed state p0

k to a new value
p̃k + p0

k. Furthermore, indicator ∆p ∈ {0, 1}p shall denote which parameters
pk were perturbed (∆pk = 1) or not (∆pk = 0) in a given experimental set-
ting. Thus, any combination of types of perturbations, represented by ∆p, is
associated with parameter values pk(∆p) = p̃k ∆pk + p0

k. Also, we define local
response and sensitivity coefficients as

rkl = −∂fk
∂xl

/
∂fk
∂xk

∣∣∣∣∣ {x,p}=
{ϕ(p0),p0}

and Skl = p̃l
∂fk
∂pl

/
∂fk
∂xk

∣∣∣∣∣ {x,p}=
{ϕ(p0),p0}

.

Response coefficient rkl quantifies the strength of the direct interaction from
node l to node k and sensitivity coefficient Skl quantifies the effect that a per-
turbation on parameter l will have on node k. Many of those coefficients are
a priori known to be zero, whenever direct connectivity between certain node
pairs can be excluded (prior network knowledge) or perturbations are known to
be specific to certain network nodes. Our goal is to determine the remaining
unknown entries from experimentally measured steady state changes upon per-
turbation ∆p, which we shall denote as R ∈ Rn. To make the connection, we
realize that

f(ϕ(p),p) = 0 ⇒ dfk
dpl

=
N∑
j=1

∂fk
∂ϕj

∂ϕj

∂pl
+
∂fk
∂pl

= 0

⇔ ∂ϕk

∂pl

∣∣∣∣∣
p=0

= −
[
r−1S

]
kl

1

p̃l
.

Assuming that perturbations are sufficiently small, the steady state function
becomes approximately linear,

ϕk(p(∆p)) ≈ ϕk(p(0)) +
P∑
l=1

∂ϕk

∂pl

∣∣∣∣∣
p=0

· (pl(∆p)− pl(0)) ,

the previous equations combine to

R−E = r−1S∆p, (1)
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where E is an unknown error vector that compensates for measurement error
and non-linearities in the steady state function ϕ(p).

We analyse a perturbation experiment comprised of stimulations or inhibi-
tions, each of which acts specifically on a single reactant. We can thus simplify
the above equation by defining ∆p such that the first s entries correspond to
the possible stimulations and the last i entries to the possible inhibitions, de-
noted as ∆pT = [∆s ∆i]T . Partitioning the sensitivity matrix accordingly
ST = [ST

s ST
i ], we can write S∆p = Ss ∆s + Si ∆i. Because the perturba-

tions are node-specific, the k-th row of Ss or Si is either a zero vector or has
a single non-zero entry, s̃k > 0 or ĩk < 0 respectively. Thus, for stimulations
we define s = Ss ∆s, where sk equals s̃k if kinase k was stimulated, and zero
otherwise. An inhibitor however only decrease its target kinase’s signal if that
kinase has a basal activity at all. So, we define i = Si ∆i, where ik equals ĩk
if kinase k was inhibited and basally active, and zero otherwise. To check for
a node’s basal activity we inspect whether its exclusive inhibition provokes any
measurable response. With this, Eq. (1) can be rewritten as

R−E = r−1 (s + i) .

Moreover, the data indicated that kinase inhibition gives rise to a prominent
non-linear behaviour that is not yet included in the above equation. In addition
to the reduction of the innate signal send out by the targeted molecule, an
effect which is conveyed by vector i, an inhibition also reduces the ability of
the inhibited node to relay upstream signals to downstream nodes. To take
this second effect into consideration, we downscale the strengths of all outgoing
links by factor exp(il), 0 < exp(il) ≤ 1 and call the altered response coefficients
r̃kl, with r̃kl = r̃kl exp(il) ∀k 6= l, and r̃kk = rkk = −1, and adapt the earlier
equation

R̂(∆p) = R− Ẽ = r̃−1 (s + i) . (2)

Having corrected for this most important non-linearity, we now assume that Ẽ
entries represent measurement error alone and consider them as iid -samples of
a Gaussian distribution.

