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Abstract 
 
Evolve-and-resequence experiments leverage next-generation sequencing technology 
to track allele frequency dynamics of populations as they evolve. While previous work 
has shown that adaptive alleles can be detected by comparing frequency trajectories 
from many replicate populations, this power comes at the expense of high-coverage 
(>100x) sequencing of many pooled samples, which can be cost-prohibitive. Here we 
show that accurate estimates of allele frequencies can be achieved with very shallow 
sequencing depths (<5x) via inference of known founder haplotypes in small genomic 
windows. This technique can be used to efficiently estimate frequencies for any number 
of alleles in any model system. Using both experimentally-pooled and simulated 
samples of Drosophila melanogaster, we show that haplotype inference can improve 
allele frequency accuracy by orders of magnitude, and that high accuracy is maintained 
after up to 200 generations of recombination, even in the presence of missing data or 
incomplete founder knowledge. By reducing sequencing costs without sacrificing 
accuracy, our method enables analysis of samples from more timepoints and replicates, 
increasing the statistical power to detect adaptive alleles. 

Introduction 
 
A major barrier to understanding the genetic basis of rapid adaptation has been the lack 
of robust experimental frameworks for assaying allele frequency dynamics. Recently, 
evolve and resequence (E+R) experiments1, which leverage next-generation 
sequencing technology to track real-time genome-wide allele frequency changes during 
evolution, have become a powerful step forward in studying adaptation2. In most E+R 
studies, replicate populations are evolved over tens to hundreds of generations in an 
artificial or natural selection regime and allele frequency measurements from multiple 
timepoints are used to identify genomic targets of selection. To date, E+R approaches 
have already been successfully applied in a variety of model systems, including RNA 
molecules, viruses, Escherichia coli, Saccharomyces cerevisiae, and Drosophila 
melanogaster3–7. The ability to concurrently observe both trait and genome-wide allele 
frequency changes across multiple systems offers the potential to answer long-standing 
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questions in molecular evolution. Careful analysis of the patterns and magnitude of 
allele frequency change may reveal the extent of the genome that is under selection, 
how interacting alleles contribute to adaptive traits, and the speed of adaptation in 
different evolutionary regimes.  
 
Crucially, however, the power to address such questions depends on the replication, 
time-resolution, and accuracy of allele frequency trajectories, with tradeoffs between 
these often incurred due to high sequencing costs. Recommended E+R schemes with 
even minimal power to detect selection involve sampling tens to hundreds of individuals 
from at least three replicate populations over a minimum of ten generations8,9. Since 
individual-based, genome-wide DNA sequencing at sufficient coverages is enormously 
cost-prohibitive, most E+R studies rely instead on pooled sequencing10–13 of all 
individuals sampled from a given timepoint and replicate. While this approach sacrifices 
information about individual genotypes and linkage, pooled sequencing has been shown 
to provide a reliable measure of population-level allele frequencies14,15. Still, forward-in-
time simulations suggest that each pooled sample must be sequenced at a minimum of 
50x coverage to detect strong selection and even higher coverage to detect weak 
selection9. Given that optimized experimental designs often involve >100 samples, total 
costs for Drosophila melanogaster E+R experiments that achieve reasonable detection 
power can reach well above $25,000 at current sequencing costs. Thus achieving 
sufficient accuracy remains a major limiting factor in capitalizing on the promise of E+R.  
 
The short timescales for which E+R is most appropriate may, however, facilitate ways to 
reduce sequencing costs without sacrificing experimental power. First, there is a 
growing body of evidence that in sexual populations, the bulk of short-term adaptation, 
especially in fairly small populations, relies on standing genetic variation rather than 
new mutations5,12. Many E+R schemes involve experimental populations derived from a 
fixed number of inbred founder lines6,16,17, so the identity, starting frequency, and 
haplotype structure of all segregating variants are often either already well-known or 
can easily be obtained by sequencing each founder line. Tracking only the frequencies 
of these validated variants can still provide enough power to detect selection, while 
reducing the depth of sequencing usually required to differentiate new mutations from 
sequencing error.  
 
