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Abstract

Simultaneous multislice (SMS) acquisition can be used to decrease the time between ac-
quisition of fMRI volumes, which can increase sensitivity by facilitating the removal of higher-
frequency artifacts and boosting effective sample size. The technique requires an additional
processing step in which the slices are separated, or unaliased, to recover the whole brain
volume. However, this may result in signal “leakage” between aliased locations, i.e., slice
“leakage,” and lead to spurious activation (decreased specificity). SMS can also lead to noise
amplification, which can reduce the benefits of decreased repetition time. In this study, we
evaluate the original slice-GRAPPA (no leak block) reconstruction algorithm and acquisition
scenarios used in the young adult Human Connectome Project (HCP), as well as split slice-
GRAPPA (leak block). In addition to slice leakage, signal leakage can result from spatial
smoothing, i.e., smoothing leakage, which leads to inflated regions of activation. Previous
studies have generally found that SMS acquisition results in higher test statistics and/or a
greater number of activated voxels. Here, we use simulations to disentangle this phenomenon
into true positives (sensitivity) and false positives (decreased specificity). Slice leakage was
greatly decreased by split slice-GRAPPA. Noise amplification was decreased by using moder-
ate acceleration factors (AF = 4). We examined slice leakage in unprocessed fMRI motor task
data from the HCP, which used the original slice-GRAPPA. When data were smoothed, we
found evidence of slice leakage in some, but not all, subjects. We also found evidence of SMS
noise amplification in unprocessed task and processed resting-state HCP data.

Keywords: false negatives, false positives, multiband, noise amplification, parallel imaging,
slice-GRAPPA, slice leakage

1 Introduction

The rapid evolution in simultaneous multislice (SMS) imaging techniques has led to large

decreases in image acquisition time, which has increased the temporal resolution in functional
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magnetic resonance imaging (fMRI) and improved tractography in diffusion MRI. In SMS

imaging, a multiband radio frequency (RF) pulse with slice-selective gradient is utilized to

simultaneously collect data from multiple slices (Feinberg and Setsompop, 2013). The time

to repetition (TR) is decreased in proportion to the number of simultaneously excited slices,

and a twelve-fold reduction has been implemented for 2D echo-planar imaging (EPI) (Xu

et al., 2013). Higher sampling rates can improve the ability to separate physiological artifacts

such as breathing and cardiac pulsation, which contain power at higher frequencies than the

hemodynamic response function (Smith et al., 2013; Boyacioğlu et al., 2015; Griffanti et al.,

2014). Test statistics and temporal signal-to-noise ratio (tSNR) may benefit from an increase

in the effective sample size resulting from the collection of a higher number of volumes in the

same run duration (Todd et al., 2016; Feinberg et al., 2010). SMS techniques are becoming

increasingly important because they are crucial to decreasing acquisition times in 7T MRI,

which decreases geometric distortion from inhomogeneity effects at ultrahigh magnetic fields,

and thus serve a central role in high-resolution brain mapping (Moeller et al., 2010; Poser and

Setsompop, 2017; Uğurbil et al., 2013).

The benefits of SMS are in part offset by noise amplification due to slice separation during

reconstruction. Additionally, signal loss and poor contrast can occur with high acceleration

factors (AFs) when the TR is less than the T1 relaxation time of the tissue of interest (Smith

et al., 2013). The specific absorption rate is also a concern with SMS, as power deposition from

the multiband (MB) RF pulses increases proportionally to the number of slices simultaneously

excited. Noise amplification can be quantified using coil geometry factors, or g-factors. G-

factors can be improved by exploiting spatial variation in coil sensitivities. In single-shot 2D

EPI, gradient blips are applied to slices collected at the same time to achieve field of view shifts

to improve g-factors (Breuer et al., 2005; Nunes et al., 2006; Setsompop et al., 2012). SMS

protocols using FOV/3 shifts and an AF equal to eight have been popularized by the Human

Connectome Project (HCP) acquisition protocol (Glasser et al., 2016), and SMS imaging is

being used in other major studies such as the UK Biobank (Miller et al., 2016) and Rhineland

Study (Breteler et al., 2014). Advanced methods are being developed for 3D encoding that

more efficiently utilize 3D variation in coil sensitivities using corkscrew-like trajectories (Bilgic

et al., 2015).
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In addition to noise amplification, the accuracy of image reconstruction in SMS is impacted

by slice leakage, or signal from aliased slices that is not adequately separated from a given slice

(Moeller et al., 2012). Slice leakage can be difficult to detect in SMS imaging, where differences

in the accuracy of kernels can result in one slice showing significant aliasing while another slice

is free from artifact (Barth et al., 2016). The L-factor can be quantified from single-band

training data, where it is equal to the image reconstructed when applying the GRAPPA kernel

from a focal slice to the aliased slices (excluding the focal slice) (Cauley et al., 2014). L-factors

generally increase with AF and are oftentimes lower in blipped-CAIPI acquisition protocols

versus non-blipped (Xu et al., 2013).

Previous empirical studies have interpreted higher test statistics and/or a larger number

of activated voxels in SMS data versus single-band data as evidence of increased sensitivity,

although this is not equivalent to statistical sensitivity because the truth is unknown. Higher

test statistics in the presence of bias, for example due to slice leakage or spatial smoothing,

result in a decrease in specificity. Higher test statistics and/or larger spatial extents of acti-

vation is SMS data have been found in task fMRI (Chen et al., 2015; Boyacioğlu et al., 2015;

Demetriou et al., 2016; Todd et al., 2016, 2017) and resting-state fMRI (Preibisch et al., 2015;

Feinberg et al., 2010; Smith et al., 2013). Approaches comparing test statistics can also be

hindered by inaccurate modeling of the time-series errors for shorter TRs, and the use of low-

order AR(1) models may lead to inflated test statistics (Chen and Glover, 2017) (but see Todd

et al. (2017), who account for this issue by down sampling).

While previous studies address the potential benefits of SMS, the costs in terms of false

positives have been less studied. Todd et al. (2016) developed an empirical formulation of

specificity by examining activation in voxels aliased to voxels believed to reflect true activation

in visual and motor tasks. For a given AF, a voxel was deemed a false positive if it was activated

and aliased to the voxel with largest test statistic from an activation cluster but was inactive

in the other runs collected using a different AF (in which the aliased locations differed). Their

study compared the incidence of suspected false positives in reconstruction using the original

slice-GRAPPA (no leak block) (Setsompop et al., 2012) and split slice-GRAPPA (leak block)

(Cauley et al., 2014). Split slice-GRAPPA dramatically reduced the instances of false positives

without reducing the size of the top 1% of test statistics. The authors’ approach focused on
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single voxels with the largest test statistics, whereas researchers may also be interested in

whether slice leakage can lead to clusters of voxels that can be mistaken to be of biological

origin. Additionally, the study evaluated through-plane multiband factors in combination with

2× in-plane acceleration. The HCP young adult study and UK Biobank use AF = 8 without

in-plane acceleration, and the incidence of false positives has not been evaluated for their

acquisition protocols. Finally, the study used a small amount of smoothing (2 mm FWHM),

and the interaction between AF and smoothing has not been examined.

The questions and insights raised by Todd et al. (2016) in part motivated our investigation

of the patterns of regional aliasing and a formal evaluation of the statistical impacts of SMS

acquisition including the impacts of smoothing. The impacts of signal leakage have been

demonstrated for in-plane acceleration, where interpolation using the in-plane GRAPPA kernel

and spatial smoothing induce correlations between aliased and neighboring voxels (Bruce and

Rowe, 2014). Here, we characterize signal leakage due to slice leakage, which causes signal to

leak into distant voxels, and smoothing leakage, which is associated with signal leaking into

neighboring voxels. We define regional aliasing as a set of contiguous voxels aliased to a region

of interest. Slice leakage can result in a cluster of activation in regionally aliased voxels in task

fMRI, or in a cluster of induced correlations in resting-state fMRI. The costs and benefits of

SMS can be quantified by statistical sensitivity and specificity. Statistical sensitivity is the

true positive rate, and in the context of hypothesis testing, it is equal to the proportion of

rejected null hypotheses given the null hypothesis is false (this is also called power, and is

equivalent to one minus the probability of a false negative, i.e., one minus the type II error

rate). Specificity is the true negative rate, which is the proportion of null hypotheses that were

not rejected given the null hypothesis is true (this is is equal to one minus the probability of a

false positive, i.e., one minus the type I error rate). Disentangling the impacts of higher test

statistics into true positives and false positives requires simulations where the truth is known.

The goal of this study is to characterize the trade offs in SMS in terms of sensitivity

and specificity, with a focus on task fMRI. Large g-factors, low tSNR, and large L-factors

are detrimental to image reconstruction, but it is difficult to determine tolerable levels of

these measures and translate them into statistical outcomes for experimental design. Whereas

studies in MRI acquisition often focus on g-factors, here we examine the standard deviation
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of the residuals from task-activation models and the standard deviation of time series from

resting-state data, which are closely related to g-factors but may be more familiar to behavioral

scientists. Rather than focus on L-factors, we examine patterns of regional aliasing, which has

practical implications for activation studies. We evaluate how high multiband factors can

influence sensitivity and specificity for a left-hand motor task experiment motivated by the

acquisition protocols, reconstruction algorithm, and task data from the Human Connectome

Project. One of the primary aims of the HCP is the development of MRI acquisition protocols

with tested and optimized pulse sequences and image reconstruction algorithms (Glasser et al.,

2016). In this work, we evaluate the original slice-GRAPPA (no leak block) algorithm from

Setsompop et al. (2012), which was used in the HCP young adult study and UK Biobank.

We also evaluate split slice-GRAPPA (leak block) in simulations. Our goal is to provide

information that can aid experimenters implementing the HCP’s acquisition protocol. A second

goal is to provide information to scientists analyzing and interpreting HCP and UK Biobank

data.

In the next section, we propose a technique that allows researchers to examine whether

spurious activation is occurring in brain regions aliased with areas where prior knowledge

indicates true activation. In Section 3, we conduct a simulation study. In Section 4, we

analyze HCP motor task data for evidence of slice leakage and SMS noise amplification. In

Section 5, we examine noise amplification in the ICA-FIX preprocessed resting-state data.

2 Regional aliasing in Slice-GRAPPA

Before describing how aliasing patterns can be calculated, we provide background on controlled

aliasing in SMS. The g-factor was introduced for in-plane parallel imaging with sensitivity-

based (SENSE) reconstruction (Pruessmann et al., 1999). The g-factor in parallel imaging can

be defined as the ratio of the signal-to-noise ratio (SNR) for the unaccelerated data to the SNR

of the accelerated data divided by the square-root of the under-sampling rate, or assuming

the signals are equivalent, the ratio of the standard deviations of the accelerated data to the

unaccelerated data divided by the square-root of the under-sampling rate (Robson et al., 2008).

