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Abstract 

Reward and punishment shape behavior, but the mechanisms underlying their effect on skill 

learning are not well understood. Here, we tested whether the functional connectivity of 

premotor cortex (PMC), a region known to be critical for learning of sequencing skills, is altered 

after training by reward or punishment given during training.  Resting-state fMRI was collected 

in two experiments before and after participants trained on either a serial reaction time task 

(SRTT; n = 36) or force-tracking task (FTT; n = 36) with reward, punishment, or control feedback.  

In each experiment, training-related change in PMC functional connectivity was compared across 

feedback groups. In both tasks, reward and punishment differentially affected PMC functional 

connectivity. On the SRTT, participants trained with reward showed an increase in functional 

connectivity between PMC and cerebellum as well as PMC and striatum, while participants 

trained with punishment showed an increase in functional connectivity between PMC and medial 

temporal lobe connectivity. After training on the FTT, subjects trained with control and reward 

showed increases in PMC connectivity with parietal and temporal cortices after training, while 

subjects trained with punishment showed increased PMC connectivity with ventral striatum. 

While the results from the two experiments overlapped in some areas, including ventral 

pallidum, temporal lobe, and cerebellum, these regions showed diverging patterns of results 

across the two tasks for the different feedback conditions. These findings suggest that reward 

and punishment strongly influence spontaneous brain activity after training, and that the regions 

implicated depend on the task learned. 

Keywords: Sequence learning, Motor learning, Consolidation, Motivation, Premotor cortex 
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The potential to use reward and punishment, collectively referred to as valenced feedback, 

during training has been pursued in recent years as a potential method to increase skill learning 

and retention (Abe et al., 2011; Galea et al., 2015; Steel et al., 2016; Wachter et al., 2009). Prior 

behavioral studies of motor adaptation suggest that reward and punishment have differing 

effects on motor learning. For example, punishment increased learning rate in a cerebellar-

dependent motor adaptation task (Galea et al., 2015), while reward prevented forgetting after 

adaptation (Galea et al., 2015; Shmuelof et al., 2012). Reward may also restore adaptation 

learning in patients with cerebellar degeneration (Therrien et al., 2016) and stroke (Quattrocchi 

et al., 2017).  Beyond adaptation tasks, in other skill-learning contexts it has been reported that 

reward improves memory retention compared to punishment (Abe et al., 2011), though these 

results are somewhat inconsistent across the literature (Steel et al., 2016). 

One explanation for the differential effects of reward and punishment on behavior is the 

recruitment of core set of brain regions involved in feedback processing. It has been suggested 

that punishment leads to the recruitment of fast learning systems [e.g. medial temporal lobe 

(MTL)], while reward recruits slow learning systems [e.g. caudate via dopaminergic signaling 

(Peterson and Seger, 2013b; Wachter et al., 2009)]. In support of this hypothesis, functional 

imaging studies where fMRI data was acquired concurrent with task performance have reported 

that reward increases caudate activity in a behaviorally-relevant manner (Peterson and Seger, 

2013b; Wachter et al., 2009). In contrast, punishment increases activity in the anterior insula 

(Shigemune et al., 2014; Wachter et al., 2009) and MTL (Murty et al., 2012b, 2016). However, 

these studies were primarily conducted during tasks that are statistical in nature. It is therefore 

not clear whether reward and punishment engage different brain regions depending on the 

demand of the task being performed 

	To address this issue, in this study we examined whether the brain regions affected by training 

with reward or punishment are common across tasks by examining changes functional 

connectivity induced by training. Because the ‘state’ of the participant is consistent in the pre- 

and post-training resting-state scans, this technique also allows us to assess the effect of training 
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across two tasks that have very different low-level demands. By comparing the impact of 

feedback on the change in resting-state functional connectivity after training between the two 

tasks, we can isolate any task-general effects of feedback without the confound of task 

performance (i.e. movement). Notably, changes in resting-state functional connectivity after 

training likely reflect offline-memory processing (Sami and Miall, 2013; Sami et al., 2014) as well 

as latent effects of task performance including rumination and homeostatic plasticity (Gregory et 

al., 2016). Therefore, while we cannot attribute any changes in resting-state functional 

connectivity to offline-processes related to memory, per se, with this approach we can detect 

the overall impact of feedback on the brain after training.  

In the first experiment, based on the well described role of fast and slow learning systems in the 

context of the serial reaction time task [SRTT; (Doyon et al., 2018)], we examined the impact of 

feedback valence on neural activity induced by SRTT training. In the second experiment, to test 

whether any regions impacted by training with feedback generalize to a different motor 

sequencing task with distinct task demands, we implemented the force tracking task (FTT) with 

reward and punishment. In both experiments, before and after training we collected 20-minutes 

of resting-state fMRI data (Figure 1a-d). We have previously presented our behavioral results, 

which suggested that feedback differentially impacts performance during learning in these two 

tasks (Steel et al., 2016).  

We focused on premotor cortex (PMC) as the key region for evaluating post-encoding 

connectivity in both tasks, based on its well-documented critical role as a memory-encoding 

region for sequence and sensorimotor learning  (Floyer-Lea and Matthews, 2004, 2005; Hardwick 

et al., 2013b; Kornysheva and Diedrichsen, 2014; Wiestler and Diedrichsen, 2013).  In addition, 

PMC shows reward-related activity after movement (Ramkumar et al., 2016). Based on prior work 

(Murty et al., 2012a; Murty et al., 2016; Peterson and Seger, 2013a; Wachter et al., 2009), we 

hypothesized that connectivity between the PMC and the anterior insula, MTL, cerebellum, and 

caudate provide distinct contributions to skill learning.   
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Materials and methods 

Overview 

In two experiments, participants were trained on either the serial reaction time task (SRTT) or 

the force-tracking task (FTT) with reward, punishment, or uninformative feedback (Figure 1b-d).  

No participant was trained in both tasks. A detailed description of the tasks and training 

procedure can be found in (Steel et al., 2016). Before and after the training session, 20-minutes 

of resting-state fMRI was collected.   