Parameter estimation

The experimental data represents the measurements of the steady state differ-
ences due to different types of perturbations, ∆p1 . . .∆pq, which we combine
in matrix Rexpt ∈ Rn×q. Accordingly, we combine the expressions in Eq. (2)
to form R† = [R̂(∆p1) . . . R̂(∆pq)], which is a symbolic representation of the
perturbation response as a function of the system’s parameters R† = R†(r, s, i).
Since the error terms in Eq. (2) are assumed to be normally distributed, we can
thus fit the parameters by minimizing the sum of weighted squared residuals

min
r,s,i

∑
kl

(
Rexpt

kl −R†kl(r, s, i)
σk

)2

,
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where σk represents the analyte-specific standard deviation estimated from the
replicate measurements of the data. This is done with the Levenberg-Marquard
algorithm (levmar v.2.5 Lourakis, 2004). To ensure convergence to the global
optimum, the procedure is repeated over various starting parameters generated
through improved Latin Hypercube Sampling, as implemented in the R package
lhs.

Note, that this formulation allows to directly include prior-knowledge about
the variables, by setting them to their respective values (typically zero). Fur-
thermore, it can handle missing data by simply leaving out all those entries
where Rexpt

kl is not known.

Parameter sensitivity analysis

STASNet implements profile likelihood as described in Raue et al., 2009. Briefly,
for each parameter a likelihood profile is generated by refitting the model with
one parameter kept constant to a series of values around its optimum. These
profiles are used to detect nonidentifiable parameters, which correspond to an
over-parametrisation of the model relative to the data available and to asses the
reliability of parametrisation by calculating the pointwise confidence interval.

STASNet implementation and availability

The core functions of STASNet are implemented in C++ which are accessi-
ble via wrapper functions in R. STASNet is available as an R package under
https://github.com/MathurinD/STASNet.

Generation of perturbation data input

All cell lines are derived from the colon cancer cell line Widr. The cell lines
were cultured in RPMI Medium 1640 (Gibco, Life Technologies) with indica-
tor, L-glutamine 20nM, 100U/ml Penicillin and Streptomycin, and 10% FCS.
After serum starving the cells for 24 h the cells were treated 90 minutes before
harvesting with an inhibitor (MEK: AZD6244 1µM, PI3K: GDC0941 1µM, pan-
RAFi: Sorafenib 10µM, BRAF600E: Vemurafenib 10µM ; all SelleckChem) or
DMSO, and 30 minutes before harvesting with a ligand (EGF 20 ng/mL, NRG1
25 ng/mL, HGF 25 ng/mL; all R&D System) or BSA. The cells were then lysed
with Bio-Plex Pro Cell Signaling Reagent Kit (Bio-Rad) and multiplexed by in-
cubating with antibody-coated magnetic beads as described previously (Klinger
et al., 2013) detecting the following signals: AKTS473, ERK1/2T202,Y204/T185,Y187,
MEK1S217,S221, p90RSKS380, GSK3A/BS21/S9, RPS6S235/S236 and mTORS2448.
The plates were read using Bio-Plex Protein Array system (Bio-Rad, Hercules,
CA) and the resulting .lxb files were processed using the R package lxb and
a custom script to generate MIDAS-formatted files (as used by DATARAIL
Saez-Rodriguez et al., 2008) (Supplementary S2).

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2018. ; https://doi.org/10.1101/243600doi: bioRxiv preprint 

https://github.com/MathurinD/STASNet
https://doi.org/10.1101/243600
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results

A pipeline to model signal transduction networks from per-
turbation data

We developed a computational pipeline to model signalling networks from per-
turbation data using Modular Response Analysis. It is based on a previously es-
tablished maximum-likelihood formulation of MRA (Stelniec-Klotz et al., 2012),
and extensions that cover the effects of inhibitors on interactions and a re-
parameterization to account for non-identifiable parameters (Klinger et al.,
2013), for details confer Materials and Methods.