In the acquisition scenarios considered in our study, there is no in-plane acceleration and a

measure of the g-factor is the ratio of the standard deviations of the SMS to single-band data.
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To decrease g-factors, CAIPIRINHA techniques apply phase modulations to achieve shifts in

the field of view, which allow the variation in coil strengths to be exploited for improved slice

separation. CAIPIRINHA was developed for multi-shot sequences (Breuer et al., 2005), but

was not applicable to EPI acquisitions (diffusion MRI and fMRI) in which all phase-encoding

(PE) lines are read after a single radio frequency pulse. It was extended to single-shot EPI

via gradient blips (Nunes et al., 2006), but this approach resulted in voxel tilting artifacts.

Blipped-CAIPI acquisition uses sign and amplitude modulation of the gradient blips to avoid

phase accumulation and eliminate the voxel tilting artifacts (Setsompop et al., 2012).

Consider an example from the HCP fMRI data, which uses AF = 8, FOV/3 blipped-CAIPI

with left-right or right-left PE direction, an FOV of 208 × 180 × 144, and 2 mm isotropic

voxels. The HCP acquisition protocol results in nine packets for each time point, where the

number of slices in a packet is equal to the AF. The first packet contains slices 1, 10, 19,

28, 37, 46, 55, and 64. Without blipped-CAIPI, voxel [1,1,1] would be aliased with [1,1,10],

[1,1,19], [1,1,28], [1,1,37], [1,1,46], [1,1,55], and [1,1,64]. With 90 voxels in the phase-encoding

direction, phase shifts in k-space at increments of 2π/3 correspond to shifts in image space by

30 voxels, i.e., FOV/3. Then voxel [1,1,1] is aliased with [1,31,10], [1,61,19], [1,1,28], [1,31,37],

[1,61,46], [1,1,55], [1,31,64]. Note some of the aliased locations are not shifted, here, [1,1,1],

[1,1,28], and [1,1,55]. Variation in coil sensitivity along the z-axis is required to unalias these

slices (Setsompop et al., 2012).

When a cluster of voxels share a common signal, the aliasing pattern can be calculated

for all voxels in the cluster, which we call regional aliasing. Then signal may leak into the

aliased regions and create clusters of false positives. A convenient approach to calculating

aliased regions is to define a region of interest, simulate multislice acquisition from a mask

of this region, and then reconstruct the image using either the original slice-GRAPPA kernel

(hereafter, slice-GRAPPA) or split slice-GRAPPA. This approach provides insight into the

magnitude of activation that results from slice leakage. We use a 5 × 5 kernel size (Uğurbil

et al., 2013), which was used in the HCP reconstruction. The size of the kernel does not affect

the locations of aliasing, although it could impact reconstruction accuracy and consequently

the extent of leakage. A formal description of the slice-GRAPPA algorithm is in the Web

Supplement; for a description of the split slice-GRAPPA, the reader is referred to Cauley
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et al. (2014). To calculate aliased regions:

1. Create the real-valued input volume by defining the region (in the unregistered coordinate

system of the scanner) where large activation is likely to occur. To define this region, one

could estimate activation at each voxel, define a bounding box of the region of interest,

and then threshold the test statistics in that region.

2. Simulate SMS acquisition:

(a) Create complex-valued spatial-by-coil image data: multiply the real-valued input

volume by the complex-valued coil sensitivities to create a four dimensional image.

We estimated coil sensitivities as the ratio of the complex-valued channel data to

the sum of squares of all channel data, which was then smoothed by a Gaussian

filter with FWHM = 6 mm, and finally renormalized by the sum of squares of the

smoothed data. As a consequence of this normalization, the sum of squares of the

activation distributed across all channels is equal to the specified level of activation.

(b) Create spatial-by-coil k-space data: apply the two-dimensional discrete Fourier trans-

form (DFT) to the read-out and phase-encoding directions to convert data from the

image domain to spatial frequencies.

(c) Group the slices that will be aggregated into multislice packets: label the slices

according to their multislice packet as in (S.1) in the Web Supplement.

(d) Mimic blip-CAIPI acquisition: For each packet, apply phase shifts assuming per-

fect blip-CAIPI implementation. For FOV/3 shifts, this can be accomplished for

the cth coil, `th PE frequency, kth read-out (RO) frequency, and zth slice by

S∗
c`kz = exp{−i(` − 1)θ(z)}Sc`kz where i =

√
−1, θ(z) = (r(z) − 1)2π/3 with

r(z) ∈ {1, . . . ,AF} indexing which slice z represents in the corresponding multi-

slice packet and Sc`kz is the input volume from the previous step.

(e) Generate the coil k-space multislice data: sum the slices in each packet as in (S.3).

3. Separate slices: create the output volume by applying the GRAPPA kernels as in (S.2),

the 2D DFT, and sum-of-squares image reconstruction.

The reconstructed image can be compared to areas in which activation has been detected.

An example of this procedure is depicted in Figure 1, which was created using the slice-
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Figure 1: Activated voxels in simulations (white) and aliased locations for AF = 8 with FOV/3 shifts.
The input volume is equal to 100 in the white region and zero everywhere else. Slice-GRAPPA (left)
and split slice-GRAPPA (right), which have identical aliasing patterns but different magnitudes of
leakage. In slice-GRAPPA, the output volume in the aliased regions has a maximum equal to 26.1,
and in split slice-GRAPPA, the maximum is 25.6, but overall greatly reduced.

GRAPPA kernel (left) and split slice-GRAPPA kernel (right) from the single-band reference

data used in simulations. The input feature is a mask of the activation region used in the

simulations in Section 3 multiplied by 100. The image reconstructed using this process contains

non-zero values in the aliased locations, and the values represent the magnitude of leakage

resulting from the input. In slice-GRAPPA, the greatest leakage occurs in an aliased region in

brain tissue located inferior and left of the activated region. In the simulations in Section 3, we

will see that this is an area in which we tend to detect slice leakage. In split slice-GRAPPA, the

aliasing patterns are identical but the magnitude of leakage is greatly reduced. The statistical

impact of slice leakage is also affected by the residual variances, which are impacted by noise

amplification. Statistical impacts will be measured via specificity calculations in Section 3.

In practice, there is a stochastic component to whether and where slice leakage occurs.

This will be seen in the simulations and in the examination of the unprocessed HCP data.

Additionally, online scanner reconstruction algorithms may impact aliasing patterns. Vendor

software used in the HCP includes corrections for spatial shifts due to respiration-induced B0

fluctuations (Uğurbil et al., 2013; Xu et al., 2013; Pfeuffer et al., 2002), which impacts the

unprocessed HCP data. In another step, acquisition protocols may include online distortion

correction due to gradient non-linearities (this is turned off in the HCP acquisition protocol

and replaced by corrections during the preprocessing pipeline, Glasser et al. 2013, and thus

does not affect the HCP unprocessed data).
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3 Simulation Study

3.1 Simulation design

We conducted a simulation experiment with the following factors: acceleration factor (1, 4,

8); reconstruction method (slice-GRAPPA or split slice-GRAPPA); PE inter-slice image shifts

corresponding to LR encoding (none or FOV/3); run duration (120 s, 240 s, 480 s, where

the number of volumes depends on the acceleration factor); and activation magnitude (details

below). We refer to the PE image shifts as CAIPI shifts as they simulate the effects of blipped-

CAIPI EPI acquisition protocols. We simulated task fMRI data from a thirty-two channel

head coil under conditions motivated by the HCP; see Section 4 for a description of the HCP

unprocessed data. As a reference image, we used one volume of a navigator-corrected single-

band fMRI of a subject collected during the pre-pilot phase of the HCP using their customized

3T Siemens scanner with a NOVA medical thirty-two channel head coil. The reference image

contains 2 mm isotropic voxels with dimensions 104 × 90 × 72 in the read-out, phase-encoding,

and slice directions.

The set of kernels for slice-GRAPPA reconstruction and split slice-GRAPPA was calculated

from the calibration data for each level of AF × CAIPI shifts.

The initial design of the simulation study involved three steps:

1. Determine the scaling of the reference band image and the size of the measurement error

to match empirical intensities and residual variances.

2. Determine the region of activation and baseline levels of activation.

3. Calculate activation time courses.

Step 1 is a challenging task because we do not have spatiotemporal-by-coil data avail-

able, but rather, magnitude data (i.e., the unprocessed HCP task fMRI data) and the single

spatial-by-coil complex-valued reference image. We derived a measurement-error process in

spatiotemporal-by-coil multislice k-space. The scaling of the magnitude image is complicated

by the fact that taking the sum-of-squares reconstruction of mean-zero errors affects the mean

structure. Concomitantly, the variance changes. The reference volume data intensities were in

a different scale than the publicly available HCP single-band data. Consequently, we initially

scaled it to have a mean equal to one and then determined the combination of mean intensity
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and residual variances to approximate the unprocessed fMRI data. Our strategy was to use the

intensities in the non-tissue areas of the HCP unprocessed task fMRI data to inform the size of

the variance of the k-space errors. Note the inverse discrete Fourier transform of independent

and identically distributed (iid) Gaussian complex-valued errors with variance σ2k results in iid

Gaussian errors but now the variances are scaled by the number of frequencies, τ2 = σ2k/Y X,

where Y is the number of frequencies in the PE direction and X is the number of frequencies

in the RO direction. Then the square root of the sum of squares of mean zero complex-valued

Gaussian noise is proportional to a chi random variable with 64 degrees of freedom (twice the

number of coils due to the real and complex components), where the scaling factor is equal

to τ . This is discussed in Aja-Fernández et al. (2011). The square root of the sum of squares

of the Gaussian errors has a mean equal to µ = τ
√

2γ(65/2)/γ(32) and variance τ264 − µ2,

where γ(·) is the gamma function.

We chose to scale the reference volume in magnitude image space to result in a mean equal

to 1,500. We added Gaussian complex-valued errors with both real and complex variance

equal to 8.4573 × 107 in k-space; in the absence of a mean signal, this results in a residual

variance in magnitude image space equal to 4,500. This choice was informed by the empirical

intensities and residual variances in non-tissue and tissue areas of single-subject massive uni-

variate analyses of the HCP motor task data from the LR session of ten subjects. Our chosen

parameters resulted in the median (across spatial locations) residual variance from the general

linear model (GLM) fit to our simulated magnitude CAIPI AF = 8 data in non-tissue regions

approximately equal to 3,700 (details of simulation below), where this value ranged from 1,800

– 4,300 in the ten HCP subjects. The median intensity in the non-tissue regions was 297

compared to 265–363 in the HCP data. Across all locations, the simulated median residual

variance (with slice-GRAPPA reconstruction) was approximately equal to 6,700, whereas the

HCP data ranged from 4,800–13,000, and for the median intensity, 450 versus 370–743. For

the HCP data, these values were calculated from the white noise variance and intercept of the

GLM described in Section 4.