Participants 

78 participants (47 female, mean age = 25 years ± std. 4.25) were recruited and participated in 

the study.  All participants were right-handed, free from neurological disorders, and had normal 

or corrected-to-normal vision. All participants gave informed consent and the study was 

performed with National Institutes of Health Institutional Review Board approval in accordance 

with the Declaration of Helsinki (93-M-0170, NCT00001360).  Data from 6 individuals (2 female) 

were removed from the study due to inattention during training (defined as non-responsive or 

inaccurate performance on greater than 50% of trials; n=3) or inability to complete the imaging 

session due to discomfort or fatigue (n=3).  This left 72 participants with complete data sets 

included in the analyses presented here. 

Training procedure 

Both tasks followed the same behavioral training procedure.  Trials were presented over 15 

blocks with a 30-second break separating each. Unbeknownst to the participants, during some 
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blocks (“fixed-sequence blocks”) the stimulus would appear according to a repeating pattern 

(described below for each task). During other blocks the appearance of the stimulus was 

randomly determined (“random-sequence blocks”).  

To familiarize participants to the task, and establish their baseline level of performance, the task 

began with three random-sequence blocks without feedback (“familiarization blocks”).  

Participants were unaware of the forthcoming feedback manipulation during the familiarization 

blocks.  Then the feedback period began, starting with a pre-training probe (three blocks, random 

– fixed – random), then the training blocks (six consecutive fixed-sequence blocks), and, finally, 

a post-training probe (three blocks, random – fixed – random). To test the impact of reward and 

punishment on skill learning, participants were randomized into one of three feedback groups: 

reward, punishment, or uninformative (control). The feedback paradigm for each task is outlined 

separately below.  

Training was conducted inside the MRI scanner, and fMRI data were collected during the training 

period. These training period data are outside the scope of the present manuscript and are not 

presented here. 
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Figure 1. Experimental design and skill memory retention. (a,b) Participants underwent 20 

minutes of resting state fMRI before and after training on either the serial reaction time task 

(SRTT) or the force tracking task (FTT) while receiving reward, punishment, or control feedback. 

In the SRTT (c), participants responded to a cue appearing in one of four locations on a screen. 

In the FTT (d), participants modulated their grip force to track a moving target. In both tasks, 

the stimulus could follow either a random- or fixed-sequence, and skill memory was assessed 

by comparing performance during random- and fixed-sequence trials.  

Experiment 1: Serial reaction time task (SRTT) 

The version of the SRTT used here adds feedback to the traditional implementation. At the 

beginning of each block participants were presented with four “O”s, arranged in a line at the 

center of the screen.  These stimuli were presented in white on a grey background (Figure 1c).  A 

trial began when one of the “O”s changed to an “X”. Participants were instructed to respond as 

quickly and accurately as possible, using the corresponding button, on a four-button response 

device held in their right hand.  The “X” remained on screen for 800 ms regardless of whether 

the subject made a response, followed by a 200 ms fixed inter-trial interval, during which time 

the four “O”s were displayed. The trial timing used in this study may foster some degree of 

explicit awareness, and therefore this variation of the SRTT should not be considered a pure 

motor learning task. However, this timing was necessary to accommodate the constraints of fMRI 

scanning and does not impact the analysis of the data presented herein. 

In the SRTT, each block consisted of 96 trials.  During fixed-sequence blocks, the stimuli appeared 

according to one-of-four fixed 12-item sequences, which repeated 8 times (e.g. 3-4-1-2-3-1-4-3-

2-4-2-1).  For each participant, the same 12-item sequence was used for the duration of the 

experiment. Each fixed-sequence block began at a unique position within the sequence, to help 

prevent explicit knowledge of the sequence from developing (Schendan et al., 2003). In the 

random-sequence blocks, the stimuli appeared according to a randomly generated sequence, 
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without repeats on back-to-back trials, so, for example, subjects would never see the triplet 1-1-

2.   

Breaks between blocks lasted 30-seconds.  Initially, participants saw the phrase “Nice job, take a 

breather”.  After five seconds, a black fixation-cross appeared on the screen.  Five seconds before 

the next block began, the cross turned blue to alert the subjects that the next block was about to 

start. 

During the post-training retention probes, participants performed three blocks (random – fixed 

– random), outside the scanner on a 15-inch Macbook Pro using a button box identical to the one 

used during training.  During these retention probes, the next trial began 200 ms after the 

participant initiated their response rather than after a fixed 800 ms as during training. No 

feedback was given during the retention blocks.  

Experiment 2: Force-tracking task 

In the force-tracking task (FTT), participants continuously modulated their grip force to match a 

target force output (Floyer-Lea and Matthews, 2005; Floyer-Lea et al., 2006). In the traditional 

implementation, participants are exposed to a single pattern of force modulation that is repeated 

on every trial. This design does not allow discrimination between general improvement (i.e. 

familiarization with the task and/or the force transducer) and improvement specific to the 

trained sequence of force modulation. Therefore, we adapted the traditional FTT method to align 

it with the experimental design that is traditional for the SRTT, i.e. by including random-sequence 

blocks. 

A given trial consisted of a 14 s continuous pattern of grip modulation.  At the beginning of a trial, 

participants were presented with three circles on a grey background: a white circle (Cursor, 0.5 

cm diameter), a blue circle (Target, 1.5 cm diameter), and a black circle (Bottom of the screen, 2 

cm diameter; Figure 1d). Participants held the force transducer (Current Designs, Inc., 
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Philadelphia, PA) in the right hand between the four fingers and palm. Application of force to the 

transducer caused the cursor to move vertically on the screen. Participants were instructed to 

keep the cursor as close to the center of the target as possible as the target moved.   

For fixed-sequence blocks, participants were assigned to one of six possible 14 s patterns of grip 

modulation. This pattern was repeated on every sequence trial.  During random-sequence blocks, 

the target followed a trajectory generated by the linear combination of four waveforms, with 

periods between 0.01 and 3 Hz.  The combinations of waveforms were constrained to have 

identical average amplitude (target height), and the number and value of local maxima and 

minima were constant across the random blocks.   

For data analysis, the squared distance from the cursor to the target was calculated at each frame 

refresh (60 Hz).  The first 10 frames were removed from each trial.  The mean of the remaining 

time points was calculated to determine performance, and trials were averaged across blocks.  

Feedback 

All participants were paid a base remuneration of $80 for participating in the study.  At the start 

of the feedback period, participants were informed they could earn additional money based on 

their performance. 