Second, at short timescales haplotype structure can be leveraged to provide more 
accurate allele frequency estimates. In the time frame of most E+R experiments, 
recombination does not fully break apart haplotype blocks and disrupt linkage, and thus 
genomes in an evolving population are each expected to be a mosaic of founder 
haplotypes. In this scenario, recently developed haplotype inference tools18–23 can 
integrate information from sequencing reads across multiple nearby sites to efficiently 
infer the relative frequency of each founder haplotype within small genomic windows. 
These haplotype frequencies can then be used as weights to calculate pooled allele 
frequencies for local segregating variants. With this approach, the accuracy of an allele 
frequency estimate depends less on the number of mapped reads at the individual site, 
and instead relies on the discriminatory power of all mapped reads in the surrounding 
genomic window when inferring haplotype frequencies. Haplotype inference methods 
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such as HARP22 have been shown to accurately predict haplotype frequencies at 
coverages as low as 25x, and simulations of pool-seq data from a small genomic region 
at fixed read depth indicate that the use of haplotype frequency information increases 
the power to detect selection24. However, these tools have not yet been used to infer 
allele frequencies from real pooled samples in an E+R framework, nor has a thorough 
analysis been performed to fully examine how empirical depth of pooled coverage 
scales with the accuracy of haplotype-derived allele frequency estimates at individual 
SNPs genome-wide, across many parameters relevant for E+R.  
 
Here, we focus on defining the accuracy of haplotype-derived allele frequencies (HAFs) 
in order to provide new optimal design recommendations for haplotype-informed E+R 
given realistic financial constraints, real-life experimental noise, and real-life levels of 
missing data. Since haplotype inference will be affected by 1) read depths throughout 
genomic windows, 2) recombination events, and 3) incomplete founder information, we 
begin by leveraging both simulated and experimental data to assess how the accuracy 
of HAFs scales with each of these parameters. To do so, we introduce a new metric, 
‘effective coverage’, that associates the error from HAF estimates to the expected 
sampling error of pooled sequences at various read depths. We find that haplotype 
inference can significantly increase the accuracy of allele frequency estimations across 
a range of genomic window sizes, multiple generations of recombination, and with 
incomplete information about founders. Although we primarily focus on simulated and 
experimental data from Drosophila melanogaster, we later describe how our results can 
be extended to other model organisms as well. We conclude our findings by offering 
recommendations about the most powerful way to integrate haplotype inference into 
E+R experimental schemes, paving the way for deeper insight into the genomic 
underpinnings of adaptation.    

Results 
 
Similar to many E+R studies that approximate population-wide allele frequencies at a 
given time-point by randomly sampling and pooling ~100 individuals6,17,25, we pooled 
two biological replicates of 99 Drosophila melanogaster individuals, and performed high-
coverage sequencing of each replicate. In our pooled samples however, each individual 
was derived from a different previously sequenced isogenic founder line. 
 
All reads were mapped to the D. melanogaster reference genome, and non-HAFs and 
HAFs were calculated at each of the 283,437 known segregating bi-allelic sites on 
chromosome 2L (for simplicity, the remainder of the analysis focuses just on this 
chromosome). Non-HAFs were calculated by evaluating the fraction of mapped reads 
containing the alternate allele. To calculate HAFs, founder haplotypes were first 
constructed from founder genotype calls at the same 283k sites. Haplotype frequency 
estimation was performed with HARP, a haplotype inference tool that uses both 
sequence identity and base quality scores to probabilistically assign pool-seq reads to 
founder haplotypes, and then obtain maximum likelihood estimates of haplotype 
frequency in discrete chromosomal windows. After inferring the frequency of each 
founder haplotype in sliding windows across the chromosome, we calculated HAFs at 
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each SNP site by evaluating the average weighted sum of local founder haplotypes 
containing the alternate allele. 
 
To determine the accuracy of HAFs and non-HAFs, estimated allele frequencies were 
compared to ‘true’ allele frequencies derived from the known composition of founder 
haplotypes that incorporated estimates of uneven pooling (see Supp. Fig 2 and Supp. 
Text). Chromosome-wide accuracy of HAFs and non-HAFs was quantified using a new 
metric, effective coverage, which represents the theoretical coverage at which the 
expected binomial variance from read sampling equals the average error from observed 
allele frequency estimates (see Methods for full description). Note that while this metric 
specifically focuses on the variance from sampling of pooled sequences, in practice, the 
ability of both HAFs and non-HAFs to accurately reflect true population-level allele 
frequencies will also depend on variance from sampling of individuals from the 
population for pooling. This independent source of error has however been well-treated 
elsewhere26,27 and will not be impacted by haplotype inference.  
 
In the following sections, we explore how the accuracy of HAFs differs from non-HAFs, 
and how it scales with empirical coverage, inference window size, different founder sets, 
incomplete founder information, and the number of generations of recombination. 
 