For step 2, we constructed a single patch of activation based on an estimate of the region

activated by the left-hand motor-task contrast from an HCP subject with a brain similarly

shaped to our reference data. A GLM was fit to subject 101107 for smoothed and unsmoothed
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data from a motor task as described in Section 4. The smoothed data were used to roughly

delineate the left-hand motor cortex, in which we defined a bounding box based on visual

inspection, thresholded to voxels with approximate z-statistics greater than 2.326, and applied

a brain mask. We then used the contrast levels from the unsmoothed data as the “true”

activation, which contained some positive and some negative effect sizes (mean: 72.7, min:

-293; max: 842, n = 1446). In our preliminary analysis, we set all voxels in the area of

activation equal to the same level of activation, but this resulted in much larger t-statistics for

the smoothed than unsmoothed estimates. Allowing the effect sizes to vary according to the

unsmoothed contrasts resulted in more reasonable t-statistics. We then multiplied all voxels

in the delineated region by a scaling factor to manipulate overall effect size.

For step 3, task onsets were simulated as a box-car function with the experimental condition

lasting three seconds with onsets at 5, 65, 125, 185, 245, 305, 365, and 425 seconds for run

duration = 480 s and the appropriate subset of times for run duration = 120 s and 240 s.

The box-car function was convolved with the canonical hemodynamic response function from

SPM (Penny et al., 2007). We performed simulations for scaling factors 0.5, 1, 2, 3, and

5. For scaling factor = 1, the average percent change relative to baseline was 1.06%, which

was computed following Poldrack et al. (2011). Specifically, for each location in the region

of activation, the true contrast value was multiplied by the peak of the task covariate, which

equaled 0.48, then divided by the location’s mean from an fMRI times series simulated using

the eight steps below with AF = 8, 240 seconds, and CAIPI shifts. Finally, we averaged this

value across locations in the region of activation and multiplied by 100. For the other scaling

factors, we estimated the average percent change as the corresponding scaling factor multiplied

by 1.06%. Note that in the HCP design, the peak of the five motor task covariates (left hand,

left foot, right hand, right foot, tongue) equaled 0.95, corresponding to 12 second tasks, while

the peak from the cue was 3 seconds, with peak equal to 0.48; using the contrast from left

hand versus others including cue (1 -1/5 -1/5 -1/5 -1/5 -1/5), multiplying by 0.95 and 100,

and dividing by the mean, the average percent change from baseline from the subject used

to define the region of activation (101107) was 1.61% from the subject’s unsmoothed data (in

addition to the larger max of the task covariate, the mean fMRI time series for subject 101107

was somewhat higher than in the simulated data) and 1.21% in the smoothed data.
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The simulation experiment then involved the following steps:

1. Create the (real-valued) activation time course for each voxel. For voxels in the activation

region, multiply the baseline activation parameter by the scaling factor, and then multiply

this result by the activation time course. All other voxels equal zero.

2. Create the true spatiotemporal image data by creating n copies of the (complex-valued)

reference image, where n is the number of volumes, and then adding the activation time

courses.

3. Create the true spatiotemporal-by-coil image data by multiplying each volume by the

normalized complex-valued coil sensitivities (see step 2(a) in Section 2).

4. Group slices into multislice packets, convert the PE and RO directions to the frequency

domain, and apply phase-shifts according to the CAIPI factor level (steps 2(b) - (d) in

Section 2).

5. Add slices to create spatiotemporal-by-coil k-space multislice packets (step 2(e) in Section

2).

6. Add iid complex-valued measurement error to the spatiotemporal-by-coil k-space mul-

tislice packets assuming the same standard deviation for all spatial frequencies. This

simple set-up produces realistic spatial variation in the residuals in the multiband data

(Figure 2; for residuals based on HCP data, see Figure 7).

7. Use slice-GRAPPA or split slice-GRAPPA followed by sum-of-squares reconstruction to

generate the simulated magnitude fMRI run.

8. Fit the GLM to each voxel. For this step, we conduct the analysis both with no smoothing

and with smoothing using a Gaussian kernel with FWHM = 6 mm.

In these simulations, steps 1-5 are performed once for each level of (AF) × (CAIPI) ×

(run duration) × (activation magnitude). Then steps 6-8 are performed for each iteration.

We conducted twenty-five iterations for each level. Note that in Step 6, we use iid errors

across space and time. The iid errors in space allow us to determine that the resulting spatial

variation in residual errors (Figure 2) is due to the SMS acquisition and coil geometry. With

respect to time, simulating temporally correlated errors would decrease the effective sample

size. We evaluate sensitivity and specificity with 120, 240, and 480 volumes, and thus cover a
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wide range of effective sample sizes. Results presented take approximately ten days on a 2.5

GHz Intel node with 256 gb memory and 48 logical processors.

We calculated sensitivity in each iteration based on the proportion of voxels with a p-value

less than 0.001 among all true active voxels (n = 1446) from a two-sided t-test, and then

averaged across iterations. We calculated one minus specificity in all locations, i.e., type one

error rates, as the proportion of voxels among all inactive voxels (n =202,187) in the masked

brain region with a p-value less than 0.001 from a two-sided t-test, and then averaged across

iterations. We also calculated one minus specificity restricted to the set of voxels in the aliased

regions intersected with the brain region.

3.2 Simulation results

3.2.1 Noise amplification

The standard deviations of the residuals from the GLM fit to unsmoothed data provide insight

into noise amplification due to SMS. We see that all SMS scenarios increase the standard

deviation in brain regions relative to a single-band acquisition, but that FOV/3 shifts result

in large decreases in the extent of noise amplification for both AF = 4 and AF = 8 (Figure

2). It is also apparent that there is a large cost to AF = 8 relative to AF = 4 for the case of

FOV/3. The variance for AF = 4 and 8 is higher in subcortical and some prefrontal regions,

particularly for AF = 8, which can be entirely attributed to SMS in our simulation design.

We also see lines delineating higher and lower regions of variance in AF = 8, as highlighted

by the red arrows in Figure 2. In the SMS literature, noise amplification is typically examined

using g-factor maps, and our results are consistent with previous studies using g-factors (Todd

et al., 2017; Setsompop et al., 2012). As described in Section 2, g-factors can be estimated

as the ratio of the SMS standard deviations to the single-band standard deviations. These

are provided in Web Supplement S.1. Results for split slice-GRAPPA and FOV/3 are very

similar, while without FOV shifts split slice-GRAPPA tends to have somewhat larger standard

deviations and g-factors; see Web Supplement Figures S.3 and S.4.
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Figure 2: Noise amplification due to SMS using slice-GRAPPA reconstruction. Standard deviation
of the residuals from the GLM fit to simulations with scaling factor = 1 and run duration = 480 s.
AF = 1 (A); AF = 8 with no FOV shifts (B) and FOV/3 shifts (C); AF = 4 with no FOV shifts
(D) and FOV/3 shifts (E). Results for split slice-GRAPPA and FOV/3 shifts are similar; see Web
Supplement S.3.
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3.2.2 Sensitivity and specificity

When the data were not smoothed, we found that sensitivity increased with AF when in

conjunction with CAIPI but overall was low, while 1-specificity was generally maintained

near the nominal alpha level for small to moderate effect sizes (Figure 3). When used with

CAIPI, split slice-GRAPPA and slice-GRAPPA had very similar sensitivity, as indicated by

the brown solid lines with filled squares (AF = 8, slice-GRAPPA, FOV/3) versus brown dashed

lines with hollow squares (AF = 8, split slice-GRAPPA, FOV/3) in panels A-C, and similarly

for AF = 4 with FOV/3 (slice-GRAPPA in dark blue solid lines with filled triangles; split-

slice-GRAPPA in dark blue dashed lines with hollow triangles). Without CAIPI, split slice-

GRAPPA had somewhat reduced sensitivity relative to slice-GRAPPA (orange solid lines with

filled squares correspond to AF = 8, slice-GRAPPA, no shifts and orange dashed lines with

hollow squares correspond to AF = 8, split slice-GRAPPA, no shifts; light blue solid lines

with filled triangles correspond to AF = 4, slice-GRAPPA, no shifts and light blue dashed

lines with hollow triangles correspond to AF = 4, split slice-GRAPPA, no shifts; panels A-C).

Split slice-GRAPPA improved specificity. In particular, the elevated 1-specificity in the slice-

GRAPPA reconstruction represented by the brown solid lines with filled squares in panels D-I

decrease to near 0.001 in most of the split slice-GRAPPA scenarios, represented by the brown

dashed lines with hollow squares in panels D-I, which are difficult to see because they coincide

with other scenarios. A zoomed-in view of specificity for the CAIPI acquisitions reveals split

slice-GRAPPA resulted in good overall control of 1 - specificity (Figure S.5, A-C). Overall,

multiband simulations with AF = 8, CAIPI shifts, and split slice-GRAPPA reconstruction

had better sensitivity with little slice leakage. Note that in these simulations, deviations of 1

- specificity from the nominal 0.001 level in Figure 3 D-F are due to slice leakage without the

confounding effect of smoothing leakage.

When the data were smoothed, sensitivity increased with AF when in conjunction with

CAIPI but at the cost of a decrease in specificity due to both smoothing leakage in voxels

neighboring the region of activation and an increase in slice leakage (Figure 4). As before,

split slice-GRAPPA and slice-GRAPPA had very similar sensitivity when in conjunction with

CAIPI, as seen in the overlap in the brown solid lines with filled squares and the brown dashed

lines with hollow squares (AF = 8, slice-GRAPPA, FOV/3 and AF = 8, split slice-GRAPPA,
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Figure 3: Sensitivity (power) (A-C), 1 - specificity (type 1 error rate) for all brain locations (D-F),
and 1 - specificity (type 1 error rate) in aliased locations (G-I) in simulations with smoothing for
α = 0.001. SG = slice-GRAPPA. SP-SG = split slice-GRAPPA. Scaling factors 0.5, 1, 2, 3, and 5
represent an average of 0.53%, 1.06%, 2.12%, 3.18%, and 5.30% change from baseline, respectively.
See Web Supplement S.5 for a zoomed-in version of G-I.
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FOV/3, respectively) and similarly, the overlap in the dark blue solid lines with filled triangles

and dark blue dashed lines with hollow triangles (panels A-C). Without CAIPI, slice-GRAPPA

tended to have higher sensitivity than split slice-GRAPPA, particularly for AF = 8 (orange

solid lines with filled squares versus orange dashed lines with hollow squares, panels A-C).