In the SRTT, performance was defined as the accuracy (correct or incorrect) and reaction time 

(RT) of a given trial.  Feedback was given on a trial-by-trial basis (Figure 1c,d).  This was indicated 

to the participant when the white frame around the stimulus changed to green (reward) or red 

(punishment).  Participants in the reward group were given feedback if their response was 

accurate and their RT was faster than their criterion RT, which indicated that they earned money 

($0.05 from a starting point of $0) on that trial.  Participants in the punishment group were given 

feedback if they were incorrect, or their RT was slower than their criterion, which indicated that 

they lost money ($0.05 deducted from a starting point of $55) on that trial. Participants in the 
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control-reward and control-punishment groups saw red or green color changes, at a frequency 

matched to punishment and reward; the color changes were not related to their performance. 

Control participants were told that they would be paid based on their speed and accuracy.  

Feedback in the FTT was based on the distance of the cursor from the target.  For the reward 

group, participants began with $0.  As participants performed the task, their cursor turned from 

white to green whenever the distance from the target was less than their criterion, indicating 

that they were gaining money at that time. Participants in the punishment group began with $45, 

and, as they performed, the cursor turned red if it was outside their criterion distance.  This 

indicated that they were losing money. For reward-control and punishment-control groups, the 

cursor changed to green or red. As in the SRTT, the color changes for the control group were not 

related to the participant’s performance.  For control, the duration of each feedback instance, as 

well as cumulative feedback given on each trial, was matched to the appropriate group.  

In both tasks, for the reward and punishment groups, between blocks, the current earning total 

was displayed (e.g. “You have earned $5.00”). Control participants saw the phrase, “You have 

earned money.” The criterion RT was calculated as median performance in the first 

familiarization block. After each block, the median + standard deviation of performance was 

calculated, and compared with the criterion. If this test criterion was faster (SRTT) or more 

accurate (FTT) than the previous criterion, the criterion was updated. During the SRTT, only the 

correct responses were considered when establishing the criterion reaction time. 

 Importantly, to control for the motivational differences between gain and loss, participants were 

not told the precise value of a given trial. This allowed us to assess the hedonic value of the 

feedback, rather than the level on a perceived-value function.   

MRI acquisition 
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This experiment was performed on a 3.0T GE 750 MRI scanner using a 32-channel head coil (GE 

Medical Systems, Milwaukee, WI). 

Structural scan 

For registration purposes, a T1-weighted anatomical image was acquired (magnetization-

prepared rapid gradient echo (MPRAGE), TR = 7 ms, TE = 3.4 ms, flip-angle = 7 degrees, bandwidth 

= 25.000 kHz, FOV = 24x24 cm2, acquisition matrix = 256 x 256, resolution = 1 x 1 x 1 mm, 198 

slices per volume).  Grey matter, white matter, and CSF maps for each participant were generated 

using Freesurfer (Fischl et al., 2002).   

EPI scans 

Multi-echo EPI scans were collected with the following parameters:  TE = 14.9, 28.4, 41.9 ms, TR 

= 2, ASSET acceleration factor = 2, flip-angle = 65 degrees, bandwidth = 250.000 kHz, FOV = 24 x 

24 cm, acquisition matrix = 64 x 64, resolution = 3.4 x 3.4 x 3.4 mm, slice gap = 0.3 mm, 34 slices 

per volume covering the whole brain.  Respiratory and cardiac traces were recorded.  Each resting 

state scan lasted 21-minutes.  The first 30 volumes of each resting-state scan were discarded to 

control for the difference in arousal that occurs at the beginning of resting state scans.  This left 

the final 20-minutes of rest in each scan for our analysis.  This procedure has been used in other 

studies where long-duration resting state runs were collected (Gonzalez-Castillo et al., 2014).   

Resting state fMRI preprocessing 

Data were preprocessed using AFNI (Cox, 1996). The time series for each TE was processed 

independently prior to optimal combination (see below). Slice-time correction was applied 

(3dTShift) and signal outliers were attenuated [3dDespike (Jo et al., 2013)].  Motion correction 

parameters were estimated relative to the first volume of the middle TE (28.4 msec), and 
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registered to the structural scan (3dSkullStrip, 3dAllineate).  These registration parameters were 

then applied in one step (3dAllineate) and the data were resampled to 3 mm isotropic resolution.  

The optimal echo time for imaging the BOLD effect is where the TE is equal to T2*.  Because T2* 

varies across the brain, single echo images are not optimal to see this variation.  By acquiring 

multiple echoes, we could calculate the “optimal” T2* value for each voxel through the weighted 

average of the echoes at each time point, which allowed us to recover signals in dropout areas 

and improves contrast-to-noise ratio (Evans et al., 2015; Kundu et al., 2014; Poser et al., 2006; 

Posse et al., 1999).  The following is a summary of methods implemented for optimal combination 

implemented in meica.py [(Kundu et al., 2012)].   

The signal at an echo, n varies as a function of the initial signal intensity S0 and the transverse 

susceptibility T2* = 1/R2* and is given by the mono-tonic exponential decay: 

 

S(TEn) = S$𝑒𝑥𝑝(−R) ∗ TEn), 

 

where R2* is the inverse of relaxation time or 1/T2*. This equation can be linearized to simplify 

estimation of T2* and S0 as the slope using log-linear transformation.  The time courses can be 

optimally combined by weighted summation by a factor, w, described by the following equation: 

 

𝑤(𝑇)(./0)∗ )1 =
𝑇𝐸1 · 𝑒𝑥𝑝(−𝑇𝐸1/𝑇)(./0)∗ )

∑ 	1 𝑇𝐸1 · 𝑒𝑥𝑝(−𝑇𝐸1/𝑇)(./0)∗ ). 
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Where T2(fit) is the transverse relaxation time estimated for each voxel using the equation above.  

The optimally combined time series can then be treated as a single echo. 

After optimal combination, we applied the basic ANATICOR (Jo et al., 2010) procedure to yield 

nuisance time series for the ventricles and local estimates noise from the white matter.  All 

nuisance time-series (six parameters of motion, local white matter, ventricle signal, and 6 

physiological noise regressors (RetroTS)) were detrended with fourth order polynomials. These 

time series, along with a series of sine and cosine functions to remove all frequencies outside the 

range (0.01-0.25 Hz) were projected out of the data in a single regression step (3dTproject).  Time 

points with motion greater than 0.3 mm were removed from the data [scrubbing, see Power et 

al. (2012)] and replaced with values obtained via linear interpolation in time.  Data were aligned 

to the N27 atlas and transformed into Talairach space (@auto_tlrc) and smoothed with a 6mm 

FWHM Gaussian kernel. For group data analysis, a group-level grey matter by mask was created 

by calculating voxels determined to be grey matter in 80% of participants (Gotts et al., 2012). 