In the following we describe the typical steps to model and analyse the data
(see also Fig. 1): From a prior knowledge network of the signalling pathways
and the experimental layout (i.e. which signalling nodes are stimulated or inhib-
ited, and which nodes are measured), our algorithm constructs an MRA-based
model. Briefly, the algorithm constructs a symbolic local response matrix (i.e. a
normalised Jacobian matrix), inverts this matrix, and then computes symbolic
expressions for the global response matrix. Next, data on signalling node activ-
ity (such as phosphorylation of kinases) before and after perturbation by e.g.
ligands and inhibitors are used to estimate the parameters using a maximum-
likelihood approach. By iteratively probing if addition of links significantly
increases fit quality, or removal of links does not alter fit quality significantly,
the network can be refined. Once a model with reasonable fit quality is gener-
ated, its parameters can be analysed (and confidence intervals computed) using
profile likelihood. Models that were generated for different cell lines can be
compared, and model simulations can be used to predict unseen perturbations.

An in-silico example

To illustrate the application of STASNet, we applied it to in-silico perturbation
data, where we simulated perturbations in a model of a signalling network using
ordinary differential equations. To generate data, we used a network model to
simulate a cascade of three nodes (A, B, C), where the last node (C) inhibits the
first (A), and a “ligand” S stimulates A. The model also included an inhibitor
of A (Figure 2A). We simulated four conditions: control conditions, stimulation
of A by S, inhibition of A by iA, and a combination of the two perturbations.
Our STASNet pipeline requires three input files (Figure 2C) containing 1) the
perturbation data in MIDAS format (.csv) (described in Saez-Rodriguez et al.,
2008), 2) the network structure as a two-columned table describing the links
(.tab), 3) the nodes with basal activity (.dat). The latter file lists all signalling
nodes in the network that have basal activity, i.e. those nodes where inhibition
alone leads to decreased activity in downstream nodes, as discussed below.

From these input files, STASNet derives the symbolic local response ma-
trix, from which, after inversion, it computes the global response coefficients
symbolically which are then used to model the data. These response coeffi-
cients represent the log-fold-changes for each measured node in response to the
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perturbations.
Examples of these response coefficients for our in silico example are shown

in Figure 2B. The first equation describes the response of the network to stim-
ulation S. It should be noted that the two local response coefficients rAB and
rBC , that describe the strength of signalling between A and B, and B and
C, respectively, cannot be inferred from the data separately, as node B is not
measured. STASNet analyzes the equations to re-parametrize the model using
Gaussian elimination, as described previously (Klinger et al., 2013). In brief,
the algorithm detects parameters that only occur together in products or ratios,
and defines new identifiable parameter combinations. In our example, the re-
parametrization defines a new parameter that represents the product rAB ·rBC .

The second equation in Figure 2B shows the response to the inhibition of
A. Here we assume that A has basal activity, i.e. the inhibitor perturbs down-
stream signalling with a parameter ıA independently of upstream activation of
A. Without basal activity of A, this response would be 0. In addition to be-
ing a perturbation on downstream nodes, inhibition of A also alters the local
response coefficients, which we model by multiplying the respective control co-
efficients with exp(iA). This altered response coefficient is visible in the effect
of feedbacks (subtrahends in the denominator).

Perturbation data for RTK signalling in a colorectal carci-
noma cell line

Next, this pipeline can be used to study specific questions on signalling. We de-
cided to study the role of PTPN11, a phosphatase that is important in receptor
tyrosine (RTK) signalling, and has been implicated in feedback control of EGFR
signalling and drug resistance (Prahallad et al., 2015). To do so, we chose to gen-
erate a model of RTK signalling in a colorectal cancer cell line Widr containing
an activating BRAFV600E mutation, and then compare this model with a model
of the same cell line, where PTPN11 is inactivated using CRISPR/Cas9. To
parametrize the model, we measured the phosphorylation state of seven kinases
involved in MAPK and PI3K signalling, and their response to three ligands
(EGF, HGF and NRG1) and two inhibitors (MEK and PI3K inhibitors), alone
and in combination (see Figure 2A). The experimental design was such that we
serum-starved the cells, incubated them with inhibitors or their solvent control
for one hour, and subsequently stimulated them with the ligands or their sol-
vent. Half an hour later, cells were lysed and phospho-proteins were measured
using bead-based ELISAs.