Over all brain locations, 1-specificity (panels D-F) was much larger than the nominal level for

both reconstruction methods, where smoothing leakage impacts both. Restricting attention

to the aliased regions, 1 - specificity for larger scaling factors is inflated for AF = 8 with

slice-GRAPPA both with and without FOV/3 shifts (brown solid lines with filled squares and

orange solid lines with filled squares) (G-I). Smoothing decreases the residual variances in the

GLM, resulting in increased “power” to detect the slice leakage, such that the 1 - specificity

rates are greatly increased in Figure 4 G-I relative to Figure 3 G-I. Split slice-GRAPPA reduces

slice leakage, and most notably, generally controls 1 - specificity near nominal levels except

for scaling factor = 5, as apparent in the zoomed-in depiction of the FOV/3 scenarios in

Web Supplement Figure S.5, D-F. Thus the impacts on specificity in the split-slice GRAPPA

simulations depicted in Figure 4 D-F are primarily driven by smoothing leakage to voxels

neighboring the region of activation, and slice leakage is reduced to near nominal levels for

small to moderate effect sizes (Figure 4 D-F, Figure S.5 D-F). The impacts of smoothing

leakage and benefits of AF indicate practitioners can “tune down” the amount of smoothing

used in preprocessing multiband data, as the boost in sample size from multiband can offset

the loss in sensitivity from less smoothing.

CAIPI shifts always increased sensitivity, but the effects on overall specificity differed for

AF = 4 and AF = 8 (Figure 4 D-F). AF = 4 with no shifts and split slice-GRAPPA had

the lowest 1 - specificity (light blue dashed lines with hollow triangles, D-F), and AF =

4, no shifts, and slice-GRAPPA was similar (light blue solid lines with filled triangles, D-

F). In the case of AF = 4 without CAIPI shifts and both slice-GRAPPA and split slice-

GRAPPA reconstruction, the noise amplification is generally higher than AF = 8, no shifts, and

slice-GRAPPA reconstruction, particularly in the core corresponding to the aliased locations

(aliased regions fall in the same sagittal slices as the activation region), which can be seen in

Web Supplement Figure S.2. This noise amplification also decreases the statistical impacts of

leakage, leading to lower “power” to detect leakage. Consequently, AF = 4 has good specificity
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but at a large cost in terms of sensitivity, whereas AF = 8 with no CAIPI and slice-GRAPPA

reconstruction has increased leakage as well as increased power to detect the leakage from both

the lower noise amplification in the aliased regions and the increase in sample size from greater

AF. Clearly, one would not want to use AF = 4 without CAIPI because of the large sensitivity

costs.

These simulations also reveal that there can be a cost to split slice-GRAPPA in multiband

acquisitions without CAIPI. AF = 8 with no shifts and split slice-GRAPPA reconstruction

(orange dashed lines with hollow squares, Figure 4 A-C) has notably lower sensitivity than

slice-GRAPPA (orange solid lines with filled squares). This corresponds to the increase in g-

factor apparent by comparing the areas near the cross-hairs in the top-left panel of Figure S.1

to Figure S.4. This reveals that the impacts of CAIPI shifts, AF, and reconstruction method

can be nuanced, although in all cases, CAIPI shifts improved sensitivity.

Inspecting the results from individual simulations provides insight into signal leakage.

There appeared to be slice leakage in aliased regions in some simulations with AF = 8 and a

more liberal alpha-level, which was reduced with AF = 4, and smoothing leakage was common

(Figure 5). The variability suggests that slice leakage may be detectable in some, but not

necessarily all, of the left-hand motor task contrasts in the unprocessed HCP data. Split slice-

GRAPPA tended to reduce the size of the t-statistics in aliased regions, while maintaining

the size of t-statistics in the region of true activation. For additional insight, in Section 3.3

we conduct simulations that isolate the effects of slice leakage from the features created by

smoothing.

The benefits of split slice-GRAPPA are clearly visible at scaling factor = 5 and run duration

= 480 s (Figure 6). For AF = 8, there is a dramatic reduction in slice leakage, and leakage is

largely eliminated in the first simulation. Note that the leakage tends to be most prominent in

the region in which the magnitude assessment of leakage from Section 2 was greatest (Figure

1). Simulations with AF = 4 have much less slice leakage for both slice-GRAPPA and split

slice-GRAPPA reconstruction.
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Figure 4: Sensitivity (power) (A-C), 1 - specificity (type 1 error rate) for all brain locations (D-F),
and 1 - specificity (type 1 error rate) in aliased locations (G-I) in simulations with smoothing for
α = 0.001. SG = slice-GRAPPA. SP-SG = split slice-GRAPPA. Scaling factors 0.5, 1, 2, 3, and 5
represent an average of 0.53%, 1.06%, 2.12%, 3.18%, and 5.30% change from baseline, respectively.
See Web Supplement S.5 for a zoomed-in version of G-I.
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Figure 5: Example simulations for AF = 8 and AF = 4 for run duration = 240 s and FOV/3 shifts
with scaling factor = 1 (average percent change from baseline = 1.06%). Shown are the t-statistics
from two simulations for each AF. For AF = 8, the simulation depicted on the left shows some
evidence of slice leakage (aliased locations in transparent gray) and the simulation on the right
shows little evidence. Both simulations display evidence of smoothing leakage (the activated region
leaking into neighboring voxels). Cursor at (63, 49, 53) in scanner coordinates. Thresholded at
|t| > 2.
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Figure 6: Example simulations for AF = 8 and AF = 4 for run duration = 480 s and FOV/3 shifts
with scaling factor = 5 (average percent change from baseline = 5.30%). Shown are the t-statistics
from two simulations for each AF. The left column shows slice-GRAPPA reconstruction and the
right column shows split slice-GRAPPA reconstruction. Thresholded at |t| > 2.
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3.3 Synthetic multiband simulation

To isolate the effects of slice leakage and the impacts of reconstruction, we first simulated two

single-band datasets according to the design in the previous section: one for scaling factor =

1 and one for scaling factor = 5, where both datasets had run duration = 480 s, FOV/3 shifts,

and TR = 1 s. We synthetically created multiband data from each single-band dataset by

collapsing the single-band data into multiband packets and then applying slice-GRAPPA and

split slice-GRAPPA reconstruction. In the previous section, the noise was added in k-space to

the multiband packets, which produces g-factors found in previous literature (Figures S.1 and

S.4; see for example Todd et al. (2017) for reference). In this section, the noise is added to the

single-band data before collapsing into multiband packets. For the single-band data, this results

in a realistic amount of noise. However, it introduces more noise to the multiband scenarios

than the previous section, since for each 2D spatial frequency, a new noise term is generated

for each slice. This contrasts with adding a single noise term to each 2D spatial frequency

of the summed slices, as in Section 3.1. The alternative approach considered in this section

produces unrealistically large g-factors in which areas susceptible to noise amplification have

g-factors near eight rather than three for AF = 8. However, it has the advantage of allowing

the same noise errors to be used in all scenarios, thereby allowing a direct comparison between

the single-band ground truth and reconstruction method. We present results in which the TR

= 1 s for all acquisitions alongside figures in which the data are subset to have TR = 2 s for

AF = 4 and TR = 8 s for the single-band data (Web Supplement Figure S.6 and Figure S.7).

For scaling factor = 5, we see that AF = 8 has leakage when using slice-GRAPPA re-

construction. This is eliminated by split slice-GRAPPA in one aliased region, but a small

cluster of leakage is still present in the region inferior to the region of activation (red arrows in

Figure S.7). Note this cluster of activation is not present in the single-band data, and thus is

attributed to slice leakage. Overall, there appears to be no cost to using split slice-GRAPPA

instead of slice-GRAPPA for activation in the motor cortex according to this simulation design

with FOV/3 shifts, as the regions of activation and t-statistics are very similar between the

two reconstruction methods.
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4 Slice leakage in the unprocessed HCP motor task

data

4.1 Analysis of unprocessed HCP data

The HCP 3T motor task data contain two runs that differ in their phase-encoding direction.

We searched for evidence of slice leakage by exploiting differences in the predicted aliasing

patterns between RL and LR PE directions, as described below. HCP fMRI data use an AF =

8, blipped-CAIPI with FOV/3, no in-plane acceleration, FOV 208 mm × 180 mm × 144 mm,

0.72 s TR, and 2 mm isotropic voxels (Smith et al., 2013), and each session of the motor task

data contains 284 volumes. The acquisition parameters are summarized in Web Supplement

Table S.1.

The unprocessed data represent the magnitude image space data that have been recon-

structed online using the image reconstruction environment of Siemens scanners (ICE), which

includes Nyquist-ghost correction, slice-GRAPPA reconstruction, and incorporates EPI inten-

sity correction and corrections for shifts in space due to B0 off-resonance modulations. An

example of the unprocessed data is in Web Supplement Figure S.4. The reconstruction algo-

rithm was revised in April 2013. According to the HCP S900 Release Reference Manual, “the

original reconstruction algorithm (version 177) performed the separation of the multi-band

multi-slice images after transforming the acquired fully sampled data to frequency space along

the read-out direction, and now the multi-band multi-slice separation is performed in k-space

(WU-Minn HCP Consortium, 2015).” Both of the reconstruction versions used by the HCP

are variants on the original slice-GRAPPA algorithm. Retrospective reconstruction using split

slice-GRAPPA is not possible because the unreconstructed data were not saved due to stor-

age limitations. Note our simulations perform separation entirely in k-space. Our use of the

phrase “original slice-GRAPPA” refers to k-space reconstruction as described in Setsompop

et al. (2012) and implemented in the second version of the slice-GRAPPA reconstruction al-

gorithm used in the HCP, denoted r227. We used the ninety-eight subjects included in the

U100 data sampler, which includes 57 subjects with r177 reconstruction, 39 with r227, and 2

with mixed. There was no significant effect of reconstruction version on the aliasing analysis,

which is detailed below.
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We used the unprocessed data because the locations of slice leakage are more predictable in

the unprocessed data than any other stage of the preprocessing pipeline. There are a number

of caveats to analyzing the unprocessed data. The HCP used a customized gradient that in

particular improved diffusion imaging scans. Additionally, subjects’ heads were positioned

off isocenter. These factors cause larger gradient nonlinearities than standard scanners. The

fMRI volume pipeline of the HCP includes gradient distortion correction, motion correction

to the single-band reference image, EPI image distortion correction to account for distortions

due to RL and LR encoding, and non-linear MNI registration using FNIRT (Glasser et al.,

2013). These processing steps change the aliasing patterns. Thus, we used the unprocessed

HCP data. However, the unprocessed datasets do contain some preprocessing steps performed

online during image reconstruction as previously described, and these could impact our ability

to detect signal leakage.

For each subject, an AR(3) model with covariates was estimated for each voxel from the

unprocessed data smoothed using a 6 mm FWHM Gaussian kernel, including non-brain voxels.

The subject design matrices included the tasks convolved with the canonical HRF from SPM12

as well as the time-delay and dispersion derivatives for each task, a piecewise linear spline with

four equally spaced knots to capture scanner drift, and the parameters from the affine regis-

tration used in the HCP preprocessing of these data. The voxel-wise AR(3) model can better

account for increased temporal dependence from the shorter TR, spatially varying variances,

and spatially varying temporal autocorrelation, and it was estimated using the reduced bias

estimators from Worsley et al. (2002) and the code from the supplementary material in Risk

et al. (2016).