Global signal regression was not performed on these data (Saad et al., 2012). 

Left premotor cortex functional connectivity 

We focused our analysis on the PMC based on this region’s well-described central role in 

sequence production in response to visual cues (Mushiake et al., 1991), sensorimotor learning, 

and sequence learning (Hardwick et al., 2015; Hardwick et al., 2013b). Given that the participants 

were performing the task with their right hand, we further focused on the left PMC. Left dorsal 

and ventral PMC (PMd/PMv) were defined based on a publicly available diffusion-MRI-based 

parcellation of premotor cortex (Tomassini et al., 2007). The PMd and PMv regions of this atlas 

are matched for size.  

The mean time series from both dorsal and ventral premotor cortices were extracted separately 

from each participant and each rest period. The whole brain correlation maps (Pearson’s r) for 

both PMd and PMv during the pre- and post- training resting state MRI scans were then 
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calculated based on these time series. Prior to running group statistics, these maps were Z-scored 

using a Fisher’s transform. For each resting-state scan, global correlation [GCOR; 

@compute_gcor: Saad et al. (2013)] and magnitude of motion across runs (@1dDiffMag) were 

calculated and included as nuisance covariates for group analysis. 

The resulting maps were then submitted to a linear mixed effects model (3dLME) with ROI 

(PMd/PMv), Rest (pre-/post-), Feedback valence (Control/Reward/Punishment) as factors.  The 

precise model fit at the group level in R-syntax (nlme) was ‘Feedback 

valence*Rest*ROI+motion+gcor’. A random effect (subject) was included in the model. Group 

analysis maps were cluster-corrected for multiple comparisons to achieve a a = 0.05 using the 

ACF model in 3dClustSim (p < 0.005, k = 54; AFNI compile date July 9, 2016).   

To determine the consistency of the impact of feedback across the two tasks, the overlap of the 

significant clusters from the Rest x Feedback valence interaction for the SRTT and FTT was 

calculated at both a conservative (p < 0.005, k = 54) and liberal (p < 0.01, k = 54) threshold. In 

addition, to formally test for a difference between the feedback valence conditions across tasks, 

we considered both tasks together in a single model that included Task (SRTT/FTT) as a factor. 

The precise model fit for this analysis was ‘Task* Feedback valence*Rest*ROI+motion+gcor’. 

Results 

The behavioral data have previously been reported [Steel et al. (2016)]. Briefly, during 

performance of the SRTT, we found that, compared to participants training with reward, those 

training with punishment showed reduced reaction time without detriment to accuracy; in 

contrast, on the FTT, compared to participants training with reward, those training with 

punishment exhibited greater tracking error during training (Supplemental Figure 1). During 

retention testing, in both tasks all feedback groups showed evidence of sequence knowledge at 

1hr, 24-48hrs and 30-d after training. To identify brain regions impacted by feedback given during 

training, we used a seed-based analysis focused on the left PMC.  For each experiment, we 
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implemented a voxel-wise linear mixed effects (LME) model (Chen et al., 2013) with Rest (Pre-

/Post- training), Feedback valence (Reward /Punishment /Control), and ROI (ventral-/dorsal- 

premotor cortex) as factors and looked for regions showing a significant interaction between Rest 

x Feedback valence.  No regions showed a Rest x Feedback valence x ROI interaction in either 

task. Full results from this model for both tasks can be found in Table 1.  

Reward and punishment evoke dissociable changes in PMC connectivity patterns 

after SRTT training 

In Experiment 1, following training on the SRTT task, PMC functional connectivity change due to 

training was modulated by feedback valence in several regions (Rest x Feedback valence 

interaction; Figure 2).  These regions included bilateral thalamus and striatum, right cerebellar 

vermis, supplementary motor area (SMA), bilateral medial temporal lobe, and left inferior frontal 

gyrus.  In order to examine the nature of the interaction, we extracted the estimated mean PMC 

functional connectivity change due to training from each cluster (Figure 2, inset). This revealed a 

pattern that was distinct across the feedback groups. After training with reward, functional 

connectivity increased between PMC and thalamus and striatum, cerebellar vermis, and SMA, 

but PMC functional connectivity decreased with MTL and inferior frontal gyrus. The punishment 

group showed the opposite pattern; PMC connectivity with medial temporal lobe and inferior 

frontal gyrus increased after training with punishment. The control group showed an 

intermediate pattern between the reward and punishment groups. In the control group, PMC 

connectivity increased with the thalamus, striatum, and cerebellar vermis after training, but 

decreased with SMA, medial temporal lobe, and inferior frontal gyrus. Thus, in the context of the 

SRTT, reward and punishment have clearly differentiable impacts on functional connectivity 

change due to training in regions associated with learning on this task. 
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Figure 2. Reward and punishment differentially affect PMC functional connectivity change after 

training on the SRTT. Linear mixed effects modelling revealed brain regions that exhibited a 

Rest x Feedback valence interaction in the functional connectivity of left PMC. Functional 

connectivity between PMC and the thalamus and striatum, cerebellum, and SMA increased 

after training with reward and control feedback but decreased after training with punishment.  

In contrast, functional connectivity between medial temporal lobe and left inferior frontal 

gyrus increased after training with punishment but decreased after training with reward and 

control feedback. Bars showing mean connectivity change across voxels in the identified cluster 

after training estimated by the linear mixed effects model are included to enable qualitative 

comparison and reveal the nature of the interaction effect.  