Imputation of missing genotype calls reduces bias in haplotype frequency 
assignment 
 
Ambiguous or missing founder genotype calls are common due to residual 
heterozygosity in inbred lines and uneven sampling during initial founder sequencing. 
On average, at each segregating site in our set of 99 founders, genotype calls for 4 
founders were unresolved. Initial rounds of haplotype inference produced a clear 
negative correlation between the number of missing calls per founder and the haplotype 
frequencies estimated for that founder (Supp. Fig 1). However, we found that imputation 
of missing founder genotypes prior to haplotype inference both significantly reduced the 
skewed haplotype frequency assignment and produced more accurate HAFs overall. 
Thus, we include imputation as a key step in our HAF calculation pipeline for the rest of 
the analysis (see Supp. Text).   
 
Haplotype inference significantly increases the accuracy of allele 
frequency estimations 
 
The accuracy of HAFs depends on the power to estimate haplotype frequencies, which 
in turn is affected by the coverage of mapped reads throughout the genomic window 
used for haplotype inference. In order to compare the accuracy of HAFs to non-HAFs 
and test how each scales with empirical coverage, reads from the two biological 
replicates originally sequenced at ~140x were down-sampled to chromosome-wide 
empirical coverages of 1x to 100x, and then used to calculate the effective coverage of 
allele frequencies for each replicate (Fig 1a). Haplotype inference was initially 
performed using 100kb sliding windows, and accuracy here is assessed at the 27k sites 
with known genotype information for every founder. As expected, effective coverage of 
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both HAFs and non-HAFs is similar between the two biological replicates, and increases 
with greater chromosome-wide empirical coverage. Yet for all empirical coverages 
tested, HAFs have strikingly higher effective coverages than non-HAFs. This substantial 
gain in accuracy from haplotype inference was most prominent at lower empirical 
coverages, with a 40-fold increase in accuracy at 10x empirical coverage, from 10x to 
effectively 400x. At higher empirical coverages, haplotype inference appears to produce 
diminishing returns and effective coverage begins to plateau. 
 
We next tested the effect of using smaller (10kb; Fig 1b) or larger (1000kb; Fig 1d) 
windows for haplotype inference at empirical coverages up to 10x. We find that for both 
pooled replicates, larger window sizes provide the most accurate HAFs, since more 
reads are available to infer haplotype frequencies in each window. Specifically, 1000kb 
HAFs derived from empirical coverages of 1x and 5x reached effective coverages of 
>400x and >900x, respectively.  
 
We also confirmed that the same results would be achieved by simulated samples with 
known sources of error.  To do so, we simulated pooled synthetic reads with a standard 
Illumina sequencing error rate of 0.00228 and corresponding base quality scores22 from 
the same proportions of the 99 founder lines included in the first biological replicate, and 
calculated effective coverage with the same empirical coverages and window sizes as 
above. Effective coverages for these simulated samples closely mirror effective 
coverages obtained from matched experimental samples (Fig 1b-d). Slight differences 
at higher empirical coverages and larger window sizes are most likely caused by 
compounded experimental error from DNA extractions, PCR reactions and sequencing, 
as well as ambiguity in the ‘true’ genotypes estimated for individually sequenced lines.  
 
Finally, we confirmed that the increased accuracy due to haplotype inference applies 
equally to pooled samples derived from other founder sets. We simulated pooled 
samples from an entirely different founder set composed of lines from the DGRP29 and 
found that the relationship between HAFs and non-HAFs in all ranges of empirical 
coverages and window sizes tested is qualitatively the same between the two different 
founder sets (Supp. Fig. 3).  
 
Together, these results suggest that HAFs derived from both simulated samples and 
multiple biologically distinct samples sequenced at low empirical coverages can be 
orders of magnitude more accurate than non-HAFs.  In the following analyses we focus 
on simulated data from the 99 original founder lines in order to precisely and reliably 
test how recombination and founder ambiguity affect HAFs in realistic E+R scenarios.  

 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/244004doi: bioRxiv preprint 

https://doi.org/10.1101/244004
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
 

 
Fig. 1. Accuracy of HAFs and non-HAFs for biological and simulated samples. A) 
Effective coverage of allele frequencies estimated with and without haplotype inference (HAFs 
and non-HAFs, respectively) for two biological replicates of 99 pooled individuals sequenced to 
high coverage and down-sampled to empirical coverages from 1-100x (R1=replicate 1, 
R2=replicate; HAFs calculated with 100kb inference windows). B-D) Effective coverages of 
HAFs for biological replicates (blue) and simulated samples (red) using 10kb, 100kb, or 1000kb 
inference windows at empirical coverages of 1-10x. 
 