To examine signal leakage, we defined a bounding box for the left-hand motor cortex equal

to 51:78, 35:62, and 42:72 for the phase-encoding, read-out, and slice directions, which was

based on inspecting the approximate z-statistics of the left-hand motor task contrasts from

twenty subjects. For each subject, we created another map by thresholding the z-statistics

from the left-hand contrast at 3.09. We then created a simple brain mask by thresholding the

mean signal intensity across a given run. Lastly, we intersected these three maps.

Using the method described in Section 2, we created a mask of the regions aliased with

the motor cortex from the LR run using the FOV/3 shifts, and we calculated “mismatched”
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aliased regions for the same run assuming the incorrect RL encoding, and vice versa for the RL

run. An example of the aliased regions calculated according to the true PE direction and the

aliased regions calculated assuming the incorrect PE direction is provided in Figure 8. Note

that some regions with LR and RL encoding coincide. This is due to the cycling that occurs

from using FOV/3 with AF = 8 and due to the chance occurrence that a voxel is aliased to

some voxel in the activated region when using LR encoding and a different voxel elsewhere in

the activated region when using RL encoding.

For each subject, we calculated the following quantities:

1. ALR−LR: Number of voxels with z > 1.96 in aliased regions of the LR run calculated

using LR encoding.

2. ARL−RL: Number of voxels with z > 1.96 in aliased regions of the RL run calculated

using RL encoding.

3. ALR−RL: Number of voxels with z > 1.96 in aliased regions of the LR run calculated

using RL encoding.

4. ARL−LR: Number of voxels with z > 1.96 in aliased regions of the RL run calculated

using LR encoding.

5. NLR: Number of voxels in aliased regions of the LR run (7*number of voxels in the

activation mask).

6. NRL: Number of voxels in aliased regions of the RL run.

We then calculated the proportion of voxels activated in the “matched” aliased regions and

in the “mismatched” aliased regions:

Pmatched = (ALR−LR +ARL−RL)/(NLR +NRL),

Pmismatched = (ALR−RL +ARL−LR)/(NLR +NRL).

By combining the results from the RL and LR runs, this approach controls for possible con-

founding that would result if there happens to be greater true activation in the LR aliased

regions, or vice versa. Activation in regions that are aliased in both matched and mismatched

PE directions does not contribute to differences between Pmatched and Pmismatched; these over-

lapping regions always occur in the unshifted aliased locations, and there is typically overlap
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in other regions. We designed our approach to ignore counts in these regions because slice

leakage may be confounded with true activation and/or other artifacts. In this respect our

approach is conservative.

To quantify evidence of slice leakage, we examined whether Pmatched > Pmismatched us-

ing a Wilcoxon signed-rank test. To check whether this analysis was affected by combining

subjects between recon r177 and r227, we tested whether the difference in the proportion of

voxels exceeding 1.96 in the matched and mismatched scenarios differed between r177 and r227

subjects, and there was no statistically significant effect (Wilcoxon rank-sum test: W=985,

p=0.35), thereby justifying our simultaneous analysis of the ninety-eight subjects.

To examine SMS noise amplification, we fit the AR(3) models to the unsmoothed un-

processed data for four subjects (100408 LR, 103414 RL, 101309 LR, and 101915 RL), and

examined the standard deviations. Specifically, we examined the estimated standard deviation

of the white noise process from the AR(3) model, which is equal to the standard deviation of the

residuals from ordinary least squares when the residuals are uncorrelated. (Note the first two

subjects were reconstructed with r177 and second two with r227, and the noise amplification

is apparent in all subjects.)

4.2 Results

4.2.1 SMS noise amplification in unprocessed HCP task data

Our analysis of the unsmoothed HCP data revealed noise amplification from SMS acquisition.

Similar to Section 3.2.1, there is a consistent pattern of higher variance in subcortical areas

(Figure 7). Additionally, noise amplification is apparent in prefrontal regions. There were

boundaries between axial planes that separated regions of higher and lower variance, which

are particularly evident when viewing slices in the middle of the brain (right column in Figure

7). Boundaries in the g-factor are also apparent in the sagittal view in Figure 2 for AF = 8

in Todd et al. (2017). For studies mapping activation in a feature that extends across these

boundaries, the activation maps would be spatially “biased” by differences in sensitivity, in

particular delineating the feature in the low-variance region but potentially missing it in the

higher variance region. The motor cortex does not appear to straddle such high and low noise

amplification regions, but this may be an important issue for other tasks.
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Figure 7: The standard deviation of the residuals from the point-wise AR(3) models fit to the
unprocessed HCP motor task data from four subjects with the cursor at (63, 49, 53) (left column)
and (46, 44, 37) (right column) in scanner coordinates. First row: 100408 with RL encoding; second
row: 103414 LR; third row: 101309 LR; and fourth row: 101915 RL.
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4.2.2 Slice Leakage

Overall, we found evidence of slice leakage in many, but not all, subjects. The proportion of

voxels with z > 1.96 was significantly greater in the matched than mismatched aliased regions

(p<1e-09, Table 1), with 81 of 98 subjects having higher counts in their matched regions.

Detailed counts are provided in Web Supplement Tables S.2 and S.3. To gain insight into

our methodology, Figure 8 shows an example of the LR run from a subject in which voxels

in LR aliased regions tended to have larger approximate z-statistics than voxels in the RL

aliased regions. In this figure, the red arrow in the coronal slice indicates voxels with large z-

statistics that are aliased with LR but not RL phase encoding. There are many other clusters

with z-statistics greater than 1.96. Note we do not assess whether leakage is significant in

any individual subject. Our methodology is unaffected by issues of multiple testing because

we look at the counts of voxels in the matched versus mismatched regions, rather than make

inference at the voxel-level, and thus we account for random clusters related to smoothness.

It also accounts for regions of true activation and/or other artifacts by combining the RL and

LR runs.

n Pmatched > Pmismatched Pmatched < Pmismatched Wilcoxon signed rank P-value

98 81 17 V = 4200 1.626e-10

Table 1: Number of subjects from the unrelated 100 HCP release in which the proportion of voxels
with z > 1.96 was greater in the predicted aliased regions (matched) than in regions that are
aliased using the incorrect PE direction (mismatched). A larger proportion in Pmatched is considered
evidence of slice leakage. Significance assessed using a one-sided Wilcoxon signed rank test.

Our retrospective examination of slice leakage in the unprocessed HCP data is limited to

examining locations that differ between the RL and LR runs, and this limitation eliminates

some of the aliased regions because they are equivalent in the matched and mismatched PE

directions. It is also unable to distinguish slice leakage when portions of aliased regions that

are affected by shifts happen to overlap, which is common when the extent of activation is

large. A cluster of higher-valued z-statistics was found in the aliasing region inferior to the

motor cortex in many of the subjects, but since the region is aliased in both the LR and RL

directions, activation in this region in our approach is considered equivocal. The blue arrow

points to one of these regions in Figure 8. Figure 9 depicts the LR run from another subject,

and the lower blue arrow is located 27 slices away from the blue arrow in the left-hand motor
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cortex. The brown arrows in the coronal slice depict two clusters that are located 27 slices

apart and aliased with each other, but are not quite aliased with the left-hand motor cortex,

and thus also do not contribute to evidence of slice leakage in our analysis. If a group analysis

of HCP data were conducted, sensitivity would be increased by combining the two runs from

a subject, but when aliased regions coincide in both runs (e.g., the blue arrows), there is an

increased ability to incorrectly identify these regions as task activated. In an examination of

the publicly available HCP analysis of the preprocessed data for subject 101915 combining

the LR and RL runs, the region of activation identified by the lower blue arrow of Figure 9

approximately corresponds to MNI coordinates (40,-16,-14); in a map formed by the keyword

“motor cortex” in NeuroSynth (Yarkoni et al., 2011), this location is not associated with motor

tasks.

There is a large stochastic component to the extent of slice leakage and whether we are

able to detect it at the effect sizes observed in the single-subject analyses. To gain insight

into our leakage detection approach, we conducted 100 simulations according to the design

in Section 3 using run duration = 240 s, AF = 8, CAIPI shifts, scaling factor = 1, and

slice-GRAPPA reconstruction. In these simulations, we found that Pmatched > Pmismatched

in 76 of the simulations, and Pmatched was significantly greater than Pmismatched (V = 4331,

p < 0.0001). We subsequently conducted the same analysis with scaling factor = 5, and

Pmatched > Pmismatched in 100% of simulations.

We then conducted the same simulation experiment using split slice-GRAPPA reconstruc-

tion. For scaling factor = 1, Pmatched > Pmismatched in 56 / 100 simulations, and Pmatched

was not significantly greater than Pmismatched (V = 2863, p = 0.12). For scaling factor = 5,

Pmatched > Pmismatched in 93 simulations (V = 4956, p < 0.0001).

Note the visual examination of the results from our simulation study also found a stochastic

component to whether leakage was detected, even when we were not limited to examining

differences in regional aliasing patterns due to PE direction (Figure 5). This is analogous to

a low-powered (less sensitive) experiment in which a signal is not always detected, since we

know there is a true signal from leakage albeit an undesired one. Thus, small effect sizes have

less risk of detectable leakage.
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Figure 8: An illustrative example of voxels that contribute to evidence of slice leakage using our
methodology (red arrow) in the LR run of subject 103111. Significance is not assessed at the subject
or voxel level, but rather across all subjects. The regions aliased in the LR PE run are depicted in
white in the top figure. The red arrow indicates a cluster of voxels with z > 1.96 that are aliased
to voxels in the left-hand motor cortex using LR PE but not the RL PE. The bottom figure depicts
the aliased regions that would result with RL PE, which differ in the coronal slice. The purple
arrow points to a cluster in which some voxels fall exclusively in the LR aliased region and thus
contribute to evidence of slice leakage, while other voxels fall in the region of overlap between the
LR and RL regions and do not contribute to evidence of slice leakage. The blue arrow points to
voxels aliased in both LR and RL PE directions, but do not contribute to evidence of slice leakage
in our methodology.
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Figure 9: Equivocal evidence of slice leakage in the LR run of subject 101915 that is not attributed
to slice leakage in our methodology. The blue arrows in the sagittal and coronal views are located
at (63,44,54) and (63,44,27) in the scanner coordinate system, and these locations are aliased in
the AF = 8 and FOV/3 acquisition protocol for both LR and RL encoding. The brown arrows in
the coronal view are examples of aliased locations (7,44,57) and (7,44,30) in which the source of
the signal is uncertain; they are close to but not contained in the LR aliased regions of the motor
cortex (white) (nor are they contained in RL aliased locations). Thresholded at z > 1.96.
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5 Exploration of ICA-FIX preprocessed HCP resting-

state data

An important question is whether SMS impacts persist in the processed data. The HCP has

released resting-state data in which artifacts were identified using ICA and their variation

subtracted from the resting-state time series, as described in Salimi-Khorshidi et al. (2014)

and Smith et al. (2013). In some instances, ICA can identify artifacts that are related to

SMS acquisition. An example is in Figure 8 in Griffanti et al. (2016), which is described

as a “checkerboard” effect corresponding to activation every eighth slice for AF = 8 and an

acquisition with 64 slices, which appears to correspond to head motion. We speculate that

the banding pattern may be related to subject movement along the slice direction, leading to

reconstruction using the GRAPPA-kernel trained on a different part of the brain.