Adapting the literature signalling network

Apart from the perturbation data, our modelling framework requires the sig-
nalling network topology as input. The MAPK and PI3K pathways are well
studied, which allowed us to generate a literature-derived interaction network
(Fig 3B). The network consists of the three ligands, their receptors, RAS, PI3K
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Figure 3: Building a model using STASNet A Experimental data of human
CRC Widr cell line and simulation results from the initial literature-derived net-
work (depicted in (B)). Grey squares indicate missing values. B Kinase interac-
tion network, including experimental design with measured (yellow), stimulated
(blue) and inhibited (red) nodes. Updates from the initial network are indi-
cated by bold links: removal RAS→PI3K link, and extension of ERK→mTOR
link. C Profile likelihood of paths containing a link between receptors and AKT
computed for the initial network. Red marks indicate the fitted value of the pri-
mary parameter. D Top links suggestion with equal improvement from the link
extension feature. E Comparison of the mTOR response simulations with or
without the ERK→mTOR link to the data.
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Figure 4: Analysis of a SHP2 KO with STASNet A Literature knowledge
of the role of SHP2 in EGFR signalling B Perturbation data for the parental
and SHP2 KO cell lines C Parameters with pointwise confidence interval of the
respective models. All links from receptor to MEK are affected by SHP2 KO
(dark blue).
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and RAF as unmeasured signalling intermediates, the measured pathway com-
ponents of AKT and MAPK signalling and pathway targets that include mTOR
(as an AKT target) and GSK3, p90RSK and RPS6 as common targets of both
signalling pathways. In addition, we included two well-studied feedback loops
in MAPK signalling (ERK→RAF and ERK→EGFR) that are known to play a
role in drug resistance (Fritsche-Guenther et al., 2011,Klinger et al., 2013).

The model contained 19 parameters that represent either entries of the lo-
cal response matrix (or lumped combinations of them), or inhibitor strengths.
When estimating these 19 parameters using a maximum likelihood procedure,
the weighted sum of squared residuals was 52, which is compatible with the 74
measurements. An interesting aspect of the network are the different modes of
activation of the two pathways: while the MAPK pathway is solely activated
through RAS, AKT is activated both in a RAS-independent and -dependent way
(Hemmings and Restuccia, 2012). However, as we neither measure or perturb
elements of these two pathways leading to AKT activation, their parameter
values cannot be estimated independently. This is known as structural non-
identifiability. Our pipeline allows to calculate the profile likelihood for the
model, which shows the change in maximum likelihood when one (primary)
parameter is varied (Raue et al., 2009). When plotting the profile likeli-
hoods and the optimized parameters, this structural non-identifiability is di-
rectly visible by flat profile likelihoods and compensatory changes in related
(secondary) parameters (Fig 3C). To resolve this, our pipeline allows to sequen-
tially remove links from the model by re-fitting all possible models with one
link removed and comparing the resulting log-likelihoods. In our example, the
model can be reduced by removing one of the links HER2→PI3K, RAS→ PI3K,
Met→PI3K or EGFR→PI3K without changes in the likelihood (Supplementary
S1). As all three models have the same likelihood, we decided to remove the link
RAS→PI3K as it separates the PI3K and RAF cascades (Fig 3D) and allows
for more straight forward interpretation of the parameters; it also leads to a
numerically more stable model. This results in a network model where all links
are identifiable.

When comparing the data and the model fit, we noticed that although in
general the data can be reproduced reasonably well, there are some discrepan-
cies for mTOR upon PIK3 inhibition (see Fig 3E reduced network vs. data).
To investigate if any additional links can resolve these discrepancies, we use the
extension suggestion feature of STASNet (Supplementary S1). Briefly, this fea-
tures tests all possible links, ranks them according to their likelihood and evalu-
ates their significance. We noticed that adding any of the links RPS6→mTOR,
ERK→mTOR, MEK→mTOR, or p90RSK→mTOR does not improve fit quality
(Fig 3C). Since the experimental setup did not permit us to discriminate these
links we searched the literature and found that only of ERK an activation of
mTOR by inhibiting mTOR inhibitory complex protein TSC2 via phosphoryla-
tion at serine 664 is described (Rolfe et al., 2005). We thus updated the network
to include this link, which led to an improved fit (Fig 3E with ERK→mTOR).
The final model is displayed in Fig. 3B.
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Figure 5: Prediction of RAF inhibitors effects A Localisation of RAF
and BRAF inhibition in the network derived for the Widr cell line; meaa-
sured/predicted nodes are highlighted in yellow. B STASNet simulation of
the impact of BRAFV600E and pan-RAF inhibitors on both cell lines C Experi-
mental measurements of the impact of Vemurafenib (BRAFV600E inhibitor) and
Sorafenib (pan-RAF inhibitor) on the parental and SHP2 KO cell lines (error
bars in S.D., n=2).