Recombination and selection minimally affect accuracy over short time 
scales 
 
Since recombination will unlink neighboring alleles resulting in smaller haplotype blocks, 
we hypothesized that as an experiment proceeds, the accuracy of HAFs calculated with 
a given inference window size will decrease. To test this prediction, we used forqs[REF] 
to perform forward-in-time simulation of neutral recombination for 200 generations in a 
population of 1000 individuals using a D. melanogaster recombination map30., and 
tracked the breakpoints and haplotype of origin for all recombined segments at every 
generation. At various timepoints, we randomly selected 198 recombined chromosomes 
(ie. 99 diploid individuals), and constructed the full sequences of these ‘sampled’ 
chromosomes from corresponding segments of the 99 individually sequenced founder 
haplotypes. Reads were simulated from the pooled set of 198 chromosomes after 
assigning ‘true’ genotypes to all missing calls that were then hidden during downstream 
haplotype inference calculations (see methods for full description). The accuracy of 
HAFs calculated from these simulated reads was assessed using 1000kb, 100kb, and 
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10kb inference windows at all 283k segregating sites. This is contrast to the analysis 
above that only computed HAF accuracy at sites with complete founder information, and 
allowed us to realistically incorporate missing information found in experimental 
samples. 
 
We first confirmed that, with all window sizes tested, the accuracy of HAFs decreases 
after more generations of recombination (Fig 2). Additionally, there is a tradeoff between 
window sizes (1000kb vs 100kb) after 50 generations, as the accuracy gained from 
extra information in larger windows is outweighed by the incorrect assumption of 
complete haplotype blocks. However, even after 50 generations of recombination, HAFs 
calculated with 100kb windows and an empirical coverage of 5x achieve an effective 
coverage of >100x, and the same empirical coverage can achieve effective coverages 
>50x at any timepoint tested. Conversely, 10kb windows may only be useful after >200 
generations of recombination, longer than most E+R experiments to date, and therefore 
the rest of our analysis focuses on using 100kb and 1000kb windows. 
 
In order to ensure that these results also extend to different evolutionary dynamics and 
are not specific any particular set of chromosomal breakpoints, we repeated this 
simulation 10 additional times, starting with the same founder population (Supp. Fig 4). 
During the first few generations of recombination, evolutionary dynamics and sampling 
do result in notable variance in the accuracy of HAFs, although this variance rapidly 
diminishes as recombination proceeds. We also confirmed that our estimates of 
effective coverage are robust to non-neutral dynamics in the presence of selected sites 
with varying selective strength (Supp. Fig 5). 
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Fig. 2. Effect of recombination on the accuracy of HAFs. Effective coverage values of 
HAFs on chromosome 2L after 0 to 200 generations of recombination in simulated pooled 
samples of founders (n=99) using 1000kb (dark red), 100kb (red) and 10kb (pink) windows. 
 
HAF accuracy is impacted by haplotype inference with incomplete founder 
sets 
 
Although recombination is a major factor affecting the accuracy of allele frequency 
estimates, ambiguity in the set of founders represented in the pool can also influence 
accuracy. As evolution proceeds during E+R experiments, whole founder haplotypes 
can be lost from the population. Similarly, contamination may create scenarios in which 
unintended haplotypes become part of the pool. Loss or gain of founder haplotypes over 
time has the potential to affect the accuracy of HAFs. We tested the accuracy of HAFs 
in the first scenario of haplotype loss by allowing haplotype frequency assignment to an 
extended set of founders, in addition to those included in the original population. 
Conversely, we tested the accuracy of HAFs in the second scenario by constraining 
haplotype frequency assignment to only 50% of the original founders. In both cases, 
HAF accuracy was evaluated in multiple window sizes after 5-20 generations of 
recombination. 
 
We find that the first scenario (founder haplotype loss) has a notable effect on effective 
coverage (Fig. 3), reducing accuracy by ~40% and ~50% when 25% and 50% of the 
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founders were lost from the population, respectively, after 15 generations of 
recombination at 10x coverage. The second scenario (haplotype contamination) 
resulted in a 50% decrease of effective coverage after 15 generations of recombination 
when the population was contaminated by additional haplotypes, increasing the number 
of haplotypes in the population by 25% compared to the original founder set of 99 
haplotypes. Effective coverage was further decreased by 63% when the number of 
haplotypes in the population was increased by 50%, and by 77% when the number of 
haplotypes was doubled. However, even after founder losses and gains of 50%, 
effective coverage remained >100x and >50x, respectively, in all E+R scenarios tested 
here. 
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Fig. 3. Measuring HAF accuracy after loss or gain of founder haplotypes. Effective 
coverage values of HAFs after intermediate amounts of recombination (5 gens, left; 15 gens, 
middle; 20 gens, right) using 1000kb (top panel), or 100kb (bottom panel) windows. Effective 
coverage values were calculated after founder haplotype loss, where fewer founders were 
represented in the pool than the number of potential haplotype frequency assignments (red 
lines), and founder haplotype gain, where more founders were represented in the pool than the 
number of potential haplotype frequency assignments (blue lines). 
 