To gain insight into noise amplification from SMS in the preprocessed data, we exam-

ined the standard deviation of the fMRI time courses of the ICA-FIX resting-state data

in volume space. Figure 10 presents the standard deviations for the following datasets:

rfMRI REST1 LR hp2000 clean.nii.gz from subject 100408 (r177 reconstruction); rfMRI REST2 LR hp2000 clean.nii.gz

from 103414 (r177 reconstruction); rfMRI REST1 RL hp2000 clean.nii.gz from 101309 (r227

reconstruction); and rfMRI REST2 RL hp2000 clean.nii.gz from 101915 (r227 reconstruction).

The standard deviations are notably higher in subcortical regions in all subjects (Figure

10). This may be due to multiple factors including noise amplification from SMS acquisition,

as occurred in our simulations (Figure 2). Note that when 32 or 64-channel head coil arrays are

used, the signal in subcortical regions can be attenuated, and normalizing the signal can also

contribute to increased standard deviations. In some instances, boundaries between higher

and lower variances due to SMS acquisition are apparent, where the lines that were seen in

the task standard deviations in Figure 7 are now rotated approximately 20 degrees in the

sagittal views, corresponding to registration of the oblique slices. Overall, the boundaries are

blurred, which may be related to a variety of factors including motion correction, ICA-FIX,

and the interpolation steps during preprocessing and registration that result in a small degree

of smoothing.
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Figure 10: Standard deviations of the time series for the preprocessed, ICA-FIX resting-state data
from four subjects with the cursor at (32, -8, 54) (left column) and (0, 0, 0) (right column) for
subjects 100408 (first row), 103414 (second row), 101309 (third row), and 101915 (fourth row).
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6 Discussion

There are many benefits of SMS techniques, which can lead to novel scientific insight. How-

ever, we suggest that there are important costs in terms of structured noise amplification and

specificity. Our findings indicate that slice leakage may have impacted the results of previ-

ous studies that used the original slice-GRAPPA (no leak block) reconstruction, and further,

that future studies using publicly available datasets acquired with the original slice-GRAPPA

reconstruction should be aware of these impacts when interpreting task activation. Our simu-

lations indicate specificity can be improved by using split slice-GRAPPA (leak block) and less

smoothing. Structured amplification of measurement error persists in split slice-GRAPPA but

can be attenuated by moderate acceleration factors (AF = 4). Our simulation study comple-

ments the results of previous empirical studies that compare test statistics when the truth is

not known, where it is difficult to attribute whether an increase in the size of test statistics

and/or the number of activated voxels is due to improvements in sensitivity or decreases in

specificity. We disentangle the effects into true and false positives. We found evidence of slice

leakage in smoothed, unprocessed motor task data from the HCP, which used the original

slice-GRAPPA reconstruction. We also found evidence of noise amplification due to SMS in

both unprocessed motor task data and the ICA-FIX resting-state data.

We focused on a case study of activation in the left-hand motor cortex using coil sensitivities

from the HCP Siemens Skyra 3T scanner with 32-channel head coil. Our simulations indicate

AF = 8 may be preferred for mapping motor cortex, in which slice leakage can be reduced by

split slice-GRAPPA and overall specificity can be improved by decreasing smoothing. The slice

leakage at AF = 8 was substantial with slice-GRAPPA in smoothed data but was reduced by

split slice-GRAPPA to near nominal levels for all but the largest effect sizes (Web Supplement

Figure S.5 D-F). The simulation results for smoothed data in Figure 4 indicate SMS with split

slice-GRAPPA has more smoothing leakage than single-band acquisitions, but a more useful

way of looking at this result is that the amount of smoothing can be reduced in SMS acquisitions

because the boost in sensitivity from the acquisition of more volumes helps offset the sensitivity

cost from decreasing smoothing. Thus, SMS offers a means of reducing smoothing leakage by

facilitating the use of a smaller FWHM.

Sensitivity is one way to measure whether the boost in effective sample size in SMS out-
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weighs the cost of noise amplification, but our examination of the spatial patterns in noise

amplification suggest other potential costs that are decreased by moderate acceleration factors

(AF = 4). Figures 2, 7, and 10 indicate possible costs not captured by our sensitivity simu-

lations. First, the boundaries between high and low variance could create biased estimates of

spatial activation patterns when a cluster of activation spans high and low variance regions.

Secondly, we simulated activation in the motor cortex, and subcortical and prefrontal regions

may have optimal sensitivity at lower AFs. The left-hand motor cortex used in our study

represents a low g-factor area. Todd et al. (2017) found that the benefits of SMS were higher

in the low g-factor noise area of V1, moderate in the moderate g-factor area in the parahip-

pocampal place area, and sometimes decreased t-statistics in the ventral-medial prefrontal

cortex. Their results indicate that our estimates of sensitivity and specificity are specific to

our choice of activation area. For studies targeting subcortical and some prefrontal regions, the

standard deviation maps in Figures 2 and 7 and results from Todd et al. (2017) suggest a lower

multiband factor may be preferred for improving sensitivity, which is independent of leakage

considerations. This would have the dual benefit of also decreasing leakage. In addition to the

spatial impacts, the costs and benefits of SMS may depend on factors such as scanner, head

coil, and phase encoding direction. Demetriou et al. (2016) found that the benefits of SMS

did not differ greatly between scanner platforms but were affected by the particulars of the

analysis method, e.g., voxel-based, ROI-based, or multi-voxel pattern analysis, where benefits

were found in task fMRI using MVPA but not the ROI-based approach.

Our motor task simulations indicate split slice-GRAPPA improves specificity over slice-

GRAPPA without a decrease in sensitivity when using FOV/3 shifts, although issues with

structured noise amplification in AF = 8 persist. Cauley et al. (2014) notes that split slice-

GRAPPA can increase the reconstruction error for the fMRI time series, but it may be more

robust in diffusion weighted imaging where the contrast varies substantially from the training

data. Todd et al. (2016) found significant differences in temporal SNR between slice-GRAPPA

and split slice-GRAPPA, but did not find significant differences in the number of activated

voxels. In our simulations, split slice-GRAPPA with FOV/3 shifts did not have higher noise

amplification than slice-GRAPPA (Web Supplement Figures S.3 and S.4, Figure 2). The

results suggest split slice-GRAPPA should always be preferred to slice-GRAPPA in HCP-like
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acquisitions with LR phase encoding and FOV/3 shifts. We caution that the impacts may

differ in acquisitions using anterior-posterior (rather than LR) phase-encoding, and that these

findings are sensitive to the choice of FOV shifts. In particular, the simulations showed that

there was a cost in terms of sensitivity to split slice-GRAPPA without FOV/3 shifts (Figure 4),

which raises the possibility that ideal FOV shifts for maximizing sensitivity in slice-GRAPPA

may differ from split slice-GRAPPA. Assessing these trade offs is an important avenue for

future research.

Our simulations demonstrate large decreases in noise amplification and associated improve-

ments in sensitivity when using FOV/3 shifts relative to no shifts. Utilizing the same FOV/3

shifts across different AFs may not be optimal. Blipped-CAIPI protocols to achieve other FOV

shifts may decrease noise amplification. Careful choice of shifts and AF could be designed to

decrease the risk that regions aliased with a focal region are located in the brain and/or gray

matter, such that the shifts are chosen to relegate aliased regions to areas of the image space

that are masked in a statistical analysis. The development of 3D acquisition protocols with

corkscrew trajectories (Bilgic et al., 2015) or the use of “incoherent” FOV shifting (Zhu et al.,

2014) may diminish the patterns of noise amplification apparent in Figure 7.

An interesting question is how the noise amplification impacts functional connectivity stud-

ies. An increase in measurement error leads to a decrease in correlation. Thus, high AF may

lead to lower functional connectivity for edges in which one or both locations are in areas with

a high g-factor. We suggest that moderate multiband factors (AF=4) may be preferred for

studies including areas with elevated variance, but additional research is needed.

We examined leakage in single-subject analyses of the unprocessed HCP data, but the

impacts in HCP preprocessed data were not examined. Analyzing fMRI data on the cortical

surface with 2 mm surface smoothing and subcortical gray matter areas with parcel-constrained

2 mm volume smoothing in the manner advised by the WU-UMinn HCP consortium will

decrease issues with false positives. Clearly, restricting an analysis to gray matter removes

issues with aliasing artifacts in white matter. Secondly, performing 2 mm smoothing on the

surface, which is less aggressive than volume smoothing, would reduce both smoothing leakage

and slice leakage relative to our simulations, which use volume smoothing with FWHM equal

to three times the voxel size. Todd et al. (2016) used 2 mm FWHM volume smoothing and
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found substantial slice leakage impacts with slice-GRAPPA reconstruction with multiband

factors 4 and 6 combined with 2× in-plane acceleration. As discussed in Section 5, previous

studies have found ICA can be used to identify artifacts related to the interaction between

motion and SMS acquisition. Note that if an artifact associated with regional aliasing were

identified with ICA, then the time course of the component would reflect the task activation.

Then regressing out the time series of such a component would also remove the task variation

from the region of true activation.

Another important question is how SMS acquisition impacts group-level analyses. In stud-

ies using the original slice-GRAPPA reconstruction, leakage could result in spurious clusters of

activation. The impact may be reduced in a group analysis where subject variation in brain size

and morphology results in subject-specific variation in the relative locations of aliased regions.

However, when the activation region is relatively large, there may be a non-trivial overlap in

the aliasing regions in MNI space and/or on the cortical surface, and then slice leakage may

propagate to the group level. Additionally, group analyses often use larger amounts of smooth-

ing (such as the 6 mm smoothing used in our single-subject analysis), which would increase

the chance of aliasing artifacts propagating to the group level. In studies using HCP data, one

can inspect group activation patterns in the LR versus RL encoded runs and see if differences

are related to reversing the FOV shifts. It is also important to note that our approach to es-

timating slice leakage from the unprocessed HCP data is conservative in some respects. First,

we do not count aliasing in regions that are not affected by FOV shifts, since these regions

coincide in predicted RL and LR aliasing patterns and can not be distinguished from true

positives. Secondly, the aliased regions corresponding to the FOV shifts often overlap, which

further reduces the effective area over which our method can detect leakage. Thirdly, the on-

line reconstruction algorithm includes corrections for spatial shifts due to B0 inhomogeneities,

which may cause a discrepancy between our predicted aliasing patterns and the patterns of

slice leakage in the “unprocessed” data. In simulations with similar effect sizes, there was

evidence of leakage in only three-quarters of simulations, which was due to a combination of

relatively little leakage at the small to moderate effect size and overlapping aliased regions in

matched and mismatched PE directions.