Punishment promotes PMC-striatal connectivity after FTT training 

In Experiment 2, after training on the FTT, PMC connectivity change was also affected by 

feedback valence (LME: Rest x Feedback valence interaction). However, the regions exhibiting 

the Rest x Feedback valence interaction after training on the FTT differed from those found in 

after training on the SRTT (Experiment 1). After training on the FTT, we found that PMC 

connectivity with bilateral lateral occipital temporal cortex, precuneus, left culmen, cerebellum, 
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right striatum, and right medial frontal gyrus differed across the Feedback valence conditions 

(Figure 3). Extracting the estimated mean PMC functional connectivity change of these regions 

revealed that two primary modes of change (Figure 3, inset).  PMC connectivity with the lateral 

occipital cortex, precuneus, culmen, and cerebellar lobule VI, decreased after training with 

punishment, but increased after training with control feedback. In contrast, connectivity of the 

PMC with right striatum and right medial frontal gyrus increased after training with punishment.  

PMC connectivity to right medial frontal gyrus decreased after training with control.  Overall, in 

the regions showing the interaction between functional connectivity change after training and 

feedback valence, reward had a smaller influence compared to control or punishment. This 

suggests that punishment induces marked changes in functional connectivity change after FTT 

training, which was consistent with the behavioral effects observed at the end of training (Steel 

et al., 2016). 

 

Figure 3.  Punishment promotes PMC-striatal connectivity after FTT training. A linear mixed 

effects model revealed brain regions exhibiting a Rest x Feedback valence interaction in the 

functional connectivity of left PMC. Functional connectivity between the PMC and lateral 

occipital cortex, posterior parietal cortex, culmen, and cerebellum increased after training with 

control feedback, but decreased after training with punishment.   In contrast, PMC connectivity 
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with right ventral striatum and right medial frontal gyrus increased after training with 

punishment but decreased after training with reward and control feedback. Bars showing 

mean connectivity change across voxels in the identified cluster after training estimated by the 

linear mixed effects model are included to enable qualitative comparison. 

Influence of reward and punishment on PMC functional connectivity depends on task 

In order to better understand the correspondence between feedback valence and the change in 

PMC functional connectivity after training between the two tasks, we calculated the overlap 

between the sets of regions that showed the Rest x Feedback valence interaction for each task 

separately.  Given the reduced power to detect general effects that might be weak but consistent 

across tasks, for this qualitative assessment we considered the conservative threshold reported 

above (p < 0.005, k = 54), as well as a liberal threshold (p < 0.01, k = 54; Figure 4a).  The mean 

connectivity change with PMC for clusters greater than 20 voxels showing an overlap between 

the two tasks is shown in Figure 4b.   

At the conservative threshold, one region in the striatum showed a Rest x Feedback valence 

interaction in both tasks (Cluster 1). When we extracted the estimated mean connectivity change 

after training for each task, however, we found that the pattern of connectivity change across 

the feedback valence groups was diametrically opposed. In the SRTT, connectivity between the 

PMC and the overlapping region increased after training with reward but decreased after training 

with punishment. In contrast, after training on the FTT, connectivity between PMC and the 

overlapping region increased after training with punishment but increased after training with 

reward. In both tasks, connectivity between PMC and the overlapping region increased after 

training with control feedback.  

At the liberal threshold, we detected three other clusters in the right anterior temporal 

lobe, the right cerebellum, and right dorsal thalamus. In each of these clusters, the pattern of 
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connectivity change with PMC exhibited by the reward and punishment groups was also not 

consistent across tasks.  

 

Figure 4. Regions showing PMC functional connectivity change after training had limited 

overlap across the two tasks. Clusters that showed a PMC connectivity change after training 

that differed by the feedback group in the SRTT (orange) and the FTT (green) showed limited 

overlap, even at a liberal cluster threshold (p < 0.01, k = 54).  Only the ventral pallidum (cluster 

1, bold) showed an overlap at the threshold reported above (p < 0.005, k = 54).  In all clusters, 

the reward and punishment groups exhibited opposite patterns of connectivity change 

between PMC and the overlapping regions due to training on the SRTT (upper) and FTT (lower). 

Bars showing mean connectivity change across voxels in the identified cluster after training 

estimated by the linear mixed effects model are included to enable qualitative comparison. 

To directly compare the effect of task on the functional connectivity change after training 

with feedback, we performed a whole-brain analysis (cluster corrected; p < 0.005, k = 54) using a 

linear mixed effects model that included Task (SRTT/FTT), Rest (Pre-/Post-training), and Feedback 

valence (Control/Reward/Punishment) as factors. For this analysis, we specifically focused on 

regions that showed a Task x Feedback valence x Rest interaction. All regions that appeared in 

the overlap analysis reported above evidenced a Task x Feedback valence x Rest interaction 

(bilateral basal ganglia including caudate, putamen, and pallidum [peak x=-10, y=16, z=17], right 
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cerebellum [1.5, 24.5, -24.5], right medial temporal lobe [-40, 4.5, -33.5]). In addition, the right 

lateral temporal lobe [-43, 49, -15], right parietal cortex [-43, 55, 17.5], right medial frontal gyrus 

[-13.5, 52.5, -6.5], and right lateral prefrontal cortex [-46.5 -16.5 17.5] also showed this 

interaction (Figure 5).  

 

Figure 5. Difference in PMC functional connectivity due to training across the feedback valence 

groups depends on the task being performed. Upper. Data from both tasks were submitted to 

a linear mixed effects model. This analysis revealed the resulting F-statistic map for the 

interaction term ‘Task*Feedback valence*Rest’ indicating regions within the basal ganglia, 

cerebellum, MTL, temporal cortex, parietal cortex, and prefrontal cortex showed an effect of 

feedback on functional connectivity change after training that varied by task. Mean PMC 

functional connectivity change after training from these ROIs is shown in the lower panel. 

Importantly, all ROIs that showed an overlap in Figure 4 also showed the interaction in the LME 

analysis. Bars showing mean connectivity change across voxels in the identified cluster after 
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training estimated by the linear mixed effects model are included to enable qualitative 

comparison. 

In summary, it is clear that feedback valence profoundly impacts resting state functional 

connectivity changes after training, but that the regions of the brain impacted by feedback 

valence depend on the task being performed. 