Estimating effective coverage with other model organisms  
 
Finally, we explored how the utility of HAFs may extend to any genomic region, for any 
founder set with known SNPs, and in any model organism with a known recombination 
rate. To do this, we suggest using the chromosome-wide results presented in the 
analyses above as effective coverages expected at different empirical coverages and 
generations in Drosophila experiments, with the expectation that these values will vary 
slightly across the genome. The values reported here can be translated to any founder 
set or model organism by comparing SNP densities and recombination rates. For 
example, Drosophila melanogaster chromosome 2L has an average recombination rate 
of 2.39 cM/Mb30 and our founder set contains an average of 27,050 SNPs per Mb. 
Chromosome I in Caenorhabditis elegans, however, has a recombination rate that is 
1.4x that of Drosophila (3.33 cM/Mb31) and a commonly used reference panel of 249 
C. elegans strains32 contains only ~0.7x as many SNPs (18,600 SNPs/Mb). Thus, to 
achieve an effective coverage of 50x (the minimum required to detect selection) after 70 
generations of C. elegans recombination, one should aim to sequence pooled samples 
at an empirical coverage of 7x. 

Discussion 
 
E+R experiments have become a powerful tool to assay the underpinnings of rapid 
adaptation by tracking allele frequency trajectories within populations over time. 
Previous studies have shown that the greatest power to detect adaptive variants comes 
from an optimized experimental design that tracks allele frequencies in multiple replicate 
populations, samples each replicate population at multiple timepoints, and maximizes 
the coverage of each pooled sample. Incorporating all of these factors into an E+R 
framework, however, can present significant financial challenges. Here, we offer a way 
to mitigate these high sequencing costs without sacrificing statistical power.  
 
Our framework uses haplotype inference to increase the accuracy of pooled allele 
frequency estimates at low coverages. Since the accuracy of haplotype-derived allele 
frequencies relies on the total discriminatory power of reads across a genomic window, 
rather than coverage at a single site, this approach allows us to sequence less but still 
maintain high accuracy in allele frequency estimations. Namely, our method achieves 
the same accuracy expected from sequencing each sample at 100x (as recommended 
in order to reliably detect strong selection), while only requiring empirical coverage of 1x 
or less, bringing total sequencing costs from >$25,000 down to less than $200.  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/244004doi: bioRxiv preprint 

https://doi.org/10.1101/244004
http://creativecommons.org/licenses/by-nc-nd/4.0/


There are, however, limitations to this approach. First, this framework requires the 
founder population to be derived entirely from fully inbred lines. As a result, the 
population dynamics of loci under selection may differ slightly from trajectories in natural 
populations due to the genetic diversity lost in the inbreeding process (i.e. natural 
haplotypes, homozygous lethal mutations, and rare variants), as well as higher levels of 
linkage disequilibrium. Reconstituting an outbred population using inbred lines, 
however, can be an effective way to mitigate effects of the inbreeding process, and has 
been experimentally shown to have negligible bias and effect on adaptive dynamics33. 
 
Second, this approach requires a reliable and comprehensive account of the variants 
present in each founder line. Since previous studies recommend upwards of 100 
founders, sequencing each individual founder line to a sufficiently high depth may 
present a high upfront cost. However, this cost represents a one-time investment, which 
can be applied toward all future experiments using the same set of founders. 
Furthermore, a number of consortiums already maintain publically available stocks of 
large numbers of Drosophila lines with full, high-quality genome sequences29,34. We 
anticipate that these resources will continue to rapidly expand, facilitating experiments 
with even greater haplotype diversity at minimal costs. 
 
In addition, this approach is limited to studying short-term adaptation on the scale of 
tens of generations. In fact, an assumption of our method is that within an inference 
window, recombination breakpoints minimally affect the ability to accurately call 
haplotype frequencies. For a given window size however, this assumption becomes less 
valid as recombination proceeds, and haplotypes blocks decay. Conversely, using 
increasingly smaller windows reduces the information used for haplotype inference, to 
the point at which HAFs are no longer more accurate than non-HAFs. Though our 
results here demonstrate that recombination will limit the ability to detect adaptation on 
timescales of more than 200 generations, the short-term adaptive dynamics which E+R 
is best suited for fall well within this range. Furthermore, it is at these short timescales, 
when large numbers of replicate populations are critical for reliably detecting selection, 
that the cost savings associated with haplotype inference methods will be most 
beneficial. 
 