There are limitations to our simulation study that should be noted. In real data appli-
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cations, there are more structured differences between the single-band training data and the

SMS data. Due to the short TR, T1 relaxation in SMS is incomplete, and the contrast between

white and gray matter is greatly reduced (Glasser et al., 2013). This may affect kernel estima-

tion and reconstruction accuracy. Our simulations capture impacts of AF on reconstruction

accuracy due to noise amplification that arises from slice separation. To the extent that SMS

data differ from the collapsed single-band data used in kernel estimation, we may overstate

the sensitivity benefits of SMS. We have also not considered the impacts of subject motion on

reconstruction. Slice-GRAPPA uses the same reconstruction kernel for all spatial frequencies

in a given coil and given slice, see (S.6), and consequently head movement, particularly along

the slice direction, can adversely impact image reconstruction accuracy. Reconstruction accu-

racy is also impacted by slice-specific Nyquist ghosting artifacts caused by spatially varying

eddy currents (Barth et al., 2016), whereas our simulation approach effectively assumes there

are no Nyquist ghosting artifacts. We also do not simulate higher-frequency artifacts, such

that our SMS benefits are completely driven by the boost in effective sample size. Finally, we

do not simulate serially correlated noise, such that the relative differences between AF = 8,

AF = 4, and AF = 1 in sensitivity and specificity may be overstated.

7 Conclusion

Our contributions are the following:

• In simulations with a motor task, increasing the AF led to increased sensitivity, and

slice-GRAPPA and split slice-GRAPPA had very similar sensitivity when combined with

FOV/3 shifts.

• In slice-GRAPPA, 1 - specificity was inflated due to slice leakage and smoothing leak-

age. Slice leakage was greatly reduced by split slice-GRAPPA (leak block), although

smoothing leakage resulted in inflated 1 - specificity. When using split slice-GRAPPA

reconstruction, the slice leakage was adequately suppressed except at large effect sizes.

• Our findings suggest the amount of smoothing can be decreased in SMS acquisitions

to increase spatial specificity where the boost in effective sample size helps offset the

decrease in sensitivity.
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• AF = 8 resulted in elevated measurement error in subcortical and some prefrontal regions

and produced sharply defined regions of higher and lower measurement error in simula-

tions. Similar patterns in residual variance were found in the unprocessed HCP motor

task data and the ICA-FIX resting-state data, which also used AF = 8. In simulations,

the issues were greatly reduced in AF = 4.

• We found evidence of slice leakage from a left-hand motor task contrast in smoothed un-

processed HCP data, which used slice-GRAPPA reconstruction. However, the detection

of slice leakage was not ubiquitous across subjects.

• We did not analyze leakage in the ICA-FIX resting-state HCP data because preprocessing

steps make it challenging to map aliased locations to the cortical surface and subcortical

gray matter regions of grayordinate space. However, the less aggressive 2 mm surface

smoothing for cortical data should greatly reduce the statistical impacts of leakage relative

to the 6 mm volume smoothing used in our analysis of the unprocessed motor task data.
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A The Slice-GRAPPA algorithm

Here we give a formal description of slice-GRAPPA as created by Setsompop et al. (2012).

Let c ∈ 1, . . . , C index the coil at which we want to estimate the frequency-domain BOLD

signal, where C = 32 in our application. Let ` ∈ {1, . . . , Y } and k ∈ {1, . . . , X} index the

frequencies in the phase-encoding and read-out directions, respectively. Let z ∈ {1, . . . , Z}

denote a slice in single-band space, where Z = 72 in our application. Let t = 1, . . . , T

denote the time point. Then let SK ∈ CC×Y×X×Z×T denote our full k-space data array,

which we refer to as the spatiotemporal-by-coil k-space data, with entries SK
c`kzt. Our

goal is to estimate SK from multislice images. We denote the corresponding image-space

representation as SI ∈ CC×Y×X×Z×T .

Let A denote the acceleration factor (number of simultaneously acquired slices). Let

M = Z/A denote the number of multislice “packets.” Then let m ∈ {1, . . . ,M} index a

packet, and m(z) denote the packet that will be used to predict the BOLD signal at slice

z:

m(z) = (z mod M) +M 1l {(z mod M) = 0} , (S.1)
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where (z mod M) denotes the remainder of z/M , defined as z for z < M . As an example,

for A = 8 and Z = 72, we have M = 9, and then slices 7, 16, 25, 34, 43, 52, 61, 70 are in

packet 7.

Slice-GRAPPA uses data from all coils to improve prediction in a given coil. Let

h = 1, . . . , C denote the coils that will be used for reconstruction of the cth coil. Consider

the spatial frequencies (`, k) in the mth packet. Let {MK
h,`+j,k+i,m(z),t} denote the aliased

BOLD signal in the mth packet at the tth time point of the hth coil that will be used to

predict the BOLD signal for the cth coil at location (`, k, z) for the tth time point. Then

let {MK
h,`+j,k+i,m(z),t, h ∈ {1, . . . , C}, j ∈ {−J, . . . , J}, i ∈ {−I, . . . , I}} denote the set of

points that will be used to predict SK
c`kzt. From a regression perspective, this set forms a

vector of covariates that will be used to predict observation SK
c`kzt.

Then define the coefficient η̂chjiz, which characterizes the contribution of the hth

coil at the location (j, i) away from an arbitrary focal location in the zth slice to the cth

coil, which for now we take as given. Following Setsompop et al. (2012), the equation for

predicting the signal SK
c`kzt is

ŜK
c`kzt =

C∑
h=1

J∑
j=−J

I∑
i=−I

η̂chjizM
K
h,`+j,k+i,m(z),t. (S.2)

The set {η̂chjiz, h ∈ {1, . . . , C}, j = {−J, . . . , J}, i = {−I, . . . , I}} is called the “kernel”

for the cth coil and zth slice because it specifies the weights for observations used to predict

SK
c`kzt. Note the same kernel is used for predicting all Y X spatial frequencies for the cth coil

and zth slice. Thus the set of kernels for reconstruction is a C×C× (2J+1)× (2I+1)×Z

tensor. Typical values for the spatial frequency window size are I = 2 and J = 2 resulting

in a 5-by-5 region (Uğurbil et al., 2013; Todd et al., 2016).

A.1 Estimating the kernel

The coefficients in (S.2) can be estimated from a single time point of single-band calibration

data collected at the beginning of an fMRI session. Let Sc`kz0 denote the single-band
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calibration data at the zth slice. Define MK
c`km0 by adding the single-band data in the same

manner as the multi-slice acquisition sequence:

MK
c`km0 =

∑
z∈{m,m+M,...,m+(A−1)M}

SK
c`kz0 (S.3)

for each m ≤M .

The coefficients are estimated using complex-valued least squares. Here we present a

statistical model that can be used to derive the predictions in (S.2):

SK
c`kz0 =

{
C∑

h=1

J∑
j=−J

I∑
i=−I

ηchjizM
K
h,`+j,k+i,m(z),0

}
+ εc`kz0 (S.4)

where Real(εc`kz0) ∼ N (0, σ2
cz,R) and Imag(εc`kz0) ∼ N (0, σ2

cz,I).

For J < ` < Y − J and I < k < X − I , define the convolution matrix

MK
c,`,k,m(z),0 = [MK

c,`−J,k−I,m(z),0, . . . ,M
K
c,`+J,k+I,m(z),0]

T . (S.5)

We can use all frequencies ` and k by allowing the indices to wrap such that for any

` ∈ {1, . . . , Y }, j ∈ {−J, . . . , J}, k ∈ {1, . . . , X}, and i ∈ {−I, . . . , I}, we revise (S.5) to

have entries MK
c,`j ,ki,m(z),0 in which

`j = `+ j + Y 1l {`+ j ≤ 0} − Y 1l {`+ j > Y } ,

ki = k + i+X1l {k + i ≤ 0} −X1l {k + i > X} .

Next let SK
cz0 ∈ CY X be the vectorized single-band data at slice z, where Y X is the number

of observations estimating the model parameters in (S.4). Then create

MK
`,k,m(z),0 = [MK

1,`−J ,k−I ,m(z),0, . . . ,M
K
1,`J ,kI ,m(z),0, . . . , . . . ,M

K
C,`J ,kI ,m(z),0]

T ∈ CC(2I+1)(2J+1),
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where “T” denotes the (ordinary) matrix transpose, and define

MK
m(z),0 = [MK

1,1,m(z),0, . . . ,M
K
Y,X,m(z),0]

T ∈ CY X×C(2I+1)(2J+1).

Define the vectorized kernel η̂cz = [η̂c,1,−J,−I,z, . . . , η̂c,C,J,I,z]
T ∈ CC(2I+1)(2J+1). Then the

coefficients are obtained using complex-valued least squares (e.g., Cauley et al. 2014):

η̂cz = (MK∗
m(z),0M

K
m(z),0)

−1MK∗
m(z),0S

K
cz0. (S.6)

where “∗” denotes the conjugate transpose. Note that the same design matrix is used for all

coils and all slices in a multislice packet. After unaliasing the data in k-space, we apply the

discrete inverse Fourier transform, and then take the sum-of-squares of the reconstructed

coil data to generate the magnitude images.

B Noise amplification in slice-GRAPPA

The standard deviation plots in the main manuscript are closely related to g-factors. In

Figure S.1, we plot the ratio of the standard deviation from the accelerated data to the

unaccelerated data, which is a measure of the g-factor when the signal intensities are equal

(Robson et al., 2008).

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2018. ; https://doi.org/10.1101/243782doi: bioRxiv preprint 

https://doi.org/10.1101/243782
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S.1: Estimates of g-factors using slice-GRAPPA based on the simulation design in
Section 3.2 of the main manuscript. Top: AF = 8 with no shifts (left) and FOV/3 shifts
(right). Bottom: AF = 4 with no shifts (left) and FOV/3 shifts (right).

C Noise amplification in split slice-GRAPPA

The split slice-GRAPPA algorithm modifies the standard least squares problem by “split-

ting” the multiband data to increase the number of data points being predicted, such that

the GRAPPA kernel is modified to fit zeros at the aliased locations; for details see Cauley

et al. (2014).