Discussion 

In this experiment, we sought to investigate the effect of feedback valence on brain activity 

during the period immediately SRTT and FTT training. We found that reward and punishment 

differentially impacted change in PMC functional connectivity, and this impact was influenced by 

task. After training on the SRTT, functional connectivity between PMC with striatum, 

cerebe0llum, and SMA increased after training with reward, while functional connectivity 

between PMC with medial temporal lobe and inferior frontal gyrus increased after training with 

punishment. Training on the FTT induced a different pattern of connectivity change across the 

feedback valence groups.  After FTT training, functional connectivity between PMC and parietal 

cortices increased after training with control feedback. In contrast, functional connectivity 

between PMC and parietal cortices decreased after training with punishment, while functional 

connectivity between PMC with the striatum and medial frontal gyrus increased after training 

with punishment. Finally, we looked for regions that showed an overlap in the Rest x Feedback 

valence interaction across tasks. At our conservative threshold, the clusters of significant voxels 

for the two tasks overlapped only in the ventral pallidum. In the overlapping voxels, the two tasks 

showed opposite patterns of results: after training on the SRTT, connectivity between the PMC 

and the pallidum increased after training with reward but decreased after training with 

punishment; the opposite pattern was true for the FTT, after which connectivity between the 

PMC and the pallidum increased after training with punishment but decreased after training with 

reward. Taken together, these results suggest that training with valenced feedback has 
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differential effects on functional connectivity after training, and that these effects primarily 

manifest in the regions involved in task performance. 

Reward and punishment differentially impacted PMC functional connectivity with the striatum 

and medial temporal lobe after training on the SRTT.  SRTT learning engages the motor system, 

including motor cortex and premotor cortex (Hardwick et al., 2013b; Keele et al., 2003; King et 

al., 2017; Kornysheva and Diedrichsen, 2014; Schubotz and von Cramon, 2003; Wiestler and 

Diedrichsen, 2013), parietal cortex (Breton and Robertson, 2017; Keele et al., 2003), basal ganglia 

(Albouy et al., 2013a; Carbon et al., 2004; Debas et al., 2014; Seger, 2006), and medial temporal 

lobe (Albouy et al., 2013b; Schendan et al., 2003). These structures are often classified as fast 

(frontoparietal and hippocampal) and slow (motor and basal ganglia) systems, based on the onset 

of evoked activity of these regions during the learning process (Doyon et al., 2018). One theory 

to explain the impact of reward and punishment on memory formation is the engagement of the 

slow and fast systems, respectively.  With respect to the SRTT, we found evidence for this 

differential recruitment of the fast and slow learning systems after training with punishment and 

reward, respectively. PMC connectivity with motor and basal ganglia structures increased after 

training with reward and PMC connectivity with anterior insula and hippocampus after increased 

training with punishment.  

In addition to reward and punishment, other factors could interact with brain areas recruited 

during SRTT learning. For example, the contribution of the motor, parietal, and subcortical 

systems may be based on the goal of the learner, or based on the statistical complexity of the 

sequence being learned (Robertson, 2007).  However, it is clear that many brain regions interact 

during the learning process. For example, it is possible to bias neural activity towards one set of 

brain areas [e.g. (Keele et al., 2003)] or to induce competitive interactions among the memory 

systems by constraining task conditions (Brown and Robertson, 2007; Tunovic et al., 2014). There 

has been evidence to suggest that valenced feedback could also dissociate the brain areas 

activated during skill-learning (Wachter et al., 2009), and the present data extend this knowledge 

by showing that reward and punishment can bias recruitment of neural areas after learning. 
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Reward and punishment also had differential effects on functional connectivity after FTT training, 

but in different regions from the SRTT. After training on the FTT, we observed differences 

amongst the feedback valence groups in functional connectivity between PMC and posterior 

parietal, lateral occipital, and prefrontal cortices, as well as the ventral striatum and the 

cerebellum. The control and reward groups showed increased connectivity between PMC and 

the parietal, occipital, and cerebellar regions, but decreased connectivity between PMC and 

ventral striatum and medial frontal gyrus. The punishment group showed the opposite pattern: 

functional connectivity between PMC and parietal, occipital, and cerebellum decreased after 

training and PMC connectivity with the striatum and medial frontal gyrus increased after training.  

FTT learning is generally associated with decreased BOLD activity in the cortical motor network, 

prefrontal cortex, and caudate nucleus, but increased BOLD activity in the cerebellum and 

putamen (Floyer-Lea and Matthews, 2004, 2005).  While prior studies of FTT training did not find 

BOLD-signal activity changes in lateral occipital cortex, this region is strongly associated with 

action representation (Kable and Chatterjee, 2006; Kable et al., 2005; Lingnau and Downing, 

2015) and may be consistently engaged while learning the novel visuomotor association for 

learning on the FTT. Thus, the effects of feedback valence are largely restricted to areas involved 

in performance of the task.  

Overall with respect to the influence of feedback valence on functional connectivity change due 

to training, we observed very little overlap between the FTT and SRTT. At the conservative 

threshold, the only region where feedback modulated PMC functional connectivity change due 

to training on both tasks was the ventral pallidum. The center of mass of the cluster overlap was 

centered in the medial pallidum, and the cluster extent encompassed both the lateral and medial 

pallidum. Across the two tasks, reward and punishment had opposing effects on PMC 

connectivity with this area. After training on the SRTT, functional connectivity between the PMC 

and ventral pallidum increased after training with reward and decreased after training with 

punishment.  The opposite was true after training on the FTT, wherein we observed increased 

functional connectivity between PMC and the ventral pallidum after training with punishment, 
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but a decrease after training with reward. The ventral pallidum contains cell populations that 

respond to both appetitive and aversive stimuli (Saga et al., 2017).  Behavioral response to 

appetitive and aversive stimuli are mediated by glutamatergic and GABAergic neurons in the 

ventral pallidum, and project to the ventral tegmental area and lateral habenula, respectively 

(Faget et al., 2018). Therefore, given that cells in this area respond to positive and negative 

stimuli, it may not surprising to find this region affected by both reward and punishment 

following training in our study.  

Across both tasks, the dissociation between the feedback valence groups with respect to PMC-

pallidum functional connectivity change after training matched the dissociation in behavioral 

performance:  the group that showed PMC-pallium functional connectivity increased after 

training performed worse on the task, while the group that showed diminished PMC-pallidum 

functional connectivity performed better at the end of training [see Supplemental Figure 1 for a 

summary of the relevant behavioral data and (Steel et al., 2016) for behavioral results of the 

participants in this study]. Specifically, on the SRTT, the punishment group performed better 

during training (i.e. had a faster overall reaction time) compared to the reward and control 

groups, and, on this task we observed a decrease in functional connectivity between ventral 

pallidum and PMC after training with punishment. On the other hand, in the FTT, the punishment 

group performed worse (i.e. made more tracking error) than the reward and control groups 

behaviorally, and the connectivity between PMC and ventral pallidum increased after training on 

the FTT with punishment. Thus, with respect to the pallidum, it may be that the connectivity of 

this region to PMC depends on the experience of the learner (either absence of reward or 

presence of punishment) in the environment, and this activity may persist after training.   