Analysis of a SHP2 knock-out with STASNet

After having established a model for the cell line with a wild-type SHP2, we next
aimed to model the network when SHP2 is inactivated. For this, we used a SHP2
KO cell line derived from the Widr cell line using CRISPR/Cas9 (Prahallad
et al., 2015). SHP2 (PTPN11) is a phosphatase that binds to the tyrosine kinase
receptors through adaptors such as GAB1 and participates in the activation of
the MAPK cascade by relieving inhibitions on RAS and RAF. SHP2 has been
shown to be reactivated in BRAF inhibition resistant cell lines (Prahallad et al.,
2015)(Fig 4A).

We applyied the same perturbation experiments to the SHP2 KO cells and
compared the response to the parental cell line (see Fig 4B). It is evident that
the knock out led to a reduction of phosphorylation response throughout the
network. We then parametrized a model for signalling in the SHP2 KO cell
line, using the network derived for the parental cell line, and obtained a maxi-
mum likelihood fit sufficiently complying with the experimental error. We then
quantitatively compared the parameters fitted for the SHP2 KO to those fitted
for the parental cell line (Fig 4C) using confidence intervals for the parameters
obtained by profile likelihood. For intra-cellular paths and inhibitors the values
between parental and KO cell lines did not significantly differ (Fig 4C middle
and lower panel). For the receptor connecting paths we found several param-
eters that were significantly (and qualitatively) different between the two cell
lines. Four of these parameters correspond to all paths in the network that con-
nect the receptors to MAPK signalling. While these parameters are numerically
large in the parental cell line, they are close to zero in the SHP2 KO (Fig 4C,
upper panel indicated in blue). This confirms the known role of SHP2 as being
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between the receptor and the activation of RAF (Fig. 4A). Accordingly, the
ERK→RAF→MEK feedback is still functional in the SHP2 KO. Surprisingly
however, the parameters corresponding to the activation of AKT by two of the
three ligands are not significantly altered, suggesting that SHP2 is only partly
required for the activation of the PI3K/AKT pathway (Fig. 4C). Interestingly,
the ERK→EGFR→AKT crosstalk is also still functional which indicates that
ERK regulation of EGFR does not depend on SHP2.

Prediction of the impact of RAF inhibition

Having cell-specific models generated for the parental and SHP2 KO, we can
then ask how other perturbations would affect the networks. RAF is an im-
portant therapeutic target for which two main classes of inhibitors exist. Some
inhibitors, such as Vemurafenib, target specifically mutant BRAF (BRAFV600E,
Bollag et al., 2010), whereas others, such as Sorafenib, are pan-RAF inhibitors
that inhibit all RAF isoforms (Wilhelm et al., 2004). The Widr cell system that
we study harbours the BRAFV600E so we could investigate the effects of these
two inhibitor classes in our model and experimentally validate them afterwards.

As we calibrated our model on data where RAF activity was neither mea-
sured nor perturbed, the RAF→MEK link is not directly fitted but in parame-
ter combinations. We therefore had to augment our model, by including a new
node, BRAFV600E mutation that is connected to MEK and receives no upstream
signal (Fig. 5A), as the BRAFV600E mutation renders BRAF insensitive to up-
stream and feedback signals (Friday et al., 2008). Moreover since we had to
give an reasonable but arbitrary parameter value for the inhibition strength for
both RAF inhibitors (set to 3), the resulting predictions can only be understood
qualitatively.