Finally, this approach relies on tracking the trajectories of known bi-allelic 
polymorphisms derived from the founder population, and thus, de novo mutations will 
not be assayed in this framework. Nonetheless our approach should sufficiently capture 
the salient features of short-term adaptive dynamics, as there is a growing body of 
experimental evidence suggesting that selection acts primarily on standing genetic 
variation in sexual organisms, and that de novo beneficial mutations do not play a large 
role in rapid adaptation5,35–37.  Additionally, by tracking only known well-validated 
polymorphisms, the approach is largely robust to error from small non-SNP 
chromosomal variants such as indels. 
 
Despite the above limitations, collectively our results show that integrating haplotype 
inference into future E+R experiments is the most cost-effective way to achieve 
accuracy in allele frequency estimates, which will directly improve the ability to detect 
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genome-wide signatures of adaptation. Consequently, we offer specific 
recommendations for future E+R experimental schemes that take advantage of this 
approach. First, each founder line should be initially sequenced to a sufficient depth that 
minimizes any missing genotypes. Preliminary analysis reveals that the loss of even 1 
called founder genotype per site results in notable drops in accuracy. If missing 
genotype calls do exist in founder lines, imputing sites prior to haplotype inference can 
mitigate some of this error. When calculating haplotype frequencies, we find that using 
large inference window sizes (1000kb) and providing information for the most 
comprehensive set of founders maximizes the accuracy of allele frequencies and 
effective coverages attained for each relevant E+R scenario tested here.  
Together, these guidelines and the analysis above form a framework for achieving 
effective coverages of close to 100x with empirical coverages as low as 1x even after 
50 generations of recombination, reducing sequencing costs by 100-fold. Ultimately, 
these cost savings, which can be extended to experiments with a variety of model 
organisms, will provide a more robust E+R framework that can incorporate large 
numbers of replicate populations. This will be crucial to the future of E+R as a 
sustainable and feasible experimental tool since it can provide the statistical power to 
distinguish between beneficial and neutral alleles. 
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Methods 
 
Establishment and sequencing of founder set 
209 iso-female lines were established from populations sampled along a latitudinal cline in 
North America from Maine and PA. These isogenic lines were inbred for ~20 generations of full-
sib mating to produce viable, fertile inbred lines. See Bergland et.al (in progress) for full details. 
30-50 individuals from each line were pooled for DNA extraction. Whole flies were homogenized 
with lysis buffer and 1mm beads and DNA was precipitated from the homogenate before 
resuspension in TE buffer.  Libraries were prepared with a modified Nextera protocol developed 
by (Baym, et al 2015). All samples were indexed with Illumina’s TruSeq Dual Index Sequencing 
Primer Kit (PE-121-1003) and pooled equimolarly into 3 sets of ~70 samples each. Each set of 
pooled DNA libraries were purified using Ampure XP and size-selected to 450-500 bp with a 
SizeSelect E-Gel. After an additional 5 rounds of PCR, DNA libraries were purified using 
Ampure XP beads, quantified, and diluted to the appropriate concentration before sequencing 
on the HiSeq 3000. Adapter sequences were trimmed (Trimmomatic v0.33) and overlapping 
reads were merged (PEAR v0.9.6), then reads were mapped (bwa v 0.7.9) to the 
D.melanogaster reference genome (v5.39) using default parameters. PCR duplicates were 
removed using PicardTools (v1.12). Base quality score recalibration, indel realignment, and 
novel SNP discovery were carried out using GATK’s Unified Genotyper (version 3.4-46), on all 
sequenced inbred lines together with a larger set of previously sequenced Drosophila 
melanogaster lines derived from multiple Europe and North America populations. Only SNPs 
segregating in the 99 inbred strains pooled for re-sequencing were used to simulate reads and 
estimate haplotype frequencies.  
 
Generating Experimentally Pooled Samples 
One male each was selected from each of 99 inbred strains, and all individuals were pooled for 
re-sequencing. A second biological replicates was constructed from 99 additional individuals. 
DNA isolation was performed as described above. 3 separate libraries were prepared from each 
of the two biological replicates using different library prep methods: [1] according to protocols 
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described in Nextera DNA Library Prep Reference Guide (15027987 v01); [2] a modified 
Nextera protocol (as described above); [3] a Covaris shearing protocol.  Final results from the 3 
library prep methods were similar. All libraries were size-selected and PCR amplified using two 
replicate PCR reactions and a high volume of template DNA to prevent PCR-jackpotting. DNA 
was purified, quantified, and diluted before sequencing on the HiSeq 3000. Raw, 150bp pair-
end reads were trimmed for adapter sequences with Skewer (version 0.1.127). Read merging, 
mapping, and PCR duplicate removal was performed as above.  
 