A meta-analysis of decision-making studies using valenced feedback found surprise, valence, and 

signed prediction error information converged specifically in the ventral pallidum (Fouragnan et 

al., 2018). It is notable that the pallidum itself is a heterogenous structure embedded within the 

corticobasal-ganglia thalamo-cortical loops (Redgrave et al., 2010). Even though this structure 

may play a common role integrating the error-related information in both tasks, this error-related 
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information may be originating from distinct cortical networks projecting to separate aspects of 

the pallidum [e.g., associative versus motor (Redgrave et al., 2010)]. The scanning resolution used 

here only allows coarse localization of the effects within the pallidum, but this could be addressed 

using higher-resolution imaging modalities. 

Even at a liberal threshold, the regions that showed overlap across the two tasks showed 

opposite patterns of connectivity change based on the type of feedback given.  Similar to the 

pallidum, the differential effect of reward and punishment on functional connectivity between 

PMC and these regions may be due to the qualitative differences in performance. More generally, 

the minimal overlap and opposing patterns suggest that reward and punishment have strong 

impacts on post-training brain activity and that this effect is strongly influenced by the task that 

was performed.  

Valenced feedback processing is often characterized as being mediated by a set of regions that 

would be common across tasks; for example, in the context of statistical learning and decision 

making, distinct networks for valence, surprise, and signed-prediction error have been suggested 

(Fouragnan et al., 2018).  Regions activated in response to surprise and valence information 

include the striatum and insular cortex, which differentially responded to positive and negative 

surprises, respectively (Fouragnan et al., 2018).  The regions showing changes in functional 

connectivity after training on the SRTT task match these predictions, and others have suggested 

that the SRTT is a statistical learning task (Robertson, 2007). After training on the FTT, the 

patterns of connectivity change across the feedback valence groups was not consistent with what 

would be expected after statistical learning. After training on FTT, we observed that task-relevant 

regions, including the lateral occipital, parietal, and cerebellar activity (Grafton et al., 2008; 

Hardwick et al., 2013b; Imamizu et al., 2000; Krakauer et al., 2004) showed feedback related 

changes in functional connectivity. There is some evidence that the cerebellum also plays a role 

in motivational aspects of movement correction during motor learning (Bostan and Strick, 2018; 

Turner and Desmurget, 2010; Turner et al., 2003), and it is likely that the engagement of 

cerebellum depends on task-demands, as well. In summary, our data provide further evidence 
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that, rather than be restricted to feedback-processing networks that are segregated on the basis 

of valence, rewards and punishments may be processed in a distributed fashion among brain 

regions engaged by the task.  

Limitations 

Several aspects of the present study are worth noting.  First, we did not distinguish between 

dorsal and ventral premotor cortex in our analyses because no regions showed a Rest x Group x 

ROI interaction in either task. Dorsal and ventral premotor cortex are highly interconnected and 

although feedback valence may differentially impact dorsal and ventral premotor cortex, we may 

have been underpowered to detect any effect.  Second, it should be noted that our 

implementation of the SRTT included a fixed trial length rather than a self-paced trial duration, 

which might foster explicit knowledge, and it has been shown that explicit learning recruits 

different neural networks after learning (Sami et al., 2014). No participants included in the study 

spontaneously reported sequence knowledge. When tested at 3+ weeks, participants showed no 

evidence of explicit awareness (for further discussion, see Steel et al., 2016a). In addition, in order 

to match the SRTT parameters, our force tracking task implementation featured continuous 

feedback of cursor position, rather than feedback at given at the end of the trial, and future work 

may consider the difference between continuous versus end-of-trial feedback. Third, it is widely 

known that sleep interacts with memory formation and offline memory processes (Albouy et al., 

2013a; Robertson et al., 2004a; Robertson et al., 2004b).  In our study, we did not measure sleep 

quality. Whether sleep interacts with the effect of reward and punishment on retention may be 

an interesting avenue for future research. Fourth, our analysis focused specifically on the impact 

of reward and punishment on PMC because of this region’s known importance to motor control 

and motor learning (Hardwick et al., 2013a). It is likely that reward and punishment impacts other 

regions not specifically located within the motor system. Future work might consider the impact 

of rewards and punishments on other areas of the brain, as well as during other types of tasks. 

Finally, we note that although we observed statistically significant changes in functional 

connectivity across the feedback valence groups, we cannot conclude that these changes solely 

reflect memory-formation related activity. In addition to memory-formation related activity, 
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other factors such as task performance (rather than memory formation) and rumination also 

influence functional connectivity after training. Based on our experimental design and sample 

size, we cannot disambiguate these effects in our data. Follow-up studies may consider causal 

manipulations to assess the importance of particular connections to memory formation after 

training with feedback. 

Summary 

In summary, we found that reward and punishment have distinct effects on resting-state 

functional connectivity due to training. This suggests that rather than a critical feedback-

processing network, feedback may be processed within those systems specifically engaged by 

the task requirements.  
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Tables 

Table 1. Significant clusters for SRTT and FTT voxel-wise linear mixed effects model analyses. Group analysis maps 

were cluster-corrected for multiple comparisons to achieve a a = 0.05 using the ACF model in 3dClustSim (p < 0.005, 

k = 54; AFNI compile date July 9, 2016). 