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2018. ; https://doi.org/10.1101/243782doi: bioRxiv preprint 

https://doi.org/10.1101/243782
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S.2: Noise amplification due to SMS using slice-GRAPPA reconstruction. Standard
deviation of the residuals from the GLM fit to a simulation from Section 3.2 of the main
manuscript with scaling factor = 1 and run duration = 480 s. Top: AF = 1; middle: AF
= 8 with no FOV shifts (left) and FOV/3 shifts (right); bottom: AF = 4 with no FOV
shifts (left) and FOV/3 shifts (right). This figure depicts the same information as Figure 2
of the main manuscript but uses the scale [0,500] instead of [0,250] to highlight differences
between the no-CAIPI AF = 4 and AF = 8.
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Figure S.3: Noise amplification due to SMS using split slice-GRAPPA reconstruction (leak
block). Standard deviation of the residuals from the GLM fit to a simulation from Section
3.2 of the main manuscript with scaling factor = 5 and run duration = 480 s. AF = 1 (A);
AF = 8 with no FOV shifts (B) and FOV/3 shifts (C); AF = 4 with no FOV shifts (D)
and FOV/3 shifts (E).
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Figure S.4: Estimates of g-factors using split slice-GRAPPA (leak block) based on the
simulation design in Section 3.2 of the main manuscript. Top: AF = 8 with no shifts (left)
and FOV/3 shifts (right). Bottom: AF = 4 with no shifts (left) and FOV/3 shifts (right).

D Additional figure for sensitivity and specificity
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Figure S.5: Zoomed in version of 1 - specificity (type 1 error rate) from Figures 3 and
4 of the main manuscript with no smoothing (A-C) and smoothing (D-F) for α = 0.001
and FOV/3 shifts. SG = slice-GRAPPA. SP-SG = split slice-GRAPPA. In panels D-F,
values for AF = 8 and slice-GRAPPA reconstruction are not shown when they exceed 0.01.
Scaling factors 0.5, 1, 2, 3, and 5 represent an average of 0.53%, 1.06%, 2.12%, 3.18%, and
5.30% change from baseline, respectively.
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E Synthetic multiband analysis
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Figure S.6: Synthetic simulation for scaling factor = 1. All figures are based on one single-
band simulation, in which multiband data were synthetically generated. For TR = 1 s,
differences between images are due to AF and reconstruction method. SG = slice-GRAPPA.
Split SG = split slice-GRAPPA.
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Figure S.7: Synthetic simulation for scaling factor = 5. All figures are based on one single-
band simulation, in which multiband data were synthetically generated. For TR = 1 s,
differences between images are due to AF and reconstruction method. SG = slice-GRAPPA.
Split SG = split slice-GRAPPA.
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F Additional information and results for the HCP

analysis

Parameters Value
Sequence Gradient-echo EPI
TR 720 ms
TE 33.1 ms
flip angle 52 deg
Read direction anterior-posterior
Phase-encoding direction 1 run right-left, 1 run left-right
Slice acquisition Inferior-superior
Position L0.0 P3.0 H6.0 mm
Orientation Transverse > Coronal - 20◦

FOV 208 mm × 180 mm × 144 mm
Voxel size 2× 2× 2 mm3

Multiband factor 8
Blip-CAIPI Shift FOV/3 in PE direction
In-plane acceleration None
Echo spacing 0.58 ms
BW 2290 Hz/Px
Length per run 3:41
Frames per run 284
Volume data size unprocessed 1.4 GB
Reconstruction Slice-GRAPPA (no leak block)

Table S.1: Summary of acquisition parameters used by the HCP Consortium for the
motor-task data. Additional details available in the HCP S1200 Release Appendix I (WU-
Minn HCP Consortium, 2017).
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Figure S.8: Mean image from the unprocessed HCP motor task fMRI data with RL en-
coding (top) and LR encoding (bottom) for subject 100206. The unprocessed HCP data
generally have higher distortions from gradient non-linearities and EPI distortions as de-
scribed in Glasser et al. (2013).
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Pmatched Pmismatched Difference
1 0.020 0.014 0.006
2 0.066 0.045 0.021
3 0.069 0.052 0.016
4 0.042 0.025 0.017
5 0.042 0.034 0.007
6 0.117 0.053 0.064
7 0.032 0.048 -0.017
8 0.066 0.046 0.019
9 0.169 0.114 0.055

10 0.146 0.122 0.024
11 0.071 0.045 0.026
12 0.013 0.023 -0.009
13 0.032 0.050 -0.018
14 0.019 0.019 -0.001
15 0.087 0.070 0.017
16 0.045 0.063 -0.017
17 0.147 0.123 0.024
18 0.090 0.040 0.050
19 0.084 0.101 -0.017
20 0.105 0.051 0.053
21 0.070 0.048 0.022
22 0.052 0.023 0.029
23 0.056 0.056 0.000
24 0.076 0.059 0.017
25 0.102 0.091 0.011
26 0.066 0.058 0.008
27 0.062 0.060 0.002
28 0.046 0.037 0.008
29 0.049 0.035 0.015
30 0.083 0.052 0.030
31 0.095 0.084 0.011
32 0.060 0.058 0.001
33 0.104 0.061 0.042
34 0.190 0.032 0.158
35 0.043 0.036 0.008
36 0.106 0.102 0.004
37 0.106 0.089 0.016
38 0.067 0.046 0.021
39 0.088 0.056 0.031
40 0.094 0.127 -0.033
41 0.096 0.075 0.021
42 0.064 0.042 0.022
43 0.060 0.056 0.004
44 0.047 0.024 0.023
45 0.121 0.119 0.002
46 0.131 0.089 0.041
47 0.092 0.069 0.023
48 0.043 0.030 0.013
49 0.048 0.030 0.018
50 0.034 0.018 0.016
51 0.038 0.039 -0.001
52 0.047 0.034 0.012
53 0.091 0.063 0.028
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54 0.051 0.054 -0.003
55 0.049 0.038 0.011
56 0.048 0.038 0.010
57 0.114 0.075 0.038
58 0.050 0.032 0.018
59 0.107 0.135 -0.028
60 0.169 0.122 0.047
61 0.058 0.006 0.052
62 0.061 0.072 -0.011
63 0.051 0.051 -0.001
64 0.069 0.051 0.018
65 0.035 0.027 0.008
66 0.096 0.070 0.026
67 0.069 0.079 -0.010
68 0.032 0.007 0.025
69 0.057 0.048 0.010
70 0.046 0.071 -0.025
71 0.041 0.034 0.007
72 0.104 0.095 0.009
73 0.074 0.070 0.005
74 0.090 0.085 0.005
75 0.039 0.022 0.017
76 0.049 0.030 0.019
77 0.060 0.056 0.005
78 0.138 0.057 0.081
79 0.089 0.030 0.058
80 0.068 0.051 0.017
81 0.084 0.107 -0.023
82 0.029 0.017 0.012
83 0.187 0.160 0.027
84 0.003 0.014 -0.011
85 0.068 0.071 -0.004
86 0.052 0.032 0.020
87 0.034 0.002 0.032
88 0.055 0.047 0.008
89 0.028 0.023 0.005
90 0.058 0.033 0.025
91 0.059 0.046 0.013
92 0.133 0.064 0.069
93 0.071 0.036 0.035
94 0.016 0.014 0.002
95 0.073 0.052 0.021
96 0.043 0.037 0.006
97 0.048 0.045 0.003
98 0.111 0.047 0.064

Table S.2: The proportion of voxels with z > 1.96 in the predicted aliased regions (matched)
and in regions that are aliased using the opposite PE direction (mismatched). A larger
proportion in Pmatched is considered evidence of slice leakage.
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A LR.LR A LR.RL N LR A RL.RL A RL.LR N RL
1 29 19 1309 18 14 994
2 638 445 7411 199 125 5236
3 293 188 3990 2 37 308
4 724 376 15043 251 208 8127
5 299 229 6342 149 139 4347
6 1206 546 10220 21 12 301
7 0 0 7 32 49 1008
8 667 482 10002 49 25 910
9 7 5 42 659 443 3899

10 1372 1147 8904 7 5 518
11 366 272 4438 154 61 2891
12 3 2 161 25 45 1918
13 167 326 6293 103 96 2100
14 31 27 287 48 55 3920
15 283 235 2716 22 11 783
16 218 280 3150 31 64 2349
17 546 656 6300 1944 1426 10591
18 558 228 5565 301 157 3997
19 1125 1380 12838 29 11 938
20 51 23 469 4 4 56
21 324 241 3451 76 34 2240
22 231 58 2618 34 61 2449
23 79 48 1141 81 111 1715
24 291 231 3129 117 84 2247
25 1763 1510 11571 114 159 6804
26 266 229 3150 2 6 882
27 493 418 7203 332 375 6020
28 319 253 6265 6 12 812
29 498 453 9709 361 153 7719
30 280 172 3136 4 8 301
31 896 668 8442 674 719 8148
32 1011 1013 12108 320 287 10129
33 545 327 4431 124 68 2023
34 10 5 98 398 64 2044
35 33 46 1281 245 182 5110
36 436 418 3955 2 2 175
37 207 189 2275 523 429 4634
38 351 281 5661 189 91 2415
39 718 442 6440 19 30 1981
40 65 90 714 4 3 21
41 847 433 8834 574 683 6013
42 130 55 3815 474 339 5628
43 234 237 4564 118 90 1288
44 57 21 791 30 23 1071
45 908 933 5733 82 38 2457
46 2084 1406 15365 46 50 931
47 1055 761 10962 88 91 1428
48 430 324 8616 48 11 2429
49 331 190 6538 6 20 434
50 54 34 1666 18 4 448
51 82 153 3591 317 254 6811
52 68 82 817 102 43 2828
53 655 369 6811 469 405 5565
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54 663 706 11676 120 122 3661
55 548 380 6608 245 234 9478
56 331 229 5425 39 62 2275
57 1094 802 6643 469 232 7105
58 273 174 3031 144 90 5341
59 643 905 4711 99 33 2240
60 236 102 3652 2172 1635 10628
61 67 7 1120 0 0 35
62 259 219 4786 454 624 6923
63 394 469 9226 609 544 10521
64 452 297 5600 53 75 1680
65 25 31 1624 64 38 903
66 683 442 4865 80 118 3094
67 746 847 8379 72 93 3549
68 20 4 245 26 6 1190
69 303 233 4907 41 54 1092
70 0 0 63 13 20 217
71 70 33 1134 191 184 5306
72 311 274 2240 84 86 1554
73 691 727 8855 280 181 4193
74 608 377 13074 1594 1709 11361
75 166 38 3108 17 64 1589
76 107 77 3689 153 83 1617
77 279 218 2625 104 135 3731
78 1010 414 7238 0 1 63
79 1353 397 10381 91 99 5887
80 337 323 7133 687 449 8015
81 323 421 2849 39 40 1442
82 24 10 343 12 11 903
83 1 9 343 801 678 3948
84 1 4 322 0 1 28
85 622 690 7616 241 218 5089
86 126 74 2317 50 35 1071
87 47 3 1232 0 0 140
88 182 190 3024 495 385 9247
89 32 25 1120 9 9 350
90 13 12 217 8 0 147
91 197 155 3241 0 0 105
92 797 384 5985 1 0 14
93 18 11 896 389 196 4823
94 43 56 5964 75 46 1477
95 1061 756 13993 85 59 1785
96 386 358 8552 155 104 4032
97 218 117 4312 76 159 1811
98 229 104 2216 101 35 763

Table S.3: Counts of voxels with z > 1.96 used in the construction of the proportions in
Table S.2.
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