One of the resistance mechanisms for RAF inhibition is the reactivation of
the RAF-MEK-ERK signalling pathway and the activation of AKT by loss of
feedback inhibition of the EGF receptor (Prahallad et al., 2012, Klinger et al.,
2013). We therefore decided to simulate to what extend EGF stimulation rescues
MEK and AKT phosphorylation upon RAF inhibition. In our simulation, we
noticed qualitative differences between the two inhibitors in our wild-type cell
lines (Fig. 5B). While EGF stimulation hyperactivates AKT for both inhibitors,
it only rescues MEK phosphorylation after treatment with the BRAFV600E spe-
cific inhibitor. This is consistent with the idea that this inhibitor specifically
blocks the mutant allele, while the non-mutated allele and other isoforms can
still relay the signal. When comparing the simulations of the two different cell
line models it can be noted that in the parental cell line, both MEK and AKT
are upregulated with EGF, whereas in SHP2 KO this upregulation is completely
blocked for MEK, and is attenuated for AKT (Fig. 5B).

To confirm our model prediction, we performed experiments in which we pre-
incubated the cells with either Vemurafenib (BRAFV600E inhibitor) or Sorafenib
(pan-RAF inhibitor) for 90 min, and then stimulated cells with EGF for 30 min,
and measured AKT and MEK phosphorylation (Fig. 5C). These data are in
qualitative agreement with our model predictions, confirming the disruption of
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the EGF–¿MEK path and the attenuation of the EGF–¿AKT path in the SHP2
KO.

Discussion

Perturbation-response data sets are key for the analyses of signalling networks,
and many different approaches have been developed to generate computational
models from such systematic data sets. Most of these approaches binarize data
and use logic approaches to describe the data (Morris et al., 2010), or alter-
natively they use dynamic information to fit quantitative data (Raue et al.,
2014). In this article, we describe an approach that uses an augmented ver-
sion of MRA (Kholodenko et al., 2002; Klinger et al., 2013), that allows the
generation of semi-quantitative models from snapshot perturbation-data. We
developed an R package called STASNet, that implements this approach and
provides analysis functions to improve and compare models.

In this article, we applied STASNet to model the effect of a SHP2 knock-out
on the MAPK and PI3K signalling network. By comparing the parameters of
the MRA models for the two isogenic cell lines we could recover the known role
of SHP2 in mediating MAPK signalling. However, it was unclear if SHP2 is
required to activate PI3K/AKT signalling in receptor tyrosine kinase/EGFR
signalling. We found that PI3K/AKT signalling triggered by the receptors
HER2 and HGF is largely independent of SHP2, whith EGFR being partly
dependent.

SHP2 has been implicated in resistance of BRAF mutant colorectal carci-
noma, where loss of feedback to SHP2/EGFR leads to reactivation of MAPK
signalling after treatment with BRAF inhibitors (Prahallad et al., 2015). Our
study confirms that SHP2 has a major role in re-activation of MAPK signalling,
as our model predictions show and the data confirm that MEK phosphorylation
cannot be recovered in SHP2 KO with EGF. Furthermore the model predicts
and the data confirms that with functional SHP2, pan-RAF inhibitors also pre-
vent activation of the MAPK pathway, and may be considered an alternative
treatment option to prevent resistance.

The signalling focus of our method is set on the intermediate early time
points when phosphorylation events have reached a quasi steady-state and tran-
scriptional feedbacks are not yet appearing. We think that this intermediate
state is useful to predict the cell response to drugs directed on the signalling
network components and to identify potential resistance mechanisms. MRA has
also already been used to compare different cell lines to explain drug resistance
and predict ways to overcome them (Klinger et al., 2013). STASNet provides a
convenient way of applying such methods on various perturbation data.

Few other programs exist to deal with single time point steady state data.
CellNOptR (Terfve et al., 2012) can be applied to such data after discretisa-
tion or normalisation of the data, which implies to define thresholds and might
require external data. Other more precise approaches like CNORode (Terfve
et al., 2012) or Data2Dynamics (Raue et al., 2014) rely on ordinary differential
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equations and require more data to be parametrized, limiting their application
to small networks.

To conclude, STASNet provides a convenient R-package to generate MRA-
models using a maximum likelihood approach for single time point signalling
data. The package can be obtained at https://github.com/MathurinD/STASNet,
and example data and the analysis scripts are available within the package. R
scripts that can reproduce the analysis in this paper are in the supplementary
information.

Supporting Information

S1 File Knitr script with input to generate the figures 3 and 4

S2 File zip file containing lxb files (raw data) and R scripts to pro-
cess them

S3 File zip file containing the data and script used for the RAF in-
hibitors simulation, and the lxb files for the confirmation experiment
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