Number	of	
voxels	 Volume	 x	 y	 z	 Region	
SRTT	 	 	 	 	 	
Main	effect	Rest	 	 	 	 	 	

1909	 51543	 -4.5	 -22.5	 11.5	 Left	Thalamus	
949	 25623	 52.5	 1.5	 -6.5	 Right	superior	temporal	gyrus	
477	 12879	 1.5	 -73.5	 -24.5	 Right	cerebellar	vermis	
299	 8073	 -55.5	 -1.5	 -3.5	 Left	superior	temporal	gyrus	
68	 1836	 25.5	 -13.5	 -12.5	 Right	parahippocampal	cortex	

Rest	x	Condition	 	 	 	 	 	
828	 22356	 -16.5	 1.5	 -0.5	 Left	pallidum	
215	 5805	 28.5	 1.5	 -18.5	 Right	parahippocampal	cortex	
195	 5265	 -10.5	 -34.5	 59.5	 Left	supplementary	motor	area	
154	 4158	 -4.5	 -37.5	 -24.5	 Left	cerebelllum	
77	 2079	 -16.5	 -13.5	 -18.5	 Left	parahippocampal	cortex	
59	 1593	 -31.5	 19.5	 15.5	 Left	inferior	frontal	gyrus	

FTT	 	 	 	 	 	
Main	effect	Rest	 	 	 	 	 	

3545	 95715	 -4.5	 -22.5	 11.5	 Left	thalamus	
148	 3996	 7.5	 -31.5	 59.5	 Right	supplementary	motor	area	
118	 3186	 -1.5	 55.5	 -6.5	 Left	medial	frontal	gyrus	
112	 3024	 43.5	 -61.5	 -3.5	 Left	middle	occipital	gyrus	
112	 3024	 1.5	 -61.5	 17.5	 Right	posterior	cingulate	cortex	
60	 1620	 16.5	 -73.5	 29.5	 Right	precuneus	

Rest	x	Condition	 	 	 	 	 	
639	 17253	 46.5	 -49.5	 -15.5	 Right	fusiform	gyrus	
395	 10665	 -49.5	 -64.5	 8.5	 Left	middle	temporal	gyrus	
147	 3969	 -10.5	 -91.5	 5.5	 Left	cuneus	
124	 3348	 25.5	 -73.5	 38.5	 Right	precuneus	
74	 1998	 13.5	 1.5	 5.5	 Right	pallidum	
63	 1701	 19.5	 -61.5	 -21.5	 Right	cerebellum	lobule	VI	
60	 1620	 -7.5	 -64.5	 2.5	 Left	lingual	gyrus	
55	 1485	 7.5	 61.5	 2.5	 Right	medial	frontal	gyrus	
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Figures 

 

Figure 1. Experimental design and skill memory retention. (a,b) Participants underwent 20 

minutes of resting state fMRI before and after training on either the serial reaction time task 

(SRTT) or the force tracking task (FTT) while receiving reward, punishment, or control feedback. 

In the SRTT (c), participants responded to a cue appearing in one of four locations on a screen. 

In the FTT (d), participants modulated their grip force to track a moving target. In both tasks, 

the stimulus could follow either a random- or fixed-sequence, and skill memory was assessed 

by comparing performance during random- and fixed-sequence trials.  
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Figure 2. Reward and punishment differentially effect PMC functional connectivity change after 

training on the SRTT. Linear mixed effects modelling revealed brain regions that exhibited a 

Rest x Feedback valence interaction in the functional connectivity of left PMC. Functional 

connectivity between PMC and the thalamus and striatum, cerebellum, and SMA increased 

after training with reward and control feedback but decreased after training with punishment.  

In contrast, functional connectivity between medial temporal lobe and left inferior frontal 

gyrus increased after training with punishment but decreased after training with reward and 

control feedback. Bars showing mean connectivity change across voxels in the identified cluster 

after training estimated by the linear mixed effects model are included to enable qualitative 

comparison.  
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Figure 3.  Punishment promotes PMC-striatal connectivity after FTT training. A linear mixed 

effects model revealed brain regions exhibiting a Rest x Feedback valence interaction in the 

functional connectivity of left PMC. Functional connectivity between the PMC and lateral 

occipital cortex, posterior parietal cortex, culmen, and cerebellum increased after training with 

control feedback, but decreased after training with punishment.   In contrast, PMC connectivity 

with right ventral striatum and right medial frontal gyrus increased after training with 

punishment but decreased after training with reward and control feedback. Bars showing 

mean connectivity change across voxels in the identified cluster after training estimated by the 

linear mixed effects model are included to enable qualitative comparison. 
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Figure 4. Regions showing PMC functional connectivity change after training had limited 

overlap across the two tasks. Clusters that showed a PMC connectivity change after training 

that differed by the feedback group in the SRTT (orange) and the FTT (green) showed limited 

overlap, even at a liberal cluster threshold (p < 0.01, k = 54).  Only the ventral pallidum (cluster 

1, bold) showed an overlap at the threshold reported above (p < 0.005, k = 54).  In all clusters, 

the reward and punishment groups exhibited opposite patterns of connectivity change 

between PMC and the overlapping regions due to training on the SRTT (upper) and FTT (lower). 

Bars showing mean connectivity change across voxels in the identified cluster after training 

estimated by the linear mixed effects model are included to enable qualitative comparison.  
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Figure 5. Difference in PMC functional connectivity due to training across the feedback valence 

groups depends on the task being performed. Upper. Data from both tasks were submitted to 

a linear mixed effects model. This analysis revealed the resulting F-statistic map for the 

interaction term ‘Task*Feedback valence*Rest’ indicating regions within the basal ganglia, 

cerebellum, MTL, temporal cortex, parietal cortex, and prefrontal cortex showed an effect of 

feedback on functional connectivity change after training that varied by task. Mean PMC 

functional connectivity change after training from these ROIs is shown in the lower panel. 

Importantly, all ROIs that showed an overlap in Figure 4 also showed the interaction in the LME 

analysis. Bars showing mean connectivity change across voxels in the identified cluster after 

training estimated by the linear mixed effects model are included to enable qualitative 

comparison. 
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Supplemental information 

	

Supplemental	 figure	1.	Behavioral	 performance	 after	 training	on	 the	 SRTT	 (left)	and	FTT	(right).	
Participants	performed	one	random	sequence	block	(first	square),	one	fixed-sequence	block	middle	
circle),	and	one	random	sequence	block	(second	square).	During	the	final	three	blocks	of	training	on	
the	SRTT,	punishment	had	the	best	performance	regardless	of	block	type	(lowest	median	reaction	
time).	In	contrast,	during	the	FTT,	punishment	performed	worst	regardless	of	block	type	(highest	
median	 squared	 error).	 A	 full,	 quantitative	 description	 and	 statistical	 analysis	 of	 the	 behavioral	
results	is	available	in	Steel	et	al.	2018.		
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