Generating Simulated Pooled Samples 
150-bp paired end pre-aligned reads were simulated from a table of alternate founder 
genotypes and the D. melanogaster reference genome with simreads, a software tool included 
with the HARP package. All reads were simulated with an error rate of 0.2%. No read trimming 
or PCR duplicate removal was done. All SNP tables used to generate reads underwent 
imputation before read simulation. 
 
Haplotype Frequency Estimation 
All haplotype likelihoods and frequencies were estimated with HARP. Haplotype frequencies 
were evaluated in 1000kb, 100kb or 10kb window width sizes, with 100kb, 10kb, or 1kb window 
step sizes, respectively. SNP tables used to assign haplotype frequencies were re-imputed 
separately from any SNP table used to simulate reads. For reference, inferring haplotype 
frequencies for 99 founder lines at 283k segregating sites on chromosome 2L in 1000kb 
windows took 8 minutes and required 450Mb RAM for samples sequenced at 5x empirical 
coverage and took 15 minutes and required 860Mb RAM for samples sequenced at 10x.  Using 
100kb windows took 9.5 minutes / 70Mb and 17.5 minutes / 132Mb for 5x and 10x samples, 
respectively. 
 
HAF Estimations 
Allele frequencies calculated using haplotype inference (HAFs) were estimated as the sum of 
founder haplotypes containing the alternate allele, each weighted by their average inferred 
haplotype frequency in all haplotype inference windows overlapping the site. Founder 
haplotypes with missing calls were given a fractional alternate allele count equal to the mean of 
called founders with alternate alleles. 
 
Accuracy Estimations Using Effective Coverage 
Effective coverage was used as a metric to assess accuracy of all HAFs and non-HAFs.  
Effective coverage was calculated by equating the total theoretical binomial variance (BV) of the 
true frequencies given an average coverage C [ where BV= ∑ ! "($%" ! )

" '
 ] to the sum of the 

squared error (SSE) of estimated allele frequencies. Solving for C with 𝐶 = ∑ ! "($%")
SSE

	 yields the 
theoretical coverage at which binomial sampling of reads would be expected to contain the 
observed amount of error from estimated frequencies.  
 
HAFs with an alternate founder set 
SNPs were derived from 205 strains initially isolated from Raleigh, NC that were independently 
sequenced as part of freeze 2 of the Drosophila Genetic Reference Panel (DGRP) 29 . Genotype 
data was downloaded directly from http://dgrp2.gnets.ncsu.edu and read simulation, haplotype 
inference and effective coverage calculations were carried out as above. 
 
Recombination 
Forward-in-time simulations of recombination were performed with the software tool forqs38 
using a D. melanogaster recombination map30.  Recombination breakpoints were simulated for 
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up to 200 generations of the same evolutionary trajectory in 10 replicate populations with a 
constant population size of 1000 individuals. When selected sites were added, each replicate 
contained the same parameters for selection but included different selected sites. 198 
recombination breakpoints were used to construct ‘sampled’ sets of chromosome pairs from 
corresponding segments of the 99 individually sequenced founder haplotypes. Read simulations 
were performed as above with recombined sets of SNPs. True allele frequencies were 
calculated as above from the same set of SNPs that were used to generate simulated reads.  
 
Founder Ambiguity 
To simulate reads with founder ambiguity, SNP calls from additional North American lines were 
added to calls from the 99 seasonal inbred lines pooled for sequencing. Additional sets of lines 
were then added to obtain SNP calls from 124, 149 and 209 lines respectively. SNP tables were 
also made by removing 25 and 50 lines from the original set of 99 lines. Each SNP table 
contained the same number of SNPs and was imputed as above. Reads were simulated from 
each new SNP table and further downstream analysis was conducted as described above. 
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Supplemental Text 
 
Incorporating uneven pooling of individuals produces more realistic 
estimates of true allele frequencies 
 
Our ability to measure the accuracy of HAFs and non-HAFs depends on our ability to 
determine the true contribution of each pooled individual. Since uneven pooling is a 
source of error known to affect pool-seq samples12, we estimated the relative 
contribution of DNA from each individual by calculating the average genome-wide allele 
frequency at sites private to each founder. While each founder could be detected in the 
pool, we found substantial variation in their relative representation (Supp. Fig 2). ‘True’ 
frequencies for the experimental pooled sample were thus calculated by weighting 
founders known to contain the alternate allele by their estimated representation in the 
pool. We assessed whether these ‘true’ allele frequencies were better recapitulated by 
experimental reads than ‘true’ allele frequencies calculated without incorporating 
uneven pooling at all fully genotyped sites (both private and common). We found that 
the effective coverage using unevenly pooled weighted values (126x) was higher than 
the effective coverage assuming evenly pooled individuals (120x). We used these same 
estimates of uneven pooling to simulate reads in uneven proportions from different 
haplotypes for the synthetic sample as well. 
 
Imputing missing founder genotypes increases the accuracy of HAFs 

 
While missing information can be accommodated by many haplotype inference tools 
(i.e. an N in place of a missing call), it is unclear how missing calls affect inference 
accuracy, and what the best practices should be when missing calls are present in the 
reference founder set. 
 
We first examined whether haplotype frequencies estimated for founders with many 
missing calls or few missing calls systematically deviated from an expected haplotype 
frequency of 0.101 (1/99). We found that across individual inference windows, there 
was a clear negative correlation between the number of missing calls per founder, and 
the haplotype frequencies estimated for that founder (Supp. Fig 1). To determine 
whether the observed skewed haplotype frequencies were directly associated with the 
presence of missing sites, we tested whether imputing genotype calls for missing sites 
would reduce bias in haplotype frequency assignment. To perform imputation, at each 
site we first calculated the allele frequency among called founder genotypes and used 
this value as a probability for assigning genotypes to missing calls. We found that 
imputation significantly reduced the skewed haplotype frequency distribution by 4-6-fold 
for all empirical coverages and window sizes tested.  
 
We next examined how imputation of haplotype frequencies can impact the overall 
accuracy of HAFs. We found that imputation increased the accuracy of HAFs in all 
window sizes, but was most effective in 1000kb windows where accuracy increased by 
more than two-fold at higher empirical coverages (Supp. Table 2). We also confirmed 
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that haplotype inference using imputed calls produced more accurate HAFs than using 
a subset of sites with no missing calls. Thus, we include imputation as a key step in our 
analysis pipeline.  

Supplemental Figures and Tables 

 

 
Supplemental Fig 1. Median haplotype frequency across all windows on chromosome 2L for 
each founder (n=99), calculated with different window sizes and empirical coverages.  
Haplotype frequencies calculated before imputation (filled circles) and after imputation (open 
circles) are plotted as a function of the log of the total number of ambiguous genotypes (aka “N-
count”). Best fit lines for each dataset were calculated with standard linear regression. 
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Supplemental Figure 2. Contribution of DNA from each pooled individual in experimental 
replicate 1, estimated by average genome-wide allele frequency across all singleton sites. The 
dashed line represents theoretical expectation for evenly pooled individuals. Points are colored 
by number of singletons sites per founder. 
 
 

 
Supplemental Figure 3. Effective coverage values of HAFs using 1000kb (dark red), 100kb 
(red) and 10kb (pink) inference windows, and non-HAFs (black) within simulated pooled 
samples using a DGRP founder set (n=205) on chromosome 2L. 
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Supplemental Figure 4. Effective coverage values of HAFs calculated with 1000kb inference 
windows in 10 replicate populations after 0 to 200 generations of neutral recombination.  
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Supplemental Figure 5. Effective coverage of simulated samples from populations under a) the 
standard neutral selection regime, compared to populations under different selection regimes 
including b) 4 randomly distributed strongly selected sites contributing additively to a 
quantitative trait, c) same as panel b but with 50% reduced selection strength, and d) same as 
panel b but with twice as many selected sites.  In each panel, effective coverage was calculated 
for 10 simulated replicate populations sampled at generations 5 (red boxplot) and 15 (yellow 
boxplot) and sequenced at an empirical coverage of 5x.  Effective coverages from the same 
replicate are connected by a gray line. 
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Supplemental Table 1. Effective coverage values of HAFs obtained by different methods for 
treating missing founder genotype calls.  Column 1 (‘Ambiguous’) refers to effective coverages 
obtained by performing haplotype inference with missing genotypes denoted by ‘N’. Column 2 
(‘Imputed’) refers to effective coverages obtained by performing haplotype inference with 
genotypes assigned to missing calls by randomly selecting the reference or alternate allele with 
a probability determined by the ratio of called ref and alt alleles at the site.  Column 3 
(‘Subsetted’) refers to effective coverages obtained by performing haplotype inference using 
only sites with full genotype information for every founder. 
 

Window Size Coverage Ambiguous Imputed Subsetted 
10kb 1 9.7085 10.9811 10.5440 

 5 34.0194 39.8801 37.3980 
 10 58.4309 70.9542 63.7056 

100kb 1 51.3650 60.5870	 51.3393 
 5 164.6956 215.1379 141.2237 
 10 240.8699 345.4896 189.6102 

1000kb 1 202.5682 329.7044 172.0310 
 5 321.9890 701.5851 240.6798 
 10 346.1369 809.1494 248.5619